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Abstract  This research is concerned with the fusion of ar-
tificial intelligence (AI) and machine learning within multi-
hierarchical caching systems, specifically targeting vehicular
and edge caching domains. This study introduces an innovative
architecture harmonizing Thompson sampling learning-based
caching policies with advanced vehicle clustering and content-
popularity prediction methods (TS-MMCM). Simulations show
substantial performance improvements and a big impact of the
proposed approach on system efficiency in dynamic network en-
vironments. The proposal demonstrates a notable gain in cache
hit rates and decreased latency levels, highlighting the poten-
tial of AI to improve caching techniques in dynamic network
environments.

Keywords  clustering, Internet of Vehicles, machine learning,
mobile edge computing, multi-hierarchical caching, Thompson
sampling learning

1. Introduction

Caching is an essential computing approach that improves the
performance and efficiency of a system by keeping frequently
accessed data in fast access storage. It improves the rate at
which data can be processed and greatly reduces the time
needed to retrieve data for applications that require high
performance and real-time capabilities. The cache handles
recurring data requests, thereby minimizing the workload
of the backend system, simultaneously enabling efficient
scalability of services during high traffic periods.

Caching also enhances user experience by speeding up data
retrieval, making it especially advantageous in web construc-
tion tasks, as it allows accelerated website loading. From an
economic standpoint, data catching reduces the expenses as-
sociated with data transport and computations and facilitates
offline data access, hence decreasing bandwidth utilization
and alleviating network congestion. Furthermore, caching en-
hances scalability of the system by alleviating data access
bottlenecks. Through the use of advanced techniques, caching
also guarantees data consistency in dispersed systems, ensur-
ing that the cached data remain accurate and valid.

Vehicular and edge caching are important developments in
modern networking that aim to satisfy mobile users’ grow-
ing need for data and services. Vehicular caching utilizes
the storage capabilities of modern vehicles and the charac-
teristics of vehicular networks to enhance both accessibility
and availability of data. This approach is particularly ben-
eficial in urban and mobile environments, as it minimizes
access latency and improves user experience standards in ap-
plications such as video streaming, gaming, and augmented
reality [1]. It enables real-time analysis and decision-making
for IoT devices and services, allows for effective network
expansion by distributing the data workload, and promotes
sustainable networking by reducing the amount of energy
used for transmitting data.
Vehicular and edge caching work together to achieve a de-
centralized and efficient networking model. This approach
addresses such issues as high bandwidth requirements, min-
imal latency, and the necessity of ensuring uninterrupted
connectivity in mobile and distributed environments.
Artificial intelligence (AI) and machine learning (ML) are
transforming caching techniques in computing by improving
efficiency and performance levels through predictive caching,
adapting to changing data access patterns, as well as optimiz-
ing data storage. AI and ML enable caching systems to predict
upcoming data queries by analyzing user behaviors and access
patterns, thereby resulting in decreased latency. Furthermore,
these technologies dynamically adapt caching algorithms in
real time to optimize data delivery and resource allocation,
which is particularly advantageous in content distribution net-
works (CDNs) and for handling the influx of data from IoT
devices and edge computing. AI and ML enhance caching
systems by identifying abnormalities that signal potential
security risks or malfunctions, thereby enabling remedial
measures to be taken in a timely manner. Tailored caching
in web and mobile applications customizes content deliv-
ery based on individual user preferences, thus resulting in
improved user experience.
In this study, a long short-term memory (LSTM) model is
utilized to forecast content request numbers in a time series
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tailored for Internet of Vehicles (IoV) scenarios. It focuses
on caching decisions and proposes a reinforcement learning-
based algorithm called the Thompson-based mobility-aware
multi-hierarchical caching model with vehicle clustering
and content popularity prediction methods (TS-MMCM).
This model aims to enhance cache hit ratios by predicting
content requests, applying the k-means model to cluster cars
depending on their speed and position in order to stabilize
communication, forecasting request numbers via the LSTM
model, estimating content popularity with the Zipf model, and
using reinforcement learning to optimize caching decisions.
The combination of Thompson sampling (TS) with vehicle
clustering and content-popularity prediction methods en-
hances caching rules in dynamic situations, such as CDNs,
edge computing, and vehicular networks. This method in-
tegrates the adaptive learning of TS, a Bayesian approach
renowned for effectively managing the trade-off between
exploration and exploitation, with clustering to categorize
comparable content or requests, and predicting content popu-
larity. The objective is to improve the effectiveness of caching
by utilizing real-time predictions and user behaviors in order
to determine which information to cache.
The main benefits of this technique include the ability to
make detailed caching decisions based on the popularity of
content within certain groups, the flexibility to adapt caching
policies in real time according to changes in content demand,
and the emphasis on caching content that is expected to be
required in the future. This method not only enhances resource
utilization, but also amplifies user experience by customizing
cached information based on the interests of specific groups or
locations, resulting in expedited content delivery and reduced
network congestion.
The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the related literature. Section 3 outlines
the proposed system model, while Section 4 presents the for-
mulation of the problem. The proposed caching strategy is
detailed in Section 5. Section 6 discusses the simulation re-
sults. Finally, Section 7 concludes the paper and suggests
future research.

2. Related Works

Several studies have employed a reinforcement learning ap-
proach to enhance caching algorithms. Reference [2] ad-
dressed the device-to-device (D2D) caching issue as a multi-
agent multi-armed bandit (MAB) learning problem. It em-
ployed Q-learning to determine the optimal coordination of
caching decisions among multiple agents to maximize caching
benefits. Paper [3] utilized a recurrent neural network (RNN)
to predict user behavior and content popularity. A Q-learning
strategy that employs learning automata was proposed for co-
operative caching. This considers the popularity of content
and the positions of mobile users to select the best options in
a random and unchanging environment.
In [4], the authors investigated user terminal (UT) edge
caching in D2D-enabled cellular networks, emphasizing con-

tent popularity and UT positioning. The problem of stochastic
games was modelled and solved using the proposed multi-
agent cooperative alternating Q-learning (CAQL) algorithm,
allowing UTs to update caching placement policies for better
performance. Article [5] explored the tidal effect in a mobile
edge computing (MEC) network with multi-user and mul-
ticast data. It formulated the problem as an infinite-horizon
average cost Markov decision process, aiming to optimize
bandwidth usage and reduce data transmission. The problem
was restated in reinforcement learning to learn file popular-
ity and user requests. The design of Q-learning and a deep
Q-network (DQN) was proposed, providing insights into the
network caching design.

2.1. Caching in Vehicles

Caching-related issues arising from vehicle mobility are
different from those found in cellular networks. The authors
of [6] investigated the idea of automobiles acting as moving
cache nodes and creating an automobile cloud to distribute
the requested content to consumers using 6G. To prepare
edge smart technologies for an upcoming 6G vehicle network,
work [7] suggested utilizing parked vehicles as additional
edge nodes. Such a solution will provide abundant resources
in conjunction with existing ground infrastructure.

The architecture proposed in paper [8] consists of three layers:
an airship, UAVs, and vehicles, all of which are used for
vehicular caching. The authors employed the DQN method to
obtain the most advantageous caching approach. In study [9],
a sophisticated machine learning method was applied to
information-centric networking-based vehicular networks.
This technique expects future user requests by predicting their
future evaluations of videos.

In [10], deep reinforcement learning (DRL) and federated
learning (FL)-based content caching methods were proposed
for efficient transmission tasks meeting the applicable latency
requirements. These methods optimize latency by considering
regional preferences and latency constraints. Multi-agent
reinforcement learning (MARL) and FL were used to forecast
content popularity and determine cached content in each area.

Another study in [11] proposed a deep learning system for
content caching in autonomous vehicles that makes use of
MEC servers to cache high-probability content and relies
on a multi-layer perceptron (MLP) to predict content de-
mands in certain regions. A convolutional neural network
(CNN) was employed for the prediction of passenger pro-
files, while the self-driving car utilized binary classifications
and the k-means approach to choose pertinent infotainment
content for downloading and caching. In [12], researchers
focused on issues pertaining to automated vehicle control
and proactive caching in roadside units. This study employed
deep reinforcement learning to enhance efficiency and quali-
ty of experience (QoE) by implementing proactive caching
actions.

The authors of [13] proposed caching for infotainment content
in self-driving cars based on MEC servers and utilizing CNN-
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Fig. 1. Proposed architecture.

learned passenger features for high expected probabilistic
values in their areas.

2.2. Caching in Edge

Recently, numerous research projects have been focusing on
edge caching. In [14], a learning-based cooperative content
caching policy was considered for the MEC architecture in
situations where user preferences are unknown and only the
demands for historical content are visible. This study proposes
the MARL-based approach to address the cooperative content
caching problem by modeling it as a multi-agent multi-armed
bandit problem.
In [15], the authors proposed a novel edge-assisted intelligent
caching framework that improved the cache hit rate. This
framework can independently develop a caching technique in
real time by analyzing the request sequence without requiring
preliminary data processing or engineering features. Another
study described in [16] investigated the prediction of spatial
content preferences using distributed learning approaches and
mobility predictions.
In contrast to the majority of other studies, paper [17] applied
deep reinforcement learning to collaborative caching and set
varying content sizes, while in [18], a collaborative caching
approach for mobile edge computing servers incorporated
multi-agent reinforcement learning.

2.3. Combining Vehicle and Edge Caching

Recent studies have integrated local vehicle and edge device
caches, leveraging user and regional preferences to under-
stand and optimize vehicle usage. The architecture proposed
in [19] suggested a collaborative caching approach for the IoV
by utilizing content request prediction (CCCRP) to minimize

latency in obtaining content. The authors employed k-means
clustering to group vehicles, LSTM networks to predict con-
tent requests, and reinforcement learning to improve caching
decisions, hence enhancing the quality of service for vehicle
requests.

The study described in [20] presented a cooperative caching
approach for downloading content in reinforcement learning,
applying the k-means algorithm for vehicle clustering and
long short-term memory for content prediction, as well as
the DRL algorithm and DQN to determine the most effective
caching technique.

3. Proposed Architecture

In this section, we present an architecture for multilevel
data caching, as depicted in Fig. 1, which includes cluster
member users, cluster heads, base stations (BSs), and edge
servers to cache various types of content. Each edge server
described in this proposal can handle the BSs located within
its coverage area. Several users were present in each base
station’s dominant region. This is because the emphasis is
placed on the cache capacity of the vertical architecture.

Vehicles covered by the same BS insurance were grouped
into clusters according to their mobility traits. Cluster heads
are assigned to each cluster, and the cluster head selection
remains constant in each time frame. Vehicles within the range
of a single BS can form multiple non-overlapping clusters,
with each cluster uniquely assigned to one BS. The cluster
head for each vehicle corresponds to the cluster it is part of
and is marked asHi,1, where i represents the index of clusters
within the coverage area of the BS.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 67



Radouane Baghiani, Lyamine Guezouli, and Ahmed Korichi

Further, vehicles within the cluster may also be denoted by
Hi,J , where j (j ­ 2) represents the index of the vehicle
within cluster i. For example, the cluster head Hi,1 serves
cluster members. All notations are summarized in Tab. 1. In
this cache structure, when the vehicle user initiates a request,
the local cache is first checked to locate the requested content.
When the content is available in the local cache, it becomes
directly accessible.
Otherwise, the user seeks content from Hi,1. If the content is
cached inHi,1, the user retrieves it directly. If it is not found
inHi,1, then the user sends a request to the BS covering their
location. The user can instantly access the content from the
covering BS if it is cached. If cache retrieval is unsuccessful,
the request is forwarded to the edge server and, if not found,
the request is forwarded to the cloud server.
The reliance on mobility traits to group vehicles into clusters
enhances the reliability of communication lines between
vehicles connected to the same base station. A cluster head
is assigned to each cluster. It is important to remember that
the cluster head is always chosen in the same manner for
consecutive time slots. Normalized characteristics, such as
the position and speed of each vehicle, have been derived.
This process aims to group Nv–generated vehicles intoMc
vehicle clusters.
Because every vehicle in the cluster, including the cluster
head, has the ability to cache content, the cluster heads can
establish one-hop communication with other vehicles in the
same cluster. However, no communication can be established
between any two vehicles that are part of different clusters.

3.1. Caching Model

SetL = {1, 2, . . . , l} represents the content repository, where
l is the total amount of content. The cloud server stores
the complete content repository L, whereas the edge server
collaborates with the base stations, cluster heads, and vehicle
users to cache the content. Each content has a distinct size,
represented by Z = {z1, z2, . . . , zl}, where l is an element
of L.
We grouped these content types into n categories, denoted by
cat = {category 1, category 2, . . . , category m}. The edge
server has a local cache with capacity Cedge. The base station
offers a cache capacity denoted as CBS and the cluster head
has a local cache with a capacity of CHi,1, where Mc is
the number of clusters. V = {v1, v2, . . . , Vu} represents
a group of users, assuming that certain content is stored in
the user’s local cache with a cache capacity of CHi,j . When
S(l, edge) = 1, content l is stored at the edge, otherwise
S(l, edge) = 0. For S(l, BS) = 1, content l is stored in the
BS. S(l, BS) = 0 signifies that the content is not stored in
the BS.
For S(l,Hi,1) = 1, the content l is stored in the cluster head,
otherwise S(l,Hi,1) = 0 denotes the content l is not stored in
Hi,1. Similarly,S(l,Hi,j) = 1 implies that content l is cached
in the local cache of users in cluster i, whereas S(l,Hi,j) = 0
indicates otherwise. It is crucial to ensure that the cache size

Tab. 1. Summary of notations used.

Symbol Description

BS Base station
Hi,1 Cluster head
Hi,j Cluster member
Nv Total number of vehicles in the system
Mc Number of clusters grouping the vehicles
L Content repository
Z Size of each file repository
cat Category of content
V Set of vehicles
Cedge Cache capacity of edge cache
CBS Cache capacity of base station cache
CHi,1 Cache capacity of cluster head cache
CHi,j Cache capacity of local cache
S(l, edge) Cache state of the file l in the edge
S(l, BS) Cache state of the file l in the BS
S(l,Hi,1) Cache state of the file l in the cluster head

S(l,Hi,j)
Cache state of the file l in the cluster

member
HitRedget Cache hit rate of the edge
HitRBSt Cache hit rate of the BS
HitR

Hi,1
t Cache hit rate of the cluster head

HitR
Hi,j
t Cache hit rate of the cluster member

Θedge Caching edge policy
ΘHi,1 Caching cluster head policy
ΘHi,j Caching cluster member policy
Pl Probability of each file
Li,l(t) Location of vehicle
Si,l(t) Speed of vehicle
CL Connectivity lifetime

of any device does not exceed its total cache capacity at any
given time t:



l∑
e=1
ze · S(e, edge) ¬ Cedge, ∀ e ∈ L

l∑
r=1
zr · S(r,BS) ¬ CBS , ∀ r ∈ L

l∑
b=1
zb · S(b,Hi,1) ¬ CHi,1 , ∀ b ∈ L

l∑
d=1
zd · S(d,Hi,j) ¬ CHi,j , ∀ d ∈ L

,

where ze, zr, zb, and zd represent the size of the cached
content at each piece of equipment or location indexed by e,
r, b, and d, respectively.
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S(e, edge), S(r,BS), S(b,Hi,1), and S(d,Hi,j) denote the
cache state of the content for the edge, BS, cluster head, and
cluster members, respectively, with the respective indices.
Cedge, CBS , CHi,1 , and CHi,j represent the maximum cache
capacities for the edge, BS, cluster head, and cluster members,
respectively, owing to the constraint of the restricted caching
capacity of the edge, BS, Hi,1, and Hi,j .
We propose a cache-placement technique that relies on the
popularity of content. The chance of a given piece of content
being requested is impacted by its popularity ranking, with
more popular content having a higher level of probability
of being requested. Zipf distribution is commonly used to
represent the probability of a content request. The likelihood
of content being requested can be ascertained by employing
the Zipf model which considers the number of requests for
that content. We defineRl to represent content l that is ranked
at the R-th level of popularity. The Zipf model is described
as:

P (R, s,N) =
1/Rs

N∑
q=1

1
qs

, q ∈ {1, 2, . . . , l} , (1)

where N represents the total amount of content and s is the
exponent parameter that characterizes the Zipf distribution.
A greater value of s indicates that the content queries are
more focused on the highest ranking. Evaluation of caching
strategies involves examining the cache hit rate to understand
its benefits and drawbacks. The cache hit rate of the edge
server, cluster head, and cluster members is:

HitRedget =
l∑
e=1

Pe · S(e, edge), ∀ e ∈ L , (2)

HitRBSt =
l∑
r=1

Pr · S(r,BS), ∀ r ∈ L , (3)

HitR
Hi,1
t =

l∑
b=1

Pb · S(b,Hi,1), ∀ b ∈ L , (4)

HitR
Hi,j
t =

l∑
d=1

Pd · S(d,Hi,j), ∀ d ∈ L . (5)

The probability vector Pl = [p1, p2, . . . , pl] indicates the
likelihood of each content being required by vehicle users in
the upcoming time period.

3.2. Content Request Model

All the components of the proposed system, including vehicle
users, cluster heads, base stations, and edge servers, are
capable of caching content. If a vehicle within the cluster
requires specific content, there are five potential locations
where it can be obtained:
• Local cache. The vehicle user’s local cache is first checked

to locate the requested content. If the required content is
present in the local cache, it is directly accessible.

• Cluster head. If the content is not available in the local
cache, the user seeks it from the cluster head. The requested
content is directly retrieved from the cluster head if it is
cached using vehicle-to-vehicle (V2V) connectivity.
• Base station. If the content is not located in the cluster head,

the user sends the request to the BS that covers it. The user
will instantly access the content from the BS if it is cached
using vehicle-to-infrastructure (V2I) connectivity.

• Edge server. For content not found in the BS, the user
transmits the query to the edge server through the BS.
If cache retrieval remains unsuccessful, the request is
forwarded to the cloud server. However, this results in
greater latency.

4. Problem Formulation

The cache hit rate is an important performance metric used
in caching techniques, as it indicates the extent to which the
content in the cache aligns with user requests. Our objective
was to create an online caching technique that maximizes
the cache hit ratio. Owing to the large volume of files, we
categorized the individual pieces of content into various types
and assigned varying probabilities to each of the selection
types. Once the file type is identified based on probability,
one file of that type is selected for the cache. The objective of
the caching method for each vehicle user, cluster, and edge is
to maximize the cache hit rate as follows:

max
ΘHi,j

HitR
Hi,j
t (ΘHi,j ) , (6)

max
ΘHi,1

HitR
Hi,1
t (ΘHi,1) , (7)

max
Θedge

HitRedget (Θedge) . (8)

Our technique aims to improve the cache hit rates at both the
edge server and the car user layer. Considering the proposed
architecture model, limitations regarding the vehicle users,
cluster heads, and edge servers’ ability to cache data, as well as
the mobility constraint imposed by the vehicle, the proposed
issue formulation is as follows:

max {θHi,j , θHi,1 , θedge} forHitRHi,jt ,

max {θHi,j , θHi,1 , θedge} forHitRHi,1t ,

max {θHi,j , θHi,1 , θedge} forHitRedget ,

max {θHi,j , θHi,1 , θedge} forHitRtotalt .

(9)

Given the constraints set C1, we have:
S(l, edge)

S(l, BS)

S(l,Hi,1)

S(l,Hi,j)

∈ {0, 1}, ∀ l ∈ L .

Given the constraints set C2, we have:
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

l∑
e=1
ze · S(e, edge) ¬ Cedge, ∀ e ∈ L

l∑
r=1
zr · S(r,BS) ¬ CBS , ∀ r ∈ L

l∑
b=1
zb · S(b,Hi,1) ¬ CHi,1 , ∀ b ∈ L

l∑
d=1
zd · S(d,Hi,j) ¬ CHi,j , ∀ d ∈ L

,

where the initial constraint indicates that each content, rep-
resented by 1 or 0, can either be cached or not cached.
Hence, values from the set of [0, 1] must be assigned
to S(l, edge), S(l, BS), S(l,Hi,1), and S(l,Hi,j). Further-
more, the last constraint guarantees that the cumulative
amount of the content cached in the edge, BS, Hi,1, and
Hi,j does not exceed their respective caching capacities. Re-
inforcement learning (RL) can be a prospective approach for
solving the caching optimization problem described above.
We propose to use an effective RL approach to address this
multi-agent decision-making issue.

5. Proposed Solution

The proposed approach consists of three components: cluster-
ing vehicles using k-means [21], predicting content requests
using LSTM, and implementing the TS algorithm for content
caching decisions.

5.1. Vehicle Clustering

Our method involves clustering vehicles according to their
mobility to reduce the signaling load from V2V broadcasting
and improve vehicular communication connections. In each
cluster, the cluster head can directly communicate with other
members located within the same cluster using single-hop
V2V communication. This setup ensures efficient and direct
communication pathways within the cluster, optimizing the
network’s overall functionality and reducing the need for
complex, multi-hop communication strategies. Vehicles are
classified according to their mobility characteristics, into
distinct clusters within a single BS coverage area.
We createdMc clusters from a set of Nv generated vehicles
by using normalized attributes, such as position and speed,
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Fig. 2. Vehicle clustering with cluster heads.

obtained from each vehicle (Fig. 2). In vehicle clustering,
the primary challenges include determining the clustering
technique and choosing the cluster head. This study uses the
k-means algorithm for clustering. As shown in Algorithm
1, four main steps are part of the process: choosing theMc
cluster centers, grouping the rest of the vehicles, updating the
cluster centers, and repeating the process while the cluster
centers remain constant.
To speed up clustering results, the algorithm first gives priority
to choosing Mc vehicles that are widely separated. It is
important to remember that the k-means algorithm depends
on calculations of Euclidean distance. It is possible that the
k-means cluster centers do not perfectly line up with the
individual vehicles. Choosing cluster heads that match these
clusters is a further refining step.
The cluster head provides the content cache source and man-
ages access, requiring a reliable connection with other cars.
Therefore, we utilized a distinct parameter called connectivity
lifetime (CL) to choose cluster heads based on the durability
of vehicle connections [22].
Let us represent the l-th car in cluster i as Ni,l. The vehicle’s
location and speed at time t are represented as Li,l(t) and
Si,l(t), respectively. Vehicles occasionally send a “hello”
beacon packet to other vehicles within the coverage area of
the same BS. The hello beacon packet includes the vehicle’s
mobility information, such as its location Li,l(t) and speed
Si,l(t). Therefore, every car can calculate its associations
with other vehicles using this information. CL is the time it
takes for a communication link to occur between two vehicles.
Therefore, when the CL expires, the link between the two
vehicles is expected to end, signifying that their relative
distance is projected to reach the maximum broadcasting
range, represented as δ, during this time frame.
The requirement for preserving a link between cars Ni,l and
N ′i,l (where l′ ̸= l) follows this principle:

(
Li,l(t+ CLi,l

′

i,l )− Li,l′(t+ CLi,l
′

i,l )
)2
= δ2 . (10)

If the vehicle maintains the same speed for the following time
interval τ , the equation for the location of the car is:

L(t+ τ) = L(t) + τ · S(t) . (11)

Therefore, Eq. (10) can be written as:

(
Li,l(t)− Li,l′(t) + CLi,l

′

i,l [Si,l(t)− Si,l′(t)]
)2
= δ2 , (12)

where CLi,l
′

i,l can be calculated by solving Eq. (12) in which
the speed and location are 2D coordinates as follows:

CLi,l
′

i,l =
δ2 − |Li,l(t)− Li,l′(t)|2

|Si,l(t)− Si,l′(t)|
. (13)

Once the clusters are determined using the k-means algorithm,
the average CL for each vehicle Ni,l in the corresponding
cluster i can be computed as:
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CLi,l =
1
ni − 1

ni∑
l′=1

CLi,l
′

i,l , l
′ ̸= l . (14)

Consequently, the vehicle with the highest average CL within
this cluster may be designated as the cluster head. This choice
ensures that the cluster head and every other vehicle within
the same cluster enjoy optimal link stability.

Algorithm 1 Vehicle clustering based on the k-means ap-
proach.

1: Input: Vehicle set V = {V1, V2, . . . , Vnv}, number of
vehicle clustersMc

2: Output: Vehicle cluster set {c1, c2, . . . , cmc}
3: Select initial cluster centers {t1, t2, . . . , tmc}
4: repeat
5: for l = 1 to Nv do
6: Determine the distance between Nl and each

center ti, denoted as di,l = ∥Nl − ti∥2
7: Assign Nl to the cluster whose cluster center is

the closest
8: end for
9: for i = 1 toMc do

10: Get the fresh cluster centre t∗i =
1
|Ci|

∑
Nl∈Ci

Nl

11: if t∗i ̸= ti then
12: Refresh the existing cluster center ti = t∗i
13: else
14: Maintain the current cluster center constant
15: end if
16: end for
17: until cluster centers become fixed

5.2. Content Popularity Prediction

The proposed design architecture emphasizes the importance
of predicting content popularity, wherein the caching tech-
nique relies on content popularity. Many previous studies
assume that the popularity of the content is pre-established
or use the frequency of requests as a criterion for assessing
content popularity. In practice, content popularity requires
an element of freshness. In fact, vehicle content requests al-
ready showed a steady trend over time [23]. By analyzing
past request-related data, it is possible to uncover the funda-
mental trends governing the frequency of content requests,
which can then be used to forecast the number of requests in
upcoming time intervals.
Here, this forecast request volume is defined as popularity of
content. The use of a machine learning technique like RNN
has enabled us to forecast the popularity of newly generated
content. RNNs is capable of uncovering underlying temporal
patterns by analyzing the historical request times for each
content. However, conventional RNNs may encounter issues
such as vanishing or exploding gradients with prolonged
propagation. As a remedy, LSTM is favored, representing an
optimized version of RNN [24].
The structure of an LSTM unit is shown in Fig. 3. Let µt
and ht represent the input and output data at time slot t,

respectively. At each time slot t, the cell receives a new input
µ. Three gates, named input gate i, forget gate f , and output
gate o, are positioned within the cell. The value of these gates
can be computed as follows:

ft = σ
(
Wf · [ht−1, µt] + bf

)
, (15)

it = σ
(
Wi · [ht−1, µt] + bi

)
, (16)

ot = σ
(
Wo · [ht−1, µt] + bo

)
, (17)

whereWf ,Wi, andWo indicate the weight matrices, whereas
bf , bi, and bo represent the variable biases for the three gates.
σ(·) is the non-linear activation sigmoid function.
The procedure for updating information in LSTM is as follows
[25]. The forget gate ft determines the portion of Ct−1 to
discard, such as:

ft · Ct−1 . (18)

The current state information is updated:

it · C̃t , (19)

where

C̃t = tgh
(
Wc · [ht−1, µt] + bc

)
. (20)

Here, bc and wc denote the variable bias and weight matrix of
the memory cell, and tgh(·) is the hyperbolic tangent function.
The current unit is updated in the following manner:

Ct = ft · Ct−1 + it · C̃t . (21)

Consequently, the output data is calculated as:

ht = ot · tgh(Ct) . (22)

The LSTM approach is capable of predicting the volume of
content requests in the future, allowing to optimize the coach-
ing of content for car users. By using time series context, the
LSTM model is provided with the count of content requests
from the preceding time step t− 1, as its input, denoted by:

µ(t− 1) =
{
µ1(t− 1), µ2(t− 1), . . . , µQ(t− 1)

}
. (23)

The LSTM output predicts the count of content requests for
the forthcoming time period, as a set of values represented
by:

μt

ht–1

ct–1

ft it
ot

ct

ht

ht

σ σ σ

tgh

tgh

ct

Fig. 3. LSTM cell.
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θ(t) =
{
θ1(t), θ2(t), . . . , θQ(t)

}
. (24)

Items within function θ(t) are sorted to create a sorted index
vector such as:

λ =
{
λ1, λ2, . . . , λQ

}
. (25)

This sorted index vector is then input into the Zipf model
to determine the popularity of content in the repository,
as described in the caching model, producing a popularity
distribution:

π =
{
π1, π2, . . . , πQ

}
. (26)

Our LSTM-based prediction model for predicting content
request volumes is structured as follows:
• Input layer provides historical data of content request num-

bers, processed and normalized.
• First LSTM layer:

– consists of 128 units (number of memory cells in the
layer) with return_sequences=true to maintain tem-
poral sequence processing for deeper layers.

– uses the rectified linear unit (ReLU) activation function
for intermediate layers to introduce non-linearity.

– includes a dropout rate of 0.2 to mitigate overfitting by
randomly omitting a subset of features during training.

• Second LSTM layer:
– comprises 64 units configured with
return_sequences=true and takes the sequence out-
put from the previous LSTM layer and processes it
further, outputting a sequence of 64-dimensional hidden
states.

– ReLU activation function.
– this layer also includes a dropout of 0.2.
• Third LSTM layer:

– 32 units.
– ReLU activation function.
– false return sequences (to return the final hidden state

for the next layer).
– 0.2 dropout.
This layer takes the sequence output from the previous
LSTM layer and processes it to output a 32-dimensional
hidden state representing the entire sequence.
• Dense layer (output layer) features a single neuron with

a linear activation function to predict the count of future
content requests, reflecting the anticipated popularity.

The model compilation includes:
• Optimizer – the Adam optimizer is utilized for its efficient

computation and adaptive learning rate of 0.001, enhancing
the convergence of training.
• Loss function – mean squared error (MSE) is employed

to quantify the accuracy of predictions, providing a clear
measure of prediction error in the context of regression.
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Fig. 4. Model loss over an epoch.

• Metrics – mean absolute error (MAE) provides a measure
of the mean absolute difference between observed values
and predictions, offering a more direct interpretation than
MSE.

The training configuration is as follows:
• Epochs and batch size – the model is trained over 100

epochs with a batch size of 32, balancing the model’s
exposure to the training data with computational efficiency.
• Early stopping is implemented with a patience of 10 epochs;

training is stopped early if the validation loss does not
improve for 10 consecutive epochs, preventing overfitting.

For model training, 20% of the data is used for validating
performance of the model during training, which facilitates
tuning and prevents overfitting. Early stopping is used to halt
the training process when the model’s performance on the
validation set stops improving.

5.3. Evaluation of Proposed Model

The dataset used for predicting content requests originates
from the Big Data Challenge [26]. It includes data for ten
types of content, collected between November 1, 2013 and
January 1, 2014, with each data point representing a 10-
minute interval. This analysis is based on a dataset of 1,000
such data points.
The first 800 data points are utilized as the training set, and
the model’s performance is subsequently tested on the last
200 data points. Once trained, the model’s performance is
evaluated on the validation set. Figure 4 illustrates the training
and validation losses over epochs and reveals the following
insights:
• Sharp decline in initial epochs. There is a significant drop

in both training and validation losses within the first few
epochs, indicating that the model quickly captures dominant
patterns in the data.

• Convergence. After the initial sharp decline, both losses
level off, showing only slight further reductions. This trend
suggests that continuing training beyond these epochs
might not yield substantial improvements, pointing towards
potential diminishing returns.

• Closeness of losses. The training and validation losses
remain close throughout the process, suggesting that the
model generalizes well and is not overfitting. This closeness
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is indicative of a model that performs well on both seen
and unseen data.

This comprehensive evaluation highlights the LSTM-based
content prediction model’s ability to learn and predict content
request volumes effectively, showcasing its utility in practical
scenarios based on the dataset from the Big Data Challenge.
The analysis of the loss plot further confirms the model’s ca-
pability to generalize, making it a reliable tool for forecasting
content requests in similar settings.
By integrating LSTM predictions into our caching strategy, we
can dynamically adjust the cached content based on real-time
popularity forecasts. This approach not only enhances the
efficiency of the caching system but also ensures that the most
relevant and demanded content is available to users promptly,
thereby reducing latency and improving user experience.
This sophisticated LSTM framework forms the backbone of
the proposed predictive model, enabling robust and accu-
rate forecasting of content popularity, which is crucial for
the effective management of cache resources in vehicular
networks.

5.4. Cooperative Caching-based TS Algorithm

Reinforcement learning is an algorithmic approach centered
on mapping behaviors based on the environmental state [27].
In this framework, the agent within the reinforcement learning
system chooses and performs actions from a set based on the
system’s state, subsequently receiving a reward corresponding
to the action taken. This reward serves as a metric for assessing
the effectiveness of the chosen action. After the training phase,
the agent can swiftly identify and perform actions that are
linked to higher rewards, depending on the system’s state.
In the context of MAB problems, each arm corresponds to
a distinct action, yielding a reward upon selection. However,
the likelihood of receiving a reward varies across arms,
presenting the challenge of efficiently choosing arms within
a limited number of trials to optimize rewards. Balancing
exploration and exploitation is a widely recognized challenge
in this scenario. To maximize rewards, decision-makers must
strike a balance between exploring to leverage arms more
effectively and exploiting the knowledge gained from prior
exploration. The MAB problem, utilizing strategies like TS,
aims to maximize the expected reward, ensuring the best
possible outcome [28].
TS is more effective for caching issues with high uncertainty,
as its exploration of varied strategies can enhance the overall
performance. TS is a stochastic algorithm used for decision
making in situations of uncertainty, commonly applied to
MAB problems. It assigns scores to each arm by assuming the
reward probability for each arm conforms to a beta distribution
[29].
The latter is a continuous distribution of probabilities in-
side the interval [0, 1], distinguished by two positive shape
parameters denoted by a and b. The average value of the be-
ta distribution is determined by a

a+b . A larger a results in
a higher average value of beta(a, b), whereas a higher b de-

creases this average. The TS algorithm estimates the return,
represented by φ, by sampling beta(a, b) [29].
Following the outcome of arm selections, updates are made
to the selected arm. Receiving a reward of 1 increases the
corresponding a value by 1. When the reward is 0, the b value
is incremented by 1. The sampling’s inherent randomness
enables TS to naturally achieve a balance between exploration
and exploitation (EE).
Additionally, adjustments to the EE balance can be made by
altering the update mechanism for the TS parameters a and
b. We designated the edge server, base station, cluster head,
and each user with a local cache as agents. Each category
is considered an arm. Each arm has a unique likelihood of
being chosen. Once the file category is identified based on
probability, the file is selected from that category to cache.
In this study, the TS technique is used to iteratively select
actions (arms) based on their predicted reward probability.
The algorithm tracks reward distribution estimations for each
arm using beta distributions. The algorithm samples beta
distributions at each iteration to evaluate the likelihood of
each arm being the best selection. Next, it chooses the arm
with the highest calculated likelihood and adjusts its settings
according to the incentives it has received. In this context,
rewards refer to cache hit rates.
The reward is an indicator of success linked to choosing
a specific arm. The reward is calculated according to the hit
rate attained by completing the required tasks. The hit rate
indicates the ratio of successful task completions to the total
number of requested tasks. To update the parameters of the
beta distribution at time-slot t+1, the following formula was
used:

at+1d,cati = a
t
d,cati +R

t
d,cati

bt+1d,cati = b
t
d,cati + (1−R

t
d,cati)

, (27)

where Rtd,cati is the hit rate (reward) of the selected arm of
the file in the cache of each device d at time t.
Algorithm 2 illustrates the proposed TS-MMCM approach,
while the TS algorithm process is outlined in Algorithm 3. The
TS-based algorithm sorts content into numerous categories.
Without categorizing content, each agent has an action space
of around (2|L|) when selecting from |L| files. Therefore, the
algorithm becomes ineffective. The TS-based approach is
suggested to decrease the action space of Q-learning [30].
Initially, the algorithm initializes the beta distribution of each
arm as follows:

φ0cati ∼ beta(a
0
cati , b

0
cati)← (1, 1), where 1 ¬ i ¬ N , (28)

where N is the number of arms.
Therefore, the arm with the highest sampled value is selected
as the optimal arm. According to the stored probabilities of
each arm, content will be cached based on its probability of
being requested in the future. Once the items are stored in the
caches of each device, the rewards are acquired. The posterior
distribution of each selected arm is updated as follows:

φt+1cati ∼ beta(a
t+1
cati
, bt+1cati), where 1 ¬ i ¬ N . (29)
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Algorithm 2 TS-based mobility-aware multi-hierarchical
caching model with vehicle clustering and content popularity
prediction methods (TS-MMCM).

1: Phase 1. Initialization
2: Initialize parameters: number of vehicles, vehicle clus-

ters, period T , content categories |cat|, repository, con-
tent sizes, parameter s, cache capacity

3: Initialize beta distribution parameters:
4: φ0cati ∼ beta(a

0
cati , b

0
cati)← (1, 1), 1 ¬ i ¬ N

5: Phase 2. Vehicle clustering
6: Perform Algorithm 1 to obtain vehicle clusters
7: Phase 3. Obtain cluster heads
8: Choose cluster heads based on CL selection criterion:

CLi,l = 1
ni−1

ni∑
l′=1

CLi,l
′

i,l , l
′ ̸= l

9: Phase 4. Find the best caching decision
10: repeat for each round
11: Obtain the predicted number of content requests θ(t)

using LSTM
12: Sort θ(t) to obtain sorted index vector λQ
13: Obtain content popularity vector πQ using Zipf

model: P (R, s,N) = 1/Rs

N∑
q=1

1
qs

, q ∈ {1, 2, . . . , l}

14: for each cluster Hi do
15: for each vehicle user Hi,j ∈ Hi do
16: Determine caching method in each

local cache using a TS-based algorithm
17: end for
18: Determine the caching policy in each cluster head

Hi,1 using a TS-based algorithm
19: end for
20: Determine caching policy in the edge server using a

TS-based algorithm
21: Update content in each cache
22: until convergence criteria are met or fixed number of

rounds T

6. Simulation Results

In this section, we validate the effectiveness and efficiency of
proposed approach by conducting simulations using Python.
The performance metrics we considered are the hit rate and
latency. The hit rate refers to the proportion of data or resource
requests that are successfully retrieved from the cache, while
the latency is the time duration from when a request is sent
by the vehicle user to when the last data packet is received.
Table 2 lists the simulation’s parameters and their values.
In the simulation scenario, a library containing 1000 items
was used, each having a size ranging from 5 to 100 MB.
The total size of all pieces of content was 51 GB. The cache
capacity of the edge server was configured to be between 10%
and 25% of the entire volume of content. The cache capacity
allocated to each user and cluster head was adjusted to be
between 10% and 25% of the cache size of the edge server,
ensuring a fair and efficient distribution of caching resources
across the network [30]. We modelled the arrival of requests
from cars as a Poisson process in each time slot. To simulate

Algorithm 3 Thompson sampling.
1: Input: Initialize parameters
2: Output: Report the selected arms and their correspond-

ing probabilities
3: Number of categories N
4: Initialize the posterior distributions of each arm as a

function given by Eq. (28)
5: Initialize variable for reward
6: repeat
7: for each round do
8: Pull arms:
9: Sample from the posterior distributions of each arm

10: Select the arm with the highest sampled value
11: Obtain reward:
12: Execute the chosen action/arm in the environment
13: Update the cache
14: Observe the reward obtained
15: Update parameters for the chosen arm:
16: Update the posterior distribution of the selected arm

based on observed reward according to Eq. (29)
17: Update the reward for the chosen arm
18: end for
19: Next round
20: until convergence or fixed number of rounds

user requests, we varied the shape parameter values of the
Zipf distribution.

6.1. Exploring Caching Strategy Performance

The proposed strategy is compared with the following ap-
proaches: LRU, LFU, fuzzy logic, and ICSAD [30].
Figure 5 depicts the performance of the preceding algorithms
in relation to Zipf parameters. Figure 5a shows the aver-
age hit rate as a function of the Zipf parameter for many
caching or selection algorithms. The proposed algorithm
(TS-MMCM) showed superior performance compared to all
other algorithms, demonstrating continuous and significant
improvement as the Zipf value grows from 1.0 to 1.6. This
demonstrates that our algorithm efficiently gives priority to
caching the most widely accessed content.
Its average hit rate grows from 0.3 to above 0.6, indicat-
ing a strong ability to adjust to the Zipf parameter-defined
popularity distribution. This demonstrates that the proposed
approach is more efficient in obtaining a greater hit rate when

Tab. 2. Simulation parameters.

Parameter Value

Distance 2 [km]
Vehicle speed 20, 60 [km/h]
Request rate 20, 30 [requests/m]

Number of vehicle users 55
Number of file categories 5

Cache capacity rate 10, 15, 20, 25 [%]
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Fig. 5. Comparative analysis of caching strategies across different cache locations: a) for locale cache, b) for cluster head cache, and c) for
edge cache.

the distribution of requests becomes more imbalanced (which
is indicated by an increase in the Zipf parameter).
ICSAD is the algorithm that offers second best performance,
showing a moderate rising trend. The average hit rate started
at approximately 0.25 when the Zipf parameter was set to
1.0 and gradually increased to just below 0.5 when the Zipf
parameter was set to 1.6. This hit rate is consistently lower
than that of the TS-MMCM algorithm in all cases. Fuzzy
logic showed a rather flat performance with a slight upward
trend. It started at an average hit rate of approx. 0.2 and
ended at approx. 0.25. Although performance improved as
the Zipf parameter increased, the gains are not as great as
those observed when using our algorithm or ICSAD.
LRU, the traditional caching strategy, followed a slight upward
trend, starting just above a hit rate of 0.1 and approaching
0.2 as the Zipf parameter increased to 1.6. This suggests its
modest sensitivity to popularity distribution.
The LFU algorithm exhibited the least amount of improve-
ment, indicating it may be least suitable for adapting to
changes in content popularity distributions. Figure 5b il-
lustrates the effectiveness of different caching algorithms in
relation to the Zipf parameter within the cluster head cache.
Our approach routinely surpasses ICSAD, fuzzy logic, LRU,
and LFU approaches in terms of performance, with a notice-
able positive relationship between the average hit rate and the
Zipf parameter. The initial hit rate of the proposed algorithm
equaled approx. 0.25 and it gradually increased to nearly 0.5.
In contrast, the remaining algorithms demonstrated different
levels of improvement as the Zipf parameter increased, but
none of them surpassed a hit rate of 0.4. The figure indicates
that TS-MMCM easily adjusts to various data request distri-
butions, as evidenced by the Zipf parameter. Figure 5c shows
a comparison of the performance of hit rate-based algorithms
in the edge cache as the Zipf parameter increased from 1.0 to
1.6.
Performance of the proposed algorithm surpassed that of the
others, demonstrating a consistent rise in the hit rate as the Zipf
parameter increased. The ICSAD algorithm is ranked second,
with the fuzzy logic, LRU, and LFU algorithms following in
that order. The disparity in performance among algorithms
indicates different degrees of efficiency, with the conventional

LRU and LFU caching techniques falling behind more recent
approaches. The figure likely illustrates the superiority of
a new algorithm in the context of data caching or retrieval,
driven by the distribution of data, as indicated by Zipf.
Figure 6 shows the relationships between the cache hit ratio
of the aforementioned algorithms and the overall caching
capacity rate. The algorithms are compared at capacity rates
of 0.1, 0.15, 0.2, and 0.25. These capacity rates indicate the
combined cache capacity rate of the local cache, cluster head,
and edge server. The cache hit ratio is the ratio of requests
successfully retrieved from the cache to the total number of
requests made.
The proposed algorithm offers exceptional performance, since
it consistently achieves the greatest hit rates across all capacity
rates. The frequency of successful cache retrievals improved
as the capacity rate increased, indicating that it efficiently
utilized the available cache space to store frequently requested
content.
The ICSAD algorithm demonstrates a correlation between the
hit rate and the capacity rate, but it fell short of achieving the
same degree of performance as TS-MMCM, albeit it ranked
as the second most effective method. Performance of the fuzzy
logic algorithm was inferior to that of the proposed algorithm
and ICSAD at the 0.1 capacity rate, but increased at the 0.15
capacity rate. However, the improvement is not as great at
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higher capacity rates when compared with TS-MMCM and
ICSAD.
The LRU method constantly exhibited worse performance
when compared to TS-MMCM, ICSAD, and fuzzy logic.
However, it surpassed the LFU algorithm. The hit rate in-
creased when the capacity rate escalated, although it stayed
below 0.4 even at the greatest capacity.
The LFU algorithm initially had the lowest capacity rate of
0.1, but it showed a progressive rise in performance as the
capacity rate increased. However, it consistently remained the
least-performing algorithm compared to other approaches at
all capacity rates.
As the capacity rate increased, the average hit rate for each
algorithm also increased. This is an expected behavior as
greater capacity generally means that more data can be stored,
which is likely to translate into higher success rates.
This is because more content may be cached with a bigger
caching capacity rate, allowing the local cache, cluster head,
and edge server to respond to more requests from the vehicle
users. The TS-MMCM algorithm and ICSAD had the highest
average hit rates at a capacity rate of 0.25, suggesting that
they are more effective at making use of bigger capacity rates
than fuzzy logic, LRU, and LFU.
In general, Fig. 6 shows that the TS-MMCM algorithm and
ICSAD are the most effective solutions in terms of hit rate
at the capacity rates tested, with the proposed algorithm
outperforming ICSAD. Meanwhile, LFU seems to be the least
effective across all capacity rates.

6.2. Cache Hit Rate and Latency Optimization via
Advanced Clustering Technique

To improve the accuracy of content popularity determination
and to increase the cache hit rate even further, this paper
described a procedure in which the LSTM method is used to
predict content requests. We evaluated the effectiveness of
vehicle grouping according to speed and position. Vehicles
were grouped into clusters of three, six, and nine, and their
performance was analyzed based on the request rate, using
a Zipf parameter of 1.0 and setting the total cache capacity
rate at 0.15.
Figure 7 illustrates the correlation between the cache hit
rate in a cooperative caching system and the rate at which
requests or data requests are made. The figure consists of three
lines, each indicating a distinct number of clusters. The y-axis
displays the hit rate, which is the fraction of requests that the
cache serves without having to retrieve data from the origin
server. A higher hit rate signifies superior performance, as it
implies a larger number of requests being promptly served
from the cache. The x-axis represents the request rate, which is
assumed to be a measure of how often requests are submitted
to the cache. The rate is often quantified as the number of
requests per unit of time.
Cluster 3 exhibited the lowest hit rate among all request rates,
initially equaling 0.82 and gradually increasing to 0.92 as the
request rate rose from 20 to 30. These findings indicate that
cluster 3 is the least effective among the three in handling
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cache requests, although it demonstrated progress as the rate
of requests increased. The hit rate of cluster 6 initially stood
at 0.84 and gradually rose to just above 0.94 when the request
rate escalated from 20 to 30. It surpassed cluster 3 in terms
of performance at all request rate levels.
Cluster 9 exhibited the highest hit rate, starting at 0.86 and
peaking at nearly 0.97 during the highest request rate shown.
It offered superior performance compared to the two other
clusters.
All clusters experienced an increase in their hit rates as the
request rate rose. This indicates that the cooperative caching
mechanism is efficient in using the higher volume of requests
to accurately anticipate and cache popular content. Increased
request rates can enhance the precision of predicting popular
items, allowing for prefetching or caching and thus resulting
in an improved hit rate.
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Overall, Fig. 7 demonstrates that in a cooperative caching
framework, an increase in the request rate leads to a cor-
responding rise in the hit rate across all clusters. Cluster 9
exhibited the highest performance, while cluster 3 showed
the lowest performance.
Figure 8 shows the total average latency based on the Zipf
parameter, as well as the average latency based on the request
rate for three cluster sizes.
It follows from Figure 8a that the total average latency de-
creases as the number of clusters increases, indicating that
vehicle clustering may efficiently reduce this time, while Fig.
8b demonstrates how the proposed clustering architecture
might lead to a significant decrease in latency. Increasing the
number of clusters can further reduce average latency.
Simulation results show that TS-MMCM algorithm signifi-
cantly improves IoV caching system’s performance compared
to that achieved with the use of previous algorithms, enabling
efficient adjustment to rapidly evolving network structures in
time-sensitive IoV environments.

7. Conclusions
This study shows that intentional vehicle clustering com-
bined with machine learning to forecast content popularity
enhances both system performance and user experience by
enabling better caching decisions and fostering more depend-
able communication links within vehicular networks. The
goal of the proposed future study is to apply sophisticated
machine learning models, energy efficiency considerations,
and multidisciplinary research to ensure the model’s practi-
cal feasibility in real-world scenarios while simultaneously
enhancing the caching model’s scalability, efficiency, and
security.
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