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Abstract—Vehicle tracking is one of the important applica-

tions of wireless sensor networks. We consider an aspect of

tracking: the classification of targets based on the acoustic sig-

nals produced by vehicles. In this paper, we present a naı̈ve

classifier and simple distributed schemes for vehicle classifica-

tion based on the features extracted from the acoustic signals.

We demonstrate a novel way of using Aura matrices to cre-

ate a new feature derived from the power spectral density

(PSD) of a signal, which performs at par with other existing

features. To benefit from the distributed environment of the

sensor networks we also propose efficient dynamic acoustic

features that are low on dimension, yet effective for classifi-

cation. An experimental study has been conducted using real

acoustic signals of different vehicles in an urban setting. Our

proposed schemes using a naı̈ve classifier achieved highly ac-

curate results in classifying different vehicles into two classes.

Communication and computational costs were also computed

to capture their trade-off with the classification quality.

Keywords— sensor networks, vehicle classification, acoustic sig-

nals.

1. Introduction

Networked sensors can be equipped with various sensing

devices, as well as memory, processor, radio, and a power

supply. However, they are still constrained by limited mem-

ory, processing power, channel capacity, and, most im-

portantly, energy reserves. When tracking is considered

as an application, data-intensive sources (e.g., high frame

rate/high resolution video) is usually avoided as being more

energy expensive than low data rate sources. For this rea-

son tracking using audio signals is usually preferable. Ve-

hicle tracking on acoustic data is based on the fact that

different vehicles produce distinctly different acoustic sig-

nals because their engine and propulsion mechanisms are

unique [12]. The problem of vehicle detection using the

acoustic signature has been extensively studied [2, 12, 14].

Recently, target classification based on acoustic signals in

wireless sensor networks has been addressed in [4, 9]. The

advantage of sensor networks is that they provide redun-

dancy in terms of sensing and processing units. Hence,

they can operate together in a distributed and coordinated

fashion to detect and report the presence of a target vehicle,

possibly refining the tracking and classification quality as

the target is moving.

We should add that vehicle tracking includes various objec-

tives that must be supported by a number of steps. These

steps include vehicle detection, identification and/or classi-

fication, and localization. Depending on the specific track-

ing objectives, all or combinations of these steps may be

required. In this paper we restrict our attention to classi-

fication alone. Classification is necessary because sensors

can report on a specific moving vehicle only after they rec-

ognize vehicles that are of some interest. Classification

is naturally more challenging if there are multiple targets

of various types (e.g., tanks, jeeps, other types of military

vehicles, civilian vehicles, etc.). Furthermore, there may

be a number of vehicles of the same type, e.g., tanks of

a particular make. We define as classification the problem

of identifying which class a vehicle belongs to. Identifying

a particular vehicle goes one step further and is not within

the scope of the current paper.

Various techniques have been proposed to address the clas-

sification problem [2, 4, 12], relying on feature extraction

that differ in the way features are extracted. For exam-

ple [2], proposed a wavelet based method for feature ex-

traction, which works as follows: three different types of

acoustic signature are extracted: squeak sound, sound un-

der motion, exhaust sound.

The data points contained by each of these signatures are

decomposed to a 12 element feature vector using the multi-

resolution analysis [10]. These 12 element feature vectors

represent the energy concentration of the signature signal at

12 different resolution levels. The continuous wavelet trans-

form (CWT) and the Short-Term Fourier transform (STFT)

plots were used for two other feature vectors. Finally, these

feature vectors are used to compute the distance between

the reference and unknown signatures. Wu et al. in [14]

proposed a principle component analysis based method for

recognition of acoustic signatures. The basic idea of their

proposed method is to use together the mean adjusted sound

spectrum, and key eigenvalues of the covariance matrix to

characterize an acoustic signature.

An adaptive threshold based algorithm is proposed in [3]

for vehicle detection, based on the average energy of an

acoustic signal crossing a threshold value before a decision

on the detection of the vehicle can be made. The thresh-

old is updated adaptively. Also, [4] details experiments

carried out during the 3rd SensIT situational experiment

(SITEX02) organized by DARPA/IXO. Various military ve-

hicles were used in these experiments, real word data was

generated and archived for future studies. The objective

was to detect and accurately locate vehicles using energy-

based localization algorithm. Frequency spectrum based
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features are extracted from the acoustic and seismic sig-

nals captured by the sensors. These features were extracted

by using 512-point fast Fourier transform (FFT). Then,

for classification purposes, three different approaches are

used, i.e.:

– k-nearest-neighbor classifier,

– maximum likelihood classifier,

– support-vector-machine classifier.

In [9] a framework for collaborative signal processing in

sensor networks is designed for the purpose of multiple

targets detection, classification, and tracking.

In this paper we study the impact of increasing the com-

plexity and memory footprint of a classification algorithm

to achieve better classification accuracy. We consider this

to be a reasonable trade-off since what is usually assumed

to be expensive in terms of energy is communication, and

not computation/storage (within reason of course). While

we are also increasing the computation cost, we argue that

as long as the computation is allowed to be completed

within a reasonable amount of time, computation can be

spread over a longer period of time by proper reduction of

the CPU clock [16].

One distinct contributions of our work is that in order to

maximally benefit from the information collected by a sen-

sor, we consider multiple representations of features. Some,

are well known (FFT, PSD, etc.) but we also introduce Aura

matrices. Aura matrices [6] have been used in the past for

analyzing and predicting texture patterns [15]. In our study

we create “artificial” 2-dimensional “textures” by arranging

PSD data into matrices, and then using Aura matrices to

summarize the information of the 2-dimensional matrix. In

other words, Aura matrices attempt to visually approximate

the arrangement of PSD values. For details about the con-

struction of Aura matrices the reader is referred to [6]. To

exploit the inherently distributed environment of the sensor

networks we also propose dynamic PSD features, which

are generated on the run by the sensors as they capture the

acoustic signals. The distinct contribution of the dynamic

PSD features is that they are quite low on dimension, yet,

effective to produce good classification results.

We start by describing a naı̈ve classification scheme and el-

ementary forms for a distributed implementation over a sen-

sor network in Section 2. Section 3 presents the details on

the acoustic features used in this study. Section 4 presents

performance evaluation results in terms of classification ac-

curacy and energy expenditure trade-offs for the different

distributed implementations. Finally, Section 5 summarizes

the findings of the paper and outlines future research ob-

jectives.

2. A naı̈ve classifier

Existing techniques such as k-nearest neighbor (k-NN) can

be used by sensors to perform the classification. k-NN is

based on the idea that similar objects are closer to each

other in a multidimensional feature space. k-NN is one

of the simplest, yet accurate, classification methods and

recently it has been used in sensor networks for target clas-

sification [4, 9]. Unfortunately, finding k for the optimum

solution is non-trivial. In contrast to k-NN algorithm we

adopt a naı̈ve approach where first a training set |U | is de-

fined for each class of the vehicles. Equal number of sam-

ples are assumed to be in the training set of these classes.

Note that class labels of the training samples are known

in advance. Now in order to classify an unknown sam-

ple using a particular feature, the naı̈ve classifier does the

following: for each class, and for each sample of the |U |
samples in the training set of each class, it calculates the

distance of the unknown sample from the training set sam-

ples. Classifier determines the average distance of the un-

known sample from the training set samples of each class.

The unknown sample is determined to be in the class with

the smallest average distance. If we assume m× n to be

the size of the feature vectors extracted from each of the

samples from the set |U | of a class. Furthermore, if we

assume there are total c training classes, then the number

of computations performed by the classifier to compute the

similarity measure for all training classes is proportional to

|U |× c×m×n. It is clear from this discussion that the di-

mensionality of the feature vectors is important to the naı̈ve

classifier in terms of computational cost. Feature selection

is also important for a classifier to achieve good classifica-

tion results [5]. We discuss more on features selection in

Section 3.

Classification process. As a vehicle crosses through an

area monitored by a sensor network, the nodes self-organize

in neighborhood “clusters” using a technique similar to [1]

but where the tie breaking criteria for selection of the “mas-

ter” node is the signal quality of the monitored vehicle.

The master is the node with higher average power of re-

ceived signal, hence possibly closest to the vehicle. Multi-

ple neighborhoods may be formed, but with a single mas-

ter node per neighborhood. After the selection, a master

node prepares a schedule, and broadcasts it in its neighbor-

hood to initiate the classification process. A schedule ba-

sically consists of classification assignments for all sensors

in the neighborhood. A typical classification assignment

for a sensor is to compute the similarity measure of an un-

known sample w.r.t. the training samples as specified in

the schedule. Sensors in a neighborhood after completing

their assignments reply back to their master node with their

results. After collecting the results the master node makes

a decision on the class of the unknown vehicle. Each of

the individual neighborhoods can perform a classification

method independently of the other neighborhoods. How-

ever, multiple neighborhoods may collaborate with each

other for two main reasons:

– better accuracy in classifying a vehicle,

– sharing the costs associated with classification.
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In our study we examined various scenarios of single and

multiple neighborhoods based classification. We propose

four basic schemes:

• Single neighborhood using local signatures (SN-

LS). In this scheme each sensor in a neighborhood

predicts the class of the unknown vehicle using a ve-

hicle’s local signature captured by the sensor itself.

The master node collects results from all sensors in

the neighborhood and classifies the unknown vehicle

based on the majority of predictions.

• Single neighborhood using global signatures (SN-

GS). In this scheme each sensor in a neighbor-

hood predicts the class of the unknown vehicle using

a vehicle’s global signature. A global copy of vehi-

cle’s signature is transmitted to a sensor by the master

node of its neighborhood. A sensor after receiving

global signature from the master node fuses it with

its own local signature by using an appropriate av-

eraging function. Master node collects results from

all participating nodes in the neighborhood and clas-

sifies the unknown vehicle based on the majority of

predictions.

• Multiple neighborhood using local signatures

(MN-LS). In this scheme a master node not only col-

lects results from sensors in its own neighborhood,

but it also invokes its adjoining neighborhoods to

seek the classification results. All sensors in partici-

pating neighborhoods use their local copy of a vehi-

cle’s signature.

• Multiple neighborhood using global signatures

(MN-GS). The basic difference between this scheme

and the previous scheme (MN-LS) is that sensors in

a particular neighborhood use a global copy of a ve-

hicle’s signature provided to them by their respective

master node.

3. Features extraction

Sensors perform classification using the features extracted

from the acoustic signatures they capture locally or pro-

vided to them by their master node. A vehicle’s sound is

a stochastic signal. The sound of a moving vehicle ob-

served over a period of time will not be a stationary signal.

However, a signal of fairly short duration can be treated as

a stationary signal [14]. In our case we chose the signal’s

duration to be 11.06 ms, i.e., 256 data points sampled at

a frequency of 22 kHz. In our study we considered six

acoustic features that are generated using FFT and PSD of

the time series data of a given signal.

1. Linear FFT feature (LFFT). This feature is gen-

erated using FFT of 256 data points that gave us

a linear vector (of size 256) representing frequencies

with a resolution of 85.93 Hz.

2. Linear PSD feature (LPSD). This feature is gen-

erated by taking power spectral density estimates of

256 data points. With a resolution of 85.93 Hz this

method gave us a linear vector (of size 128) to form

a linear PSD feature.

3. Multidimensional FFT feature (MFFT). In this

case 10 blocks of 256 FFT data points are used to

form a multidimensional FFT feature. This feature

can be seen as a matrix of size 256 × 10. The size 10

was determined by trial and error method.

4. Multidimensional PSD feature (MPSD). In this

case 10 blocks of 128 PSD data points are used to

form a multidimensional PSD feature. This feature

can be seen as a matrix of size 128 × 10.

5. Aura of a multidimensional PSD feature

(AMPSD). It has been demonstrated in [7] that

PSD is not an optimal feature for signal recognition.

We sought to improve the PSD based feature using

some established statistical techniques, namely Aura

matrices. In order to construct AMPSD features

we simply compute Aura of a MPSD matrix. For

computing the Aura of a matrix the reader is referred

to [6].

6. Dynamic multidimensional PSD feature

(DMPSD). One limitation of the multidimen-

sional features is their size. Consider the MPSD

feature which is a 128 × 10 matrix. In order to

classify an unknown sample, the naı̈ve classifier

must compute the similarity measure of the unknown

sample w.r.t. all training samples in all the classes.

That may make the naı̈ve classifier computationally

expensive for any real time application. Sensors

can adopt a dynamic approach here. After consti-

tuting a MPSD feature, each sensor may choose

only selective PSD dimensions. One criterion for

selection is to choose only those dimensions that

have the maximum value in each of the blocks (of

128 PSD points). For example, if there were only

two blocks of PSD data, and if the first PSD block

had a maximum value in the d1 dimension, and the

second PSD block had the maximum value in the

d5 dimension, then only d1 and d5 dimensions are

selected for both the blocks (of 128 PSD points) to

create DMPSD (dynamic MPSD) feature. In this

particular example, the DMPSD feature is a matrix

of size 2 × 2.

The FFT and PSD data of each of the training samples

from all the training classes can be extracted off-line and

uploaded to the sensors in advance before their deploy-

ment. After deployment sensors must extract FFT/PSD

features from the unknown samples on-line. In the case

of LFFT, LPSD, MFFT, MPSD, and AMPSD features, the

dimensions of the training FFT/PSD data are fixed. How-

ever, in the case of DMPSD feature, sensors must adjust
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the dimensions of the training PSD data according to the

dimensions of the DMPSD feature of the unknown sample

that is being classified. In our experimental study, which is

presented next, we evaluate the performance of the above

discussed features in terms of their accuracy, communica-

tion, and computational costs.

4. Experimental study

We used acoustic signal samples of various urban ground

vehicles, recorded using a Panasonic US395 micro-

phone. Approximately 50 samples of various vehicles were

recorded at two main locations of Bonnie-Doon mall and

the University of Alberta bus stop in the city of Edmonton.

The samples included ETS buses (part of the public trans-

portation system at the city of Edmonton), different types

of cars, small trucks, SUVs, and mini vans. All samples

were transferred to MATLAB for the simulation of classifi-

cation algorithms. We standardized our acoustic dataset to

remove any shifting and scaling factors by using the normal

form [8] of the original time series data.

We assume that every sensor has a copy of training set,

U for each class. A sensor’s captured signal of an unknown

vehicle, which needs to be classified, may be different from

other sensors signal of the same unknown vehicle captured

approximately at the same time because of the different

sensors positions. In order to create a local copy of an

unknown signature for a sensor, we attenuate the original

signal based on the distance of the sensor from the mov-

ing vehicle. Then, we introduce time difference of arrival

(TDOA) lags for multiple sensors capturing the same signal

based on their relative position, and also add white noise.

A vehicle’s sound can also be degraded by reverberations,

however, we considered an outdoor open environment, so

we have neglected the effect of reverberations. In our simu-

lation we considered various scenarios for sensor setup. In

these experiments sensors are assumed to be placed along

two straight parallel lines, i.e., as they would be deployed

along the sides of a street. Sensors are placed 5 m apart

and their sensing and radio range is 15 m. A vehicle is

considered to be moving with a speed of 53±2 km/h.

4.1. Performance metrics

We consider three performance metrics:

– classification accuracy,

– communication overheads,

– computation cost.

Classification accuracy is computed based on the leave-one-

out policy. Under this policy one sample is removed from

the acoustic dataset consisting of all samples in a class.

This sample is called the testing sample. The rest of the

samples in the dataset constitute the training set U for that

class. Class label of the testing sample is assumed to be

unknown. Then, the distance of the testing sample is com-

puted from all the samples in the training set of each class.

This process is repeated for all samples in our acoustic

dataset. If two samples are represented by matrices Xm×n

and X ′
m×n, then the distance between them is computed as

follows:

d =

|n|

∑
q=1

|m|

∑
p=1

|xpq − x′pq| . (1)

Classification accuracy is calculated as a percentage of

testing samples that are correctly classified from the to-

tal number of testing samples. In the experiments we used

a simplistic case of only two classes. The objective was to

classify the previously mentioned vehicles into two classes,

i.e., ETS buses and other vehicles that are not ETS buses.

Communication overheads are computed based on the num-

ber of bits transmitted by a sensors per classification event.

Computational costs are based on the number of computa-

tions performed by a sensor per classification event to mea-

sure the similarity difference between the unknown sample

and the training samples in all classes.

4.2. Single neighborhood case

The results for classification accuracy in SN-LS and SN-GS

schemes are presented in Fig. 1. In these experiments we

vary the number of sensors in a single neighborhood such

that all sensors in the cluster are able to communicate to

the master node. In that way we vary the cluster size from

3 sensors to 90 sensors in the cluster. The classification

accuracy using most of the features, except DMPSD fea-

ture, remains the same as the cluster size changes from 3 to

90 sensors. The classification accuracy of DMPSD feature

improved from 77% to 90% as the cluster size changed.

The reason for improved accuracy is that sensors dynam-

ically select the PSD points as they capture the unknown

signal. When the large number of sensors are available

in the cluster, the probability of sensors selecting the ef-

fective features increases. As the sensors in a neighborhood

make their individual decision, an increase in the number of

sensors selecting the effective features increases the prob-

ability of that particular neighborhood making a correct

prediction.

The reason for the lack of improvement using the rest of the

feature extraction schemes is that sensors use only a fixed

set of features on the training dataset. Adding more sen-

sors into the neighborhood improves the approximation of

the distance measurements collected from the multiple sen-

sors from a neighborhood. However, in the case of naı̈ve

classifier, these improved approximations did not improve

the classification accuracy much. An accuracy of 98% is

achived using MPSD and AMPSD features that is better

than the accuracies reported in [11], which uses k-NN clas-

sifier. As shown in Fig. 1, DMPSD feature’s performance

improved clearly in both the SN-LS and SN-GS schemes.

With a better copy of vehicle’s signal available to all par-

ticipating sensors, features in SN-GS scheme performed

slightly better than SN-LS.
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Fig. 1. Classification accuracy of the single neighborhood case:

(a) SN-LS; (b) SN-GS.

Increasing the number of sensors in a neighborhood has

more impact on the communication costs than on the clas-

sification accuracy. The results for SN-LS and SN-GS

schemes are presented in Fig. 2a and 2b, respectively. As

the number of sensors increases the number of messages

exchanged increases. Therefore, costs increase for both the

single neighborhood based schemes. Communication costs

are much higher in the SN-GS scheme due the transmis-

sion of the signature by the master node to its neighbor-

hood.

The benefits of smaller feature size in terms of computa-

tional cost are summarized in Fig. 2c. The average size

of the DMPSD feature is 6×10, which is almost 4, 2, 42,

21, and 21 times less than LFFT, LPSD, MFFT, MPSD,

and AMPSD features, respectively. Due to the reduced

feature vectors size, the cost for computing similarity mea-

sure in naı̈ve classifier using DMPSD feature is the least as

compared to the other feature vectors. On the other hand

Fig. 2. Cost for the single neighborhood case: (a) communica-

tion cost for various features in SN-LS; (b) communication cost

for various features in SN-GS; (c) computation cost of similarity

measure for various features using the naı̈ve classifier.
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MFFT and MPSD are the most expensive features to use.

The cost of computing Aura of MPSD is not included in

the results of AMPSD feature shown in Fig. 2c.

4.3. Multiple neighborhood case

In the experiments for the multi-neighborhoods based

schemes we simulate various scenarios of neighborhood

formation. In these experiments we increase the number of

neighborhoods by decreasing the number of sensors avail-

able per neighborhood while keeping the total number of

sensors fixed at 60. For example in the first scenario we

form 2 neighborhoods with 30 sensors in each of those

neighborhoods. In the second scenario 3 neighborhoods

are formed with 20 sensors in each of those neighborhoods.

Similarly we generated the rest of the scenarios. We gen-

erate these scenarios by adjusting the parameters such as

transmission range of the sensors.

Fig. 3. Communication cost of the multiple neighborhood case:

(a) MN-LS; (b) MN-GS.

Classification based on the multiple neighborhoods may

arise in various situations. Consider the case in which the

transmission range of the sensors is limited to communicate

at shorter distances only. It may restrict the sensors to form

neighborhoods within their vicinity only. However, this par-

ticular situation is favorable for energy conservation [13].

As shown in Fig. 3 performing classification in smaller

sized neighborhoods is more efficient in MN-LS scheme.

The reason for lesser cost in the multiple neighborhood case

is that setting up smaller sized neighborhoods is less ex-

pensive in comparison to forming the larger sized neighbor-

hoods. However, in the case of MN-GS scheme the savings

from the smaller sized neighborhoods are marginalized by

the heavy costs of transmitting the global signatures. As

expected communication costs are much higher in MN-GS

scheme. These results are presented in Fig. 3b.

The results for classification accuracy in MN-LS and MN-

GS schemes are presented in Fig. 4. There is not much dif-

Fig. 4. Classification accuracy of the multiple neighborhood

case: (a) MN-LS; (b) MN-GS.
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ference between the classification results for single neigh-

borhood scheme (e.g., SN-LS) and multiple neighborhood

scheme (e.g., MN-LS) for all features, except DMPSD fea-

ture. The accuracy with DMPSD feature decreases as the

number of neighborhoods increases. The reason for this

behavior is that in the multiple neighborhood schemes the

number of sensors per neighborhood decreases. That also

means a lesser number of sensors in the neighborhood have

the effective features, which affects the overall decision of

the neighborhood as a single unit. However, when the num-

ber of neighborhoods are large, accuracy improves slightly.

In the case of global signatures, a similar trend can be seen

in multiple neighborhood schemes for the DMPSD feature.

Overall, with a better copy of vehicle’s signal available to

all participating sensors in a neighborhood, MN-GS scheme

performs slightly better than MN-LS.

The results presented here suggest that there is a trade-

off between communication costs, computational costs, and

achieving a higher classification accuracy. A higher clas-

sification accuracy comes at a higher communication and

computational costs for sensors. We also note that when

the number of training samples are fixed, then varying the

number of sensors per neighborhood affects the classifica-

tion accuracy for some features. Having more sensors in

a neighborhood increases the classification accuracy but at

a higher cost of communication. On the other hand se-

lection of features is also an important decision. Some

features are more expensive to use than others, but their

classification results are better. Our proposed DMPSD fea-

ture produced the best combination of accuracy and effi-

ciency, respectively, in terms of classification results and

computational costs.

5. Conclusions and future directions

Classifying ground vehicles is an important application

of wireless sensor networks. Features extracted from the

acoustic signatures of these vehicles form the basis for clas-

sification. Whether sensor networks provide for efficient

implementation of tracking, depends on whether neces-

sary operations, such as classification, can be performed

efficiently in a distributed fashion, achieving high classi-

fication accuracy at reasonable communication and com-

putational costs. In this paper, we proposed several dis-

tributed schemes for vehicle classification. These schemes

are based on the idea of collaborations in single and mul-

tiple neighborhoods. One distinct contribution of this pa-

per is dynamic acoustic features, which exploit the inher-

ently distributed nature of a sensor network. These features

are extracted by the sensors independently of each other in

a distributed fashion, which are simple, yet, effective. We

conducted a simulation study using real acoustic signals of

urban ground vehicles. Simulation results have revealed

the performance of our proposed schemes. Our proposed

schemes achieved up to 98% accuracy for a binary clas-

sification using a naı̈ve classifier. These results are even

better than some of the existing results obtained through

the k-NN classifier. In the future we would like to improve

the efficiency of our proposed schemes. We also plan to

conduct an experimental study where we consider more

than two classes of ground vehicles.
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