
Paper Cassiopeia – Towards a Distributed

and Composable Crawling Platform
Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

AGH University of Science and Technology, Department of Computer Science, Kraków, Poland

Abstract—When it comes to designing and implementing

crawling systems or Internet robots, it is of the utmost im-

portance to first address efficiency and scalability issues (from

a technical and architectural point of view), due to the enor-

mous size and unimaginable structural complexity of the

World Wide Web. There are, however, a significant num-

ber of users for whom flexibility and ease of execution are as

important as efficiency. Running, defining, and composing In-

ternet robots and crawlers according to dynamically-changing

requirements and use-cases in the easiest possible way (e.g.

in a graphical, drag & drop manner) is necessary especially

for criminal analysts. The goal of this paper is to present the

idea, design, crucial architectural elements, Proof-of-Concept

(PoC) implementation, and preliminary experimental assess-

ment of Cassiopeia framework, i.e. an all-in-one studio ad-

dressing both of the above-mentioned aspects.

Keywords—composable software, distributed Web crawling

framework, event-driven architecture, event-driven processing,

SEDA, Web crawler.

1. Introduction

Nowadays, Internet robots, crawlers, and spiders are ar-

guably the most-popular and most-commonly-used com-

puter programs worldwide. In fact, www.user-agents.org

claims that there were 2461 such agents in use during 2010

alone. Despite the ubiquity of such systems, identifying the

best one is nearly impossible due to the specific require-

ments necessary for each individual use-case.

One may ask if it is possible to develop an Internet robot

that can provide a framework for defining and composing

robots from the ground up. A framework that can function

in an efficient and scalable runtime environment by pro-

viding new building blocks to fit the needs of each user.

One that is also able to adapt to varying dynamic situations

while allowing the user to track task realization as well as

results.

If such a toolkit were to be developed with a simple drag

& drop interface, it would be a godsend for a great num-

ber of users who deal with unique and specialized search

tasks. Analysts in the marketing, financial, and criminal

sectors, for example, would be able to spend more time

concentrating on their work and less time dealing with li-

censing, compatibility, and all of the other issues plaguing

the solutions that are currently available.

The sheer scope and complexity of the World Wide Web

[1]–[4] make the development of Internet robots and, more

importantly, a framework which supports the composition

of graphical robots, a herculean task. To be suitable and

truly effective, the architecture of such solutions needs to

be top-notch [5]–[10].

When designing a crawling system, applying the appropri-

ate concurrency model is crucial. Each of the two classi-

cal models (thread-based and event-driven) has important

shortcomings - so the question is this: are there reason-

able alternatives that are able to improve crawling effec-

tiveness while simultaneously addressing assumed flexibil-

ity and ability for composing crawlers from the building-

blocks provided? In this context, Staged Event Driven Ar-

chitecture (SEDA) seems to be a promising answer.

The goal of this paper is to present the idea, architecture,

proof of concept implementation, and preliminary experi-

mental assessment of the Cassiopeia framework. The au-

thors believe this is an easy to use, all-in-one studio for

(re)defining, (re)composing, and ultimately executing In-

ternet robots in an efficient, distributed, agent-based crawl-

ing environment with the advanced concurrency model

applied.

This paper is organized as follows. In Section 2 the most

important top level functional and nonfunctional require-

ments regarding the Cassiopeia framework are defined. In

Section 3, its top-level architecture as well as particular

elements are presented. In Section 4 Cassiopeia agents,

i.e., the most important architectural components are de-

scribed. In Section 5 a typical concurrency model is dis-

cussed. Staged Event Driven Architecture, as well as its

adjustment and implementation for Cassiopeia purposes are

presented in Section 6. In Section 7 results of a prelimi-

nary experimental assessment of the Cassiopeia framework

itself (especially, SEDA implementation) and Cassiopeia

Web Crawler (CWC) are presented. Finally, in Section 8

short conclusions and future work are discussed.

2. Top Level Requirements

The goal of the Cassiopeia project is to design and develop

a flexible and open framework for composing, defining,

instantiating, launching, running, monitoring, and manag-

ing distributed crawlers as well as storing and analyzing

the gathered results. Among the most important, top-level

functional and non-functional requirements and assump-

tions, the following should be enumerated:

• it should be possible to (re)compose (also in run-

time) Internet robots from available building blocks,

i.e. small functionalities available on the Cassiopeia

platform;

79



Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

• it should be possible to redefine the composed

crawlers (also in runtime) without recompiling or

even restarting;

• it should be possible to extend the Cassiopeia frame-

work by providing new building blocks not available

on the platform thus far (it should be an open, not

closed, framework);

• since crawling tasks (especially specialized tasks,

such as those found in criminal cases) can be re-

ally demanding and long-lasting, an efficient and ef-

fective concurrency model should be applied. What

is important, concurrency should be self-manageable

and transparent since the end user wants to focus

on logical task definitions and result analysis, not on

implementation and execution details;

• taking complexity of crawling tasks into account:

– framework should be easy-to-scale – so dis-

tributed architecture is assumed. Obviously, it

should be easy to add new logical and physical

computational units while redistribute running

tasks among them only when needed. What is

important, it shouldn’t affect the effectiveness

or the efficiency of the framework itself;

– the architecture shouldn’t assume any con-

straints regarding geographical deployment

of computational units. Task execution units

should be independent, and the effective model

and channels of communication among them

should be assured;

• the framework should be fault tolerant, so:

– any single points of failure should be reduced

or eliminated at all;

– if some of execution units fail – realization of

their tasks should be taken over by the rest of

computational units. It should be done auto-

matically without interrupting task execution;

– running the (parts of the) framework and task

execution should be possible on many different

(if not all) popular hardware and software con-

figurations.

3. Cassiopeia Platform Architecture

Assuming the top level functional and nonfunctional re-

quirements defined in the previous section (and many other

aspects), the following architecture of the Cassiopeia plat-

form – presented in Fig. 1 – has been proposed. In several

of the following subsections, its crucial elements are briefly

discussed.

3.1. Communication Layer

Providing both an effective communication channel as well

as a common communication interface becomes far more

Cassiopeia

GUI

Management layer

Task composition layer

Communication layer

Agent N

Agent 2

Agent 1

...

...

P
lu

g
-i

n
 r

ep
o
si

to
ry

Fig. 1. Cassiopeia top level architecture.

necessary when the assumed distributed character of the

Cassiopeia framework is taken into consideration. To ad-

dress this, a dedicated communication layer has been dis-

tinguished. It provides two communication models on the

framework, i.e., a point-to-point and a publish-subscribe

model. The point-to-point communication model is real-

ized between one single sender and one single recipient.

On the Cassiopeia framework, a p2p communication model

is used for communication:

• among agents – e.g., for requesting a job to be com-

pleted;

• between GUI and agent – e.g., for stopping or pausing

agent activity;

• between an agent and a plug-in repository – e.g., for

downloading additional functionalities – i.e. plug-ins

from the repository;

• between GUI and plug-in repository – e.g., for down-

loading information about available plug-ins or for

submitting new plug-ins to the repository.

On the other hand, a publish-subscribe communication

model is realized between one single sender and many re-

cipients. Messages are published by the sender in the com-

munication channel and, next, are provided to all recipients

subscribed for receiving messages from this channel. On

Cassiopeia, there are two communication channels of this

kind:

• a general communication channel among agents and

between agents and the GUI. Any agent as well as

the GUI is able to publish messages on this channel

as well as subscribe to receive messages from this

channel;

• a heartbeat channel – described more precisely later.

80



Cassiopeia – Towards a Distributed and Composable Crawling Platform

From a technical point of view (as one may see in Fig. 2),

the above-mentioned communication channels are imple-

mented with the use of Java Message Service (JMS) and

RESTful Web Services technologies. JMS is a part of Java

Platform Enterprise Edition (J2EE), a technology which

makes it possible to communicate with the use of messages.

This has been chosen since is is pretty simple to realize both

point-to-point as well as publish-subscribe models with the

Cassiopeia

GUI

Agents’ infrastructure

Agent 1 Agent 2

Agent 3

JMS

JMS

JMS

JMS

RESTful Web Service

RESTful Web Service

Plug-in repository
HTTP

User

Fig. 2. Management layer architecture.

use of this technology. What is more, it provides both

synchronous and asynchronous communication models and

different levels of QoS. The communication infrastructure

in JMS consists of several elements – most importantly, the

message. Communication is realized between JMS clients,

but not directly. The communication service provider plays

the role of the mediator, providing the required level of

QoS and separating particular JMS clients. The provider

is responsible for implementing the JMS specification. Im-

plementation used in the Cassiopeia framework is Apache

ActiveMQ1. In point-to-point communication in JMS, the

message sender is called a producer and the JMS client

receiving the message is called a consumer. The producer

puts its messages on the JMS queue with unique identi-

fier, and the consumer takes messages from the appropri-

ate queue whenever it wants or needs to. In the publish-

subscribe model, the JMS client sending the message (this

time is called a JMS publisher) puts the message on the so-

called JMS topic. The main difference between the JMS

queue and JMS topic is that the message put on the topic

1http://activemq.apache.org

will be provided to all JMS clients registered to receive

messages from this topic (they are called JMS subscribers).

One example of such communication and messaging in the

Cassiopeia framework is the so-called heartbeat message.

Heartbeat messages are sent periodically by agents to in-

form other agents as well as the GUI that they are still

alive. If an agent doesn’t send such a messages for a pe-

riod of time, it is assumed to be dead. There is a defined

dedicated topic for such messages to avoid any delays and

mess while providing heartbeats messages. Only agents

are able to publish messages on this channel, whereas both

the agents and the GUI are able to subscribe to receive

messages from it (presented schematically in Fig. 3).

Heartbeat
message

T
o

p
ic

GUI

Agent 1

Agent 1 Agent 1 Agent 1

Agent 2

Agent 2

Agent 2

Agent 3

Agent 3Agent 3Agent 3

Fig. 3. Heartbeat messages.

In contrast to the communication realized with the use of

JMS technology, communication with the plug-in reposi-

tory, i.e., between agents and plug-in repository as well as

between GUI and plug-in repository is realized with REST-

ful Web Services technology (presented in Fig. 2).

3.2. Task Composition Layer

Since the required functionalities and behavior depends on

particular use-cases and contexts, there is no one, “ideal”

crawler. This is why one of the main top level requirements

regarding the Cassiopeia framework is to provide the ability

for composing crawlers from predefined building blocks.

This requirement is addressed by a task-composition layer

consisting of two main parts responsible for task and plug-

in definitions, respectively.

In the Cassiopeia framework, composing a crawling task

(i.e., the crawler) consists in selecting appropriate imple-

mentation of functionalities represented by plug-ins and

defining the structure of connections among them. Plug-ins

81



Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

“react” to events appearing in their inputs, perform actions

according to their definition and – if necessary – generate

and send events to another plug-ins to which they are con-

nected. This way, i.e., by selecting appropriate plug-ins and

defining the structure of connections among them, almost

any (crawling) task can be defined. Simple task definition

consisting of three plug-ins with sample connections among

them is presented in Fig. 4.

In

In

In

In

In In

In

In

Out1

Out1

Out2

Out2

Out1

Out1

Out1

Out1

Out1

Out1

Agent1

Agent2

Plug-in1

Plug-in1

Plug-in2

Plug-in2

Plug-in3

Plug-in3

Plug-in4

Plug-in4

Fig. 4. Sample task definition and events distribution in Cassio-

peia.

On the Cassiopeia platform, there exists two kinds of

plug-ins:

• Processors – i.e., event-driven plug-ins. Their work

consists in processing and – if necessary – gener-

ating and sending events to successive plug-ins. In

this type of plug-in, there is exactly one single in-

put where events that should be processed are passed

on. With one single input, many outputs of preced-

ing plug-ins can be linked, and this way, they can

provide events that should be processed.

• Data providers – plug-ins of this type are executed

exactly once during task execution. Since their role

is to generate events on the basis of their starting

configuration, they don’t have defined inputs.

Both Data providers and Processors can define any num-

ber of outputs where generated events appear. Decisions

regarding how many events should be produced and where

they should be passed on depends on the plug-in imple-

mentation only. Each plug-in – to be validated as a proper

Cassiopeia plug-in – has to define a plug-in descriptor al-

lowing for its successful installation. Such a descriptor has

to define at least:

– a plug-in identifier,

– information about its author and a short description,

– plug-in entry point, i.e., the fully-qualified main

class’ name,

– a definition and – finally – a description of configura-

tion parameters as well as a definition and description

of the plug-in’s outputs.

From a technical point of view, a plug-in is a Java class

compiled into JAR file and implementing defined inter-

faces. For instance, Data Providers have to implement void

provideData() method whereas processors have to provide

implementation of void process(Event event) method. To

make the Cassiopeia framework “pluginable”, the mech-

anism responsible for dynamic loading of plug-ins while

the agent is working has to be provided. One consid-

ered approach was implementing the Open Services Gate-

way (OSGi)2 specification. Finally, it was rejected as “too

heavy” and not flexible enough, and our own implementa-

tion of a light class loader has been provided.

3.3. Platform Management Layer

Mentioning only the most important functionalities, the

management layer allows users to:

– (re)create (crawling) tasks by selecting appropriate

plug-ins and (re)defining connections among them,

– distribute tasks among agents for their execution,

– monitor agents,

– monitor repository service;

– submit new plug-ins to the plug-in repository.

From a technical point of view, it is designed and im-

plemented as a Web application with HTML, JavaScript,

Web client

HTML JavaScript CSS

HTTP

TCP/IP

Apache Tomcat

Controllers/Views (Groovy, GSP)

Services (Groovy)

Data access objects (Groovy)

Grails ORM

MySQL
database

Fig. 5. Management layer architecture.

2www.osgi.org/Specifications/HomePage

82



Cassiopeia – Towards a Distributed and Composable Crawling Platform

and CSS on the client side, and Groovy, Groovy Server

Pages (GSP)3, and Grails application framework4 running

on Tomcat application server and mySQL as a database

engine on the server side (presented in Fig. 5).

A sample GUI for task definition is presented in Fig. 6 [11].

It will be redesigned, improved, and extended in the future

(with drag&drop features, for instance). At this stage, how-

Fig. 6. Agent’s composition screen.

ever, the idea, architectural design, and applied concurrency

model, as well as a practical verification of architectural de-

cisions, are more important than graphical design and user

experience.

4. Cassiopeia Agents

Cassiopeia agents, as the most important and, simultane-

ously, the most complex elements of the Cassiopeia frame-

work, are discussed here in a separate section. The top

level agent’s architecture is presented in Fig. 7. Agents are

implemented as stand-alone Java applications. The com-

ponents of all agents are implemented as beans, created

and managed within the Spring framework with the use

of the IoC container, JMX, JMS, and batch jobs mecha-

nisms [12].

The task manager is a component responsible for task pro-

cessing and execution only when it is received by the Com-

munication Layer Adapter. Among other things, it is re-

sponsible for:

• task deserialization – task definition is saved and

transmitted in the XML format, so the task man-

ager starts its activity with task deserialization and

then converts it into the graph of Java objects. It is

performed with the use of XStream2 library;

• task validation – after deserialization, task manager

validates plug-in connections and configurations;

3http://groovy.codehaus.org/
4http://grails.org/

Agent

SEDA

Alerting
service

Repository
service

Logging
service

Metrics
collector

Event distribution
and agent context

SEDA runtime
environment

Task management

Communication layer

Watchdog

Fig. 7. Agent’s architecture.

• task graph creation – when all instances of required

plug-ins are created – a graph defining a particular

task is created. Such graph is passed on to the SEDA

runtime environment component.

The plug-in manager is responsible for downloading plug-

ins from the plug-in repository as necessary, creating their

instances and passing them on to the task manager.

To create a plug-in instance, a JAR file with plug-in imple-

mentation has to be localized, and then all required classes

have to be loaded. A JAR file with plug-in implementation

can be loaded from the local repository or if it cannot be

found there downloaded from the remote plug-in repository.

The local repository in current Cassiopeia implementation

is realized as a regular directory located in the agent’s direc-

tory tree with a convenient API provided by the Repository

service.

SEDA runtime environment is Cassiopeia’s proprietary im-

plementation of the SEDA specification [13], [14], and

it’s responsible for task execution in high-concurrency con-

ditions. SEDA, as an architecture specification for high-

concurrency systems, mixes thread-based and event-driven

concurrency models. Since it is a crucial part of the Cas-

siopeia architecture, it is discussed in further detail in

Section 6.

To ensure an even and a dynamic workload distribution –

events appearing on plug-in’s outputs are handled by the

Event Distribution Service (EDS). Each event handled by

EDS is processed with the use of a Consistent Hashing

Algorithm (CHA) [15], [16], i.e. a task- and event-distri-

bution algorithm. On the basis of the value of hashing

function returned by CHA, EDS makes a decision regard-

ing distribution of events among active agents. What is

important, CHA and Cassiopeia architecture make it pos-

sible to identify the agent responsible for handling a par-

ticular event locally, i.e. without any additional commu-

nication among agents and without any central or global

decision makers. This is possible, since each agent keeps

and updates (on the basis of received heartbeat messages)

a set of known alive and active agents. What is more, CHA

and Cassiopeia micro and macro architecture as well, al-

lows, this way, for tasks and events to be redistributed when

83



Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

some agents “die” and are no longer available. And again,

this can be done locally without any additional communica-

tion among agents and without any central decision-making

components. Sample event distribution between two agents

working on the same task is presented in Fig. 4. When

plug-in1 of agent Agent2 sends the event on its OUT1 out-

put, it can be passed on both – the input of plug-in2 of

the same agent or the input of plug-in2 of another agent.

Which situation, i.e., to which agent in fact this event as

well as its processing will be distributed depends on the

result of applying of the distribution algorithm (CHA).

Logging service makes it possible to save agent logs in

a local file system and send them to the framework man-

agement layer (GUI) if necessary. This way, the end user

is able to follow and track the activity and behavior of all

agents from one single place with the use of a user-friendly

and convenient GUI. From a technical point of view, Log-

ging service is a far extension of the Log4j library.

The task and the responsibility of the Alerting service com-

ponent is to report critical failures. In current implementa-

tion, a simple email notification is sent to the framework’s

administrator in such case.

The main responsibility of the Metrics collector compo-

nent is to collect some statistics and parameters about an

agent’s work and activity, which can be used for monitor-

ing and diagnosing the Cassiopeia environment. Addition-

ally, it can be used for calculating some automatic mea-

sures and metrics, providing synthetic information about

Cassiopeia’s actual state and efficiency. The component is

designed and implemented in such way that adding new pa-

rameters, statistics, or measures that should be calculated

is easy and straightforward.

A Watchdog component is responsible for broadcasting

heartbeat messages. As previously mentioned, such mes-

sages are sent by agents periodically to inform other agents

and the framework itself (GUI) that it is still alive. If an

agent doesn’t send such messages for some time, it is as-

sumed to be dead. The decision if such message should

be sent or not, which means that the agent is working nor-

mally and is performing its own tasks or, conversely, that

something has failed is made by the Watchdog component.

Heartbeat messages indirectly inform other agents and the

framework itself about the actual state of the Cassiopeia

infrastructure. In fact, they include such information as

agent identifier, agent JVM state (at the moment the mes-

sage was sent), the identifier of a task on which the agent

is actually working, etc. The watchdog component is also

responsible for handling heartbeat messages coming from

other agents. On the basis of received messages, watch-

dog keeps and updates information about the set of known

agents that are alive and active. This information is used by

the EDS in CHA while a decision about event distribution

is being made.

As previously mentioned, a Communication Layer is distin-

guished on a macro (i.e. framework) level. It is responsi-

ble for providing communication channels among parts and

components from different frameworks. On a micro (i.e.,

agent) level, Communication Layer Adapter (CLA) makes

it possible to access the communication services provided

by the framework’s communication layer. CLA is respon-

sible for any aspects of the agent’s communication, i.e. for

communication with other agents and within the framework

itself (with GUI in particular) as well.

The agent’s code is instrumented with the use of JMX

technology. It allows not only for a convenient monitor-

ing of agent activity and state, but also makes it possible

to change the agent’s configuration parameters in runtime.

With nearly every component distinguished in the agent’s

microarchitecture, there is an appropriate Managed Java

object (MBean) associated so it is possible to change its

configuration parameters to influence agent behavior.

5. Concurrency Models

In the context of any concurrent systems (and crawling sys-

tems, in particular), the crucial element is the model of

concurrency applied. The choice of an appropriate strat-

egy of managing threads and processes as well as schedul-

ing tasks can help significantly improve the efficiency and

effectiveness of crawling. On the other hand, one has to

deal with threats connected with an inappropriate applica-

tion or implementation of the chosen model. Below, the

two most important concurrency models, i.e., concurrency

based on the pool of threads and event-driven concurrency,

are summarized.

5.1. Concurrency Based on the Pool of Threads and

Processes

The most popular model of concurrency, especially in the

case of processing requests by servers, is the “one re-

quest – one thread/process” model. Such model is sup-

ported by both contemporary operating systems as well as

programming languages and environments. In such an ap-

proach, the operating system switches the processor among

threads/processes evenly – what is very convenient from

a developer and architect point of view. The efficiency of

such system significantly falls, however, when the num-

ber of threads/processes increases. To avoid such situa-

tion, some systems define a limit regarding the number of

threads/processes that can be simultaneously created and

processed. When the top limit is reached, new requests

are simply not accepted. Such an approach allows to avoid

the efficiency problem. However, it increases latency (also

undesirable, of course). It is a pretty popular approach,

and it is implemented, for instance, by Apache Web server

or Tomcat application server. However, it is not appropri-

ate for systems with massive concurrency, such as crawling

systems.

5.2. Event-Driven Concurrency

Limitations and problems with allocating an uncontrolled

pool of threads are reasons why developers and architects

84



Cassiopeia – Towards a Distributed and Composable Crawling Platform

give up such an approach and use an event-driven con-

currency [14]. In such model, there is a relative small

number of threads (usually one per CPU) working in infi-

nite loops and processing different events provided by in-

put queues. Such an approach implements task processing

as a finite-state machine, where transitions between con-

secutive stages are triggered by events. In contrast to the

previously-described approach, the application itself is able

to control how the given task/request is being processed.

Applying such model of concurrency allows to avoid the

problems discussed earlier by reducing the system effi-

ciency when the number of threads increases. Now, when

the number of requests grows, application throughput in-

creases too – until the top limit is reached. In such case,

any further requests are scheduled in the input queue and

are processed only when the required resources become

available again. The application throughput stays constant

even during workload peaks, and latency grows linearly –

not exponentially, as in the previous case. There is, how-

ever, a strong assumption that non-blocking implementation

of the event processing unit is provided what is usually dif-

ficult to achieve and has to be ensured by the application

itself.

One of the issues related to the event-driven concurrency

model is that the application itself has to care for event

scheduling and queuing. The application has to make de-

cisions, for instance, on when to start processing incom-

ing events and how they should be scheduled and ordered.

What is more, it has to keep the service level balanced and

minimize latency. That is why scheduling, dispatching, and

prioritizing algorithms are crucial for system efficiency. It

is usually implemented and adjusted individually for a given

application and its use-cases. A few problems result, in-

cluding extending the application with new functionalities,

since dispatching algorithm and concurrency management

mechanisms likely have to be replaced. Flash Web Server,

with its Asymmetric Multi-Process Event Driven (AMPED)

architecture, is an example of a server based on such model

of concurrency [17].

None of the typical concurrency management models noted

above are ideal approaches. That is why research on alter-

native models is still needed to propose efficient and con-

venient architecture for concurrent and distributed applica-

tions. One of the most-promising models is a Staged Event-

Driven Architecture – SEDA [13], mixing to some extent

both approaches previously discussed as well as provid-

ing some additional, interesting, and important (for crawl-

ing and the crawler composition platform) benefits, such as

splitting the application into separate stages connected by

event queues.

6. SEDA Implementation for Cassiopeia

Purposes

SEDA was proposed in 2000 at the University of Califor-

nia by Matt Welsh et al. [13]. SEDA mixes both ap-

proaches discussed in the previous section, i.e., event-

driven and thread-based concurrency. It provides task-

scheduling mechanisms and makes it possible to manage

task execution parameters during the runtime. This also

makes it possible to reconfigure the application automati-

cally depending on its workload. SEDA consists of a net-

work of nodes called stages. With each stage, there is one

associated input-event queue. Each stage is an independent

module managed individually, depending on input queue

parameters. The possibility of monitoring its input queue

by each node/stage makes it possible to filter and prioritize

events, and to resize and manage the pool of threads it uses

appropriately to the actual situation, number of events to be

processed, and the general workload. In the consequence,

the SEDA-based application becomes very flexible since,

on the one hand, it is workload-resistant and, on the other,

doesn’t consume resources if it is unnecessary [13].

There are, of course, some limitations regarding SEDA-

based application efficiency [18], and even the author of

this specification has some remarks and thoughts – both

positive and negative – about this architecture [19].

Introducing stages with the structure of connections makes

it really easy and natural to decompose the application into

separate and easy-to-replace modules. Although there are

some open-source and enterprise SEDA implementations

for Cassiopeia-platform purposes, it has to meet some ad-

ditional needs and requirements. That is why the proposed

implementation of the SEDA specification has been de-

veloped [20]. Mentioned in Fig. 7, the SEDA run-time

environment is an implementation of SEDA architecture

working within the one, single JVM. Besides crucial SEDA

elements such as stages and queues, some additional com-

ponents have also been implemented, such as monitoring,

notification, and events-distribution mechanisms.

Generally speaking, the SEDA runtime environment is re-

sponsible for configuring a given plug-in, allocating all re-

quired resources, launching and running the application,

monitoring all application runtime parameters, releasing

unnecessary resources, and ultimately stopping the appli-

cation.

The task configuration layer is responsible for providing

task configuration (read from an XML file) as well as cre-

ating task stages along with their controllers and connec-

tions. After that, it returns the instance of a ConfiguredTask

class.

There is a dedicated component responsible for calculat-

ing and collecting statistics regarding SEDA runtime. The

implementation presented has been equipped also with the

event-notification mechanism.

Stage is a separate application module which meets the

SEDA stage specification. Each stage developed for Cas-

siopeia purposes consists of a plug-in, a managing module,

a input queue, a controller, and a thread pool. Plug-in is an

event handler defined by SEDA specification, and it defines

business logic realized by the particular stage. The thread

pool is responsible for executing business logic defined in

the plug-in, and the controller monitors the size of the input

queue and resizes the pool of threads as necessary.

85



Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

Input queue is the event (input data) source for stage as

well as the means of communication between stages.

Above, only a glance at the SEDA design and implemen-

tation for Cassiopeia purposes is given since discussing it

in detail is outside the scope of this paper. More detailed

discussion is presented in [21].

7. Preliminary Experimental Verification

To assess the correctness and usability of the Cassiopeia

framework, a simple Cassiopeia Web Crawler (CWC) has

been defined, composed, and run.

CWC structure consists of the following plug-ins: Seed,

URL normalizer, Seen URL filter, Domain URL filter,

Downloader, Content filter, Store, and URL extractor.

Seed is a plug-in of DataProvider type, so SEDA Runtime

Environment launches it only once, at the beginning of the

task’s execution. As a configuration parameter, it takes

the initial (starting) URL address. As an output, it returns

URL addresses that should be processed. URL normalizer

takes the URL address which appears in its input and re-

turns its normalized version in its output. Thanks to the

introduction of this plug-in into the CWC definition, such

URL identifiers as http://example.com http://example.com/

and http://example.com:80 are recognized as the same, sin-

gle URL. During crawling task execution, it is possible that

the same URL identifier will be found many times, and con-

sequently, it would be many-times analyzed, downloaded,

etc. To avoid such a situation, the CWC definition con-

sists – among others – of a Seen URL filter plug-in, which

is responsible for analyzing found URLs and eliminating

previously-seen ones.

Domain URL filter is responsible for rejecting extracted

URL’s if they don’t belong to the allowed domains. Each

URL belonging to the allowed domains, defined as a con-

figuration parameters of this plug-in is simply passed on to

its output.

Downloader plug-in is responsible for downloading Web

resources from URL’s which appear in its input. When the

resource is being downloaded, the plug-in monitors its size

and download time as well. If they exceed limits defined in

the plug-in configuration – the downloading process is ter-

minated. Content filter’s responsibility is making a decision

about passing a given Web resource on to further processing

units – but this time decision is made on the basis of Web

resource content analysis. In current implementation, it is

made just on the basis of the MIME resource header, and

for further processing, only documents of HTML, XHTML

and XML types are passed on.

Store plug-in is responsible for defining the database struc-

ture and for storing crawling results as well. In the de-

scribed implementation, data such as textual content of

downloaded web resources, their size, MIME type, and sav-

ing time-stamp is stored. To store additional information

about downloaded Web resources, or to store it in a dif-

ferent way, i.e. in a file system, it is enough to prepare an

alternative implementation of the Store plug-in and put it

into the task graph. Link extractor analyzes all resources

appearing in its input (according to Content filter plug-in

specification, only HTML, XHTML or XML documents

should appear), extracts all URLs from them, wraps them

into events, and sends to its output.

The part of XML file with Cassiopeia Web Crawler defini-

tion is presented in Listing 1.

Listing 1. The part of Cassiopeia Web Crawler XML defi-

nition

The most important parameters of three simple crawling

experiments performed with the use of Cassiopeia Web

Crawler are as follows:

• Experiment 1:

– Domain: www.agh.edu.pl,

– Number of Cassiopeia agents: 3,

– Max. number of requests per agent per minute: 10,

– Max. number of threads in the stage pool: 5,

– Experiment duration: 24 hrs.

• Experiment 2:

– Domain: www.interia.pl,

– Number of Cassiopeia agents: 2,

– Max. number of requests per agent per minute: 10,

– Max. number of threads in the stage pool: 5,

– Experiment duration: 24 hrs.

86



Cassiopeia – Towards a Distributed and Composable Crawling Platform

• Experiment 3:

– Domain: www.interia.pl,

– Number of Cassiopeia agents: 1,

– Max. number of requests per agent per minute: ∞,

– Max. number of threads in the stage pool: 5,

– Experiment duration: 5 min.

All experiments have been repeated 5 times and in appro-

priate figures and tables the average values from obtained

results are presented.

Taking the top level requirements and main architectural

assumptions and decisions into account, preliminary exper-

imental verification of Cassiopeia framework should assess

its two crucial aspects, i.e. SEDA implementation and con-

currency model applied as well as the ability to compose

crawlers from provided building blocks.

[%]

6

4

2

0

D
o
m

ai
n
 U

R
L

fi
lt

er

S
ee

n
 U

R
L

fi
lt

er

C
o
n
te

n
t

fi
lt

er

L
in

k
 e

x
tr

ac
to

r

D
o
w

n
lo

ad
er

N
o
rm

al
iz

er

Experiment 1 Experiment 2

Fig. 8. Differences in the number of events performed by agents

working on the same task.

Looking for the answer if SEDA implementation work

properly and is applied concurrency model a proper one,

a normalized, average difference in the number of events

processed by a particular agents’ plug-ins during the ex-

periments is presented in Fig. 8. As one may see, the

proposed architecture and SEDA implementation seem to

work properly and efficiently, since pretty-even event dis-

tribution among all agents working on a particular task

Domain URL filter

Seen URL filter

Content filter

Link extractor

Downloader

Normalizer

0 200,000 400,000 600,000 800,000 1,000,000

Agent 1 Agent 2 Agent 3

Fig. 9. Distribution of events among agents working on the same

task during experiment 1.

can be observed. Generally speaking, the measured differ-

ence in the number of events processed by agents working

on the same task was not higher than 6% during the per-

formed experiments. It is a really good result in the first

implementation. This proves beyond a doubt that the archi-

tectural decision to apply SEDA as a concurrency model,

as well as its implementation was an absolutely proper and

appropriate decision. A sample event distribution, in the

case of plug-in processing of almost or slightly more than

a million events, is presented in Fig. 9.

In Fig. 10, the average number of threads allocated by

each plug-in during experiments 1 and 3 respectively is

presented. As one may see, even event distribution was

not occupied with extensive allocation of system resources

since the average number of threads during both experi-

ments oscillates around 2. What is really promising, CWC

uses the maximum number of threads for Downloader stage

when it is necessary. Since download speed was not very

high, Downloader plug-in is generating a pretty low number

of events for the next stage (Content filter). So, the down-

loading process is a classical bottle neck and Cassiopeia

tries to improve its efficiency by assigning the maximum

number of available resources. This proves once again that

self-management mechanisms work properly. It shows also

one of the important advantage of Cassiopeia over the other

crawlers, i.e. the ability to optimize performance on the

level of every single task and task stage (resource down-

loading).

[%]

6

4

2

D
o
m

ai
n
 U

R
L

fi
lt

er

S
ee

n
 U

R
L

fi
lt

er

C
o
n
te

n
t

fi
lt

er

L
in

k
 e

x
tr

ac
to

r

D
o
w

n
lo

ad
er

N
o
rm

al
iz

er

Experiment 1 Experiment 3

0

Fig. 10. The average number of threads allocated by particular

plug-ins.

During preliminary assessment of CWC and the Cassiopeia

framework itself as a framework for running crawlers, some

simple comparative experiments against other crawlers were

also performed. The results of one of these experiments

are presented in Table 1. During this experiment, three

crawlers, i.e., CWC described previously, as well as simple

single-threaded [22] and multi-threaded Crawler4J crawlers

were working for ten minutes on pages in www.agh.edu.pl

domain with the same strategy and in the same hard-

ware and software environments. The maximum number of

87



Leszek Siwik, Robert Marcjan, and Kamil Włodarczyk

threads in the stage pool for CWC had been set to 5 as pre-

viously, the number of threads in Crawler4J was managed

by JVM itself according to its specification.

Table 1

Results of the simple comparative study

No. of resources Size of data [MB]

CWC ∼3050 ∼135

Simple crawler ∼2050 ∼100

Crawler4J ∼1500 ∼80

As previously, the experiment was repeated five times, and

the average number of downloaded resources as well as the

average size of downloaded data are presented in the table.

As one may see, the results obtained are pretty promis-

ing, since CWC was able to process the highest number of

Web resources (more than 3000) and to download the most

amount of data (more than 135 MB) in the allotted time.

It is interesting that multi-threaded Crawler4J turned out to

be worse than a simple single-threaded crawler, likely due

to non-optimal thread management.

Performed experiments (especially comparative ones) have

been absolutely too simple to draw any far-reaching con-

clusions and a lot of real-life experiments and comparisons

still have to be performed. It can be said, however, on the

basis of results presented in this section, that:

• first of all, it is possible to design and implement

a distributed, efficient, yet easy-to-use pluginable

platform for (re)composing crawlers according to ac-

tual needs;

• it is possible to adjust and apply to such a platform an

efficient and yet self-manageable concurrency model

based on SEDA specification;

• the results obtained justify and encourage further re-

search and work on the Cassiopeia framework.

8. Conclusions and Future Work

Today, there are many crawlers and crawling systems avail-

able to Internet users – unfortunately, the majority of them

are closed solutions limited to performing specific tasks.

These limitations affect many individuals who must per-

form very tough and specialized crawling, searching, and

analyzing tasks as a part of their work. Marketing, crimi-

nal, and governmental analysts are among those who would

benefit greatly from an easy-to-use, all-in-one studio – one

dedicated to composing crawlers that fit each individual’s

specific needs. A studio which can run, monitor, and an-

alyze search results in one integrated package that doesn’t

require a lot of time-consuming maintenance. In an at-

tempt to fill this void, the Cassiopeia project has been

initiated.

This paper presents the idea, assumptions, top-level re-

quirements, architectural design, and proof-of-concept im-

plementation of the Cassiopeia project. During the experi-

ments presented in the previous section, findings confirmed

that it is possible to design and implement a framework

for composing crawlers in a graphical way and, subse-

quently, run such crawlers in a fully-distributed manner.

It was also confirmed that all of Cassiopeia’s elements

work together in harmony. In particular, it was shown that

all of the task and event distribution mechanisms func-

tion properly and effectively, as demonstrated by the fairly-

equal distribution among the working agents. And thanks

to the SEDA architecture, it is possible to obtain truly-

effective concurrency realization and resource management

that significantly boosts the effectiveness of the whole

solution.

In the future, further experiments will be performed to

prove that more specific and complicated crawling tasks

can be defined and run on the Cassiopeia platform. Among

other things, more-sophisticated plug-ins will be introduced

and implemented in an attempt to further examine Cas-

siopeia’s effectiveness. So, the next step will be to prepare

a release-candidate version of this platform, which will in-

clude advanced plug-ins intended to execute real-life crawl-

ing tasks.

References

[1] F. Maghoul et al., “Graph structure in the Web”, in Proc. 9th

Int. World Wide Web Conf., Amsterdam, The Netherlands, 2000,

pp. 309–320.

[2] H. Garcia-Molina, A. Paepcke, A. Arasu, J. Cho, and S. Raghavan,

“Searching the Web”, ACM Trans. Internet Technol., vol. 1, no. 1,

pp. 2–43, 2001.

[3] A. Gulli and A. Signorini, “The indexable Web is more than 11.5

billion page”, in Proc. 14th Int. World Wide Web Conf., Chiba, Japan,

2005, pp. 902–903.

[4] K. Bharat and A. Broder, “A technique for measuring the relative

size and overlap of public search engines”, inProc. 7th Int. World

Wide Web Conf., Brisbane, Australia, 1998, pp. 379–388.

[5] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: A decen-

tralized peer-to-peer architecture for crawling the World-Wide-Web”,

in Proc. SIGIR Worksh. Distrib. Inform. Retrieval, Toronto, Canada,

2003.

[6] J. Cho and H. Garcia-Molina, “Parallel crawlers”, in Proc. 11th Int.

World Wide Web Conf., Honolulu, Hawaii, 2002, pp. 124–135.

[7] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler:

A scalable fully distributed web crawler”, Software: Practice and

Experience, vol. 34, no. 8, pp. 711–726, 2004.

[8] V. Shkapenyuk and T. Suel, “Design and implementation of a high

performance distributed Web crawler”, in Proc. 18th IEEE Int. Conf.

Data Engin., San Jose, CA, USA, 2002.

[9] M. Santini, P. Boldi, B. Codenotti, and S. Vigna, “Ubicrawler:

A scalable fully distributed web crawler”, in Proc. 8th Australian

World Wide Web Conf., Sushine Coast, Queensland, Australia, 2002.

[10] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz, “Evaluating

topic-driven Web-crawlers”, in Proc. 24th Ann. Int. Conf. Res. De-

velop. Inform. Retriev., New York, USA, 2001, pp. 241–249.

[11] K. Wlodarczyk, “Kassiopeia – distributed and pluginnable crawling

system”, Master thesis, Department of Computer Science, University

of Science and Technology, Kraków, 2011.

[12] K. Donald, C. Sampaleanu, R. Johnson, and J. Hoeller, “Spring

framework reference documentation” [Online]. Available:

http://docs.spring.io/spring/docs/3.0.x/spring-framework-

reference/html/

88



Cassiopeia – Towards a Distributed and Composable Crawling Platform

[13] M. Welsh, D. Culler, E. Brewer, and E. Gribble, “SEDA: An ar-

chitecture for Well-Conditioned scalable internet services”, Harvard

University, 2001 [Online]. Available: http://www.eecs.harvard.edu/

∼mdw/papers/seda-sosp01.pdf

[14] B. M. Michelson, “Event-Driven Architecture Overview”, Pa-

tricia Seybold Group, Boston, USA, 2006 [Online]. Available:

http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf

[15] D. Lewin, D. Karger, T. Leighton, and A. Sherman, “Web caching

with consistent hashing”, in Proc. 8th Int. World Wide Web Conf.,

Toronto, Canada, 1999.

[16] D. Lewin, M. Lehman, D. Karger, T. Leighton, and R. Panigrahy,

“Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the World Wide Web”, in Proc. 8th Int.

World Wide Web Conf., Toronto, Canada, 1999.

[17] V. S. Pai, P. Druschel, and W. Zwaenpoel, “Flash: An Efficient and

Portable Web Server”, Ann. Tech. Conf., Monterey, CA, USA, 1999

[Online]. Available: http://static.usenix.org/event/usenix99/

full papers/pai/pai.pdf

[18] D. Pariag et al., “Comparing the performance of Web server ar-

chitectures”, in Proc. 2nd ACM SIGOPS/EuroSys European Conf.

Comp. Sys., Lisbon, Portugal, 2007, pp. 231–243.

[19] M. Welsh, “A Retrospective on SEDA”, 2010 [Online]. Available:

http://matt-welsh.blogspot.com/2010/07/retrospective-on-seda.html

[20] M. Kluczny, “SEDA as an architecture for efficient, distributed and

concurrent systems for Web crawling purposes”, Master thesis, De-

partment of Computer Science, University of Science and Technol-

ogy, Kraków, 2012.

[21] L. Siwik, K. Wlodarczyk, and M. Kluczny, “Staged event-driven

architecture as a micro-architecture of distributed and pluginable

crawling platform”, Comp. Science, vol. 14, no. 4, pp. 645–665,

2013.

[22] Cassiopeia Web Crawler [Online]. Available:

http://home.agh.edu.pl/siwik/crawler/

Leszek Siwik has graduated

with honors from Computer

Science at the AGH-UST Uni-

versity of Science and Technol-

ogy in 2002, next he has gradu-

ated from Department of Man-

agement at the AGH-UST in

2004. He works as an Assis-

tant Professor at the Department

of Computer Science of AGH-

UST where in 2009 he obtained

his Ph.D. with honors in Computer Science in artificial in-

telligence area. His research focuses on multi-agent systems

in multi-objective optimization, security and cryptography

and mobile systems.

E-mail: siwik@agh.edu.pl

AGH University of Science and Technology

Department of Computer Science

Mickiewicza Av. 30

30-059 Kraków, Poland

Robert Marcjan obtained his

M.Sc. in Computer Science in

1990 at the AGH University

of Science and Technology in

Kraków. He works as an Assis-

tant Professor at the Department

of Computer Science, AGH-

UST where in 2000 he obtained

his Ph.D. with honors in Com-

puter Science in the area of ar-

tificial intelligence and multi-

agent systems. His research focuses on AI, multi-agent

systems, expert systems and databases.

E-mail: marcjan@agh.edu.pl

AGH University of Science and Technology

Department of Computer Science

Mickiewicza Av. 30

30-059 Kraków, Poland

Kamil Włodarczyk obtained

his M.Sc. in Computer Sci-

ence in 2011 at AGH Univer-

sity of Science and Technology

in Kraków. He now works on

high performance trading plat-

form used at the heart of one of

the world’s leading investment

banks. His areas of interests

include distributed systems and

concurrent programming.

E-mail: kawlodar@gmail.com

89


