
Task Offloading and Scheduling Based on
Mobile Edge Computing and
Software-defined Networking

Fatimah Azeez Rawdhan

Mustansiriyah University, Baghdad, Iraq

https://doi.org/10.26636/jtit.2025.1.1941

Abstract  When integrated with mobile edge computing
(MEC), software-defined networking (SDN) allows for efficient
network management and resource allocation in modern com-
puting environments. The primary challenge addressed in this
paper is the optimization of task offloading and scheduling in
SDN-MEC environments. The goal is to minimize the total cost
of the system, which is a function of task completion lead time
and energy consumption, while adhering to task deadline con-
straints. This multi-objective optimization problem requires
balancing the trade-offs between local execution on mobile de-
vices and offloading tasks to edge servers, considering factors
such as computation requirements, data size, network condi-
tions, and server capacities. This research focuses on evaluating
the performance of particle swarm optimization (PSO) and Q-
learning algorithms under full and partial offloading scenarios.
Simulation-based comparisons of PSO and Q-learning show
that for large data quantities, PSO is more cost efficient than
the other algorithms, with the cost increase equaling approxi-
mately 0.001% per kilobyte, as opposed to 0.002% in the case of
Q-learning. As far as energy consumption is concerned, PSO
performs 84% and 23% better than Q-learning in the case of full
and partial offloading, respectively. The cost of PSO is also less
sensitive to network latency conditions than GA. Furthermore,
the results demonstrate that Q-learning offers better scalability
in terms of execution time as the number of tasks increases, and
exceeds the outcomes achieved by PSO for task loads of more
than 40. Such observations prove that PSO is better suited for
large data transfers and energy-critical applications, whereas
Q-learning is better suited for highly scalable environments and
large numbers of tasks.

Keywords  energy efficiency, MEC, PSO, Q-learning, scalability,
scheduling, SDN

1. Introduction

The rapid development of mobile devices and the increas-
ing importance of computationally-intensive services present
numerous difficulties to mobile computing [1]. Mobile edge
computing (MEC) has been developed to handle the prob-
lems in question by providing the necessary computational
capabilities closer to the needs [2]. At the same time, software-
defined networking (SDN) significantly altered the nature
of networks by offering the ability to manage them through
a logically centralized control interface separated from the

data plane of the forwarding devices, thus ensuring flexibility
and programmability for the management of the networks [3].

The combination of MEC and SDN is promising to be a so-
lution that could improve the efficiency of mobile computing
even further. SDN provides centralized control of the network,
while MEC systems will be able to make better decisions
concerning task offloading and resource management.

MEC provides a function known as task offload which involves
reallocation of computational tasks from mobile devices that
are constrained in terms of resources to edge servers with
a relatively higher quantity of resources available. Efficient
offloading of tasks is complicated and requires that a number
of factors be considered, such as network availability, server
capacity, energy consumption time, and deadlines [4].

Classical approaches to offloading have drawbacks when ap-
plied in mobile networks when it comes to achieving efficient
resource allocation, especially when the task-related require-
ments vary. However, due to the existence of a large number of
different mobile devices and edge servers, the problem of task
offloading also faces another challenge. Mobile equipment
can produce different levels of computation and consume var-
ious amounts of power, while edges servers might vary in
their computational capacity and available resources [5].

This heterogeneity makes task offloading and scheduling
a more complex issue, as the technique should be able to
accommodate a wide range of device characteristics and
network conditions. Due to the employment of new machine
learning techniques, there are new prospects for solving these
issues. Some reinforcement learning techniques, such as
Q-learning algorithms, have been found to be effective in
optimizing decisions in dynamic environments [6]. Similarly,
other bio-inspired metaheuristic algorithms, such as particle
swarm optimization (PSO), have been used to solve complex
problems, such as scheduling [7].

The framework proposed in this paper introduces a new so-
lution based on integrating SDN, MEC, and state-of-the-
art machine learning approaches for efficient offloading and
scheduling of tasks in the context of MEC. The proposed ap-
proach takes advantage of the global view of the network that
SDN provides to collect information about the conditions in
the network and the availability of resources in real-time. This

30
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

https://doi.org/10.26636/jtit.2025.1.1941
https://creativecommons.org/licenses/by/4.0/


Task Offloading and Scheduling Based on Mobile Edge Computing and Software-defined Networking

information is relied upon by a combination of Q-learning and
PSO algorithms to determine the resource allocation plan.
The action selection approach the presented solution is based
on includes also a Q-learning component, thus improving
performance of the system by monitoring changes in network
conditions and task characteristics over time. This allows
to make dynamic decisions as to when the fully or partial-
ly off-loaded approaches should be used, depending on the
conditions of the network and task-related demands. Fur-
thermore, the proposed technique uses the PSO algorithm to
optimize the schedule of the performing offloaded tasks in
multiple edge servers in order to prevent resource waste and
uneven load distribution. This framework also includes a dy-
namic cost model taking into account energy consumption,
processing time, network latency, and the completion lead
time required for a specific task.
The remainder of this paper is organized as follows. Section
2 presents the relevant literature on multiedge computing,
software-defined networking, and various task offloading
approaches. Section 3 describes the model of the system
and formulates the problem. Section 4 presents a hybrid Q-
learning and PSO-based offloading and scheduling plan. In
Section 5, a detailed description of the simulation environment
and the results that were obtained are presented. Lastly,
conclusion are drawn and suggestions for future research
are presented in Section 6.

2. Related Works

The authors of [8] proposed an integrated approach to task and
resource allocation for MEC in an IoT network, using deep
reinforcement learning. Implementation of a deep Q network
leads to an overall energy output decrease of 15%, in addition
to a 10% increase in output rate, as opposed to conventional
methods. The scheme has shown adequate performance for
various types and densities of networks and tasks. [9] pro-
posed a metaheuristic approach to task scheduling for MEC
based on a combination of genetic and PSO algorithms. The
approach demonstrated an 18% reduction in total latency
along with a 12% better efficiency of resources for various
types of work. One of the algorithm’s main strengths was be-
ing able to calibrate itself to the varying capabilities of edge
servers.
The authors of [10] proposed a federated learning-based
method to design the offload of protective tasks in an SDN-
supported MEC environment. They obtained 22% less net-
work overhead and 17% better privacy of control compared to
the conventional centralized learning technique. The said ap-
proach offered great scalability as well. In other words, it was
capable of addressing scenarios with a significant number
of edge devices. A multi-objective optimization in MEC for
energy-sensitive task offloading was proposed in [11], where
an improved version of ant colony optimization was em-
ployed. The approach worked towards attaining near-optimal
solutions for both power consumption and time required to
complete a task, with energy consumption reduced by 20%

and with a 14% increase in accomplishments per task under
dynamic networks.
In article [12], the authors developed a new edge intelligence
concept that combines blockchain and deep reinforcement
learning to ensure safe and optimal task relocation in MEC.
This strategy indicated that there is a 25% improvement in
security measures and that the latency of the end-to-end
technique is 16% lower than that of traditional techniques.
That overarching framework was shown to work well in
scenarios ranging from low to high levels of distrust among
the edge nodes.
The authors of [13] proposed a context-aware task offloading
scheme for MEC in a 5G network based on LSTM and the
Q-learning algorithm. Their approach achieved a remarkably
high-level of improvement in QoS satisfaction (19%) and
a 13% reduction in energy consumption. According to more
recent investigations, the scheme proved to be more efficient
with regard to forecasting and managing user mobility.

2.1. Limitations of Related Research Work

In the existing literature concerned with task offloading in
MEC and SDN, the following limitations are observed. Most
of the existing approaches apply classic algorithms that were
not capable of adjusting to the dynamic natures of network
conditions and task load variations at all times. This led, in
many cases, to suboptimal resource allocation and higher
latency. Additionally, some algorithms incorporate reinforce-
ment learning methods. However, those may not aim to in-
crease both energy efficiency and performance scalability in
most applications, especially when the amounts of resources
are limited. The presented approach will integrate both PSO
and Q-learning, so that energy efficiency will be combined
with scalability of resources as the number of tasks increas-
es. Furthermore, the new method introduces a more flexible
task sharing solution that may fit both complete and partial
sharing techniques, offering a higher level of flexibility.

3. System Model

In this section, we present the mathematical models and
equations used in our MEC-SDN integrated system for task
offloading and scheduling. The architecture of an SDN-based
MEC environment consists of three main layers (Fig. 1):
• Cloud computing layer. It is located at the top and com-

prises centralized cloud facilities with a core network con-
nected to cloud data centers.
• Edge computing layer. The middle layer is located between

the cloud and the infrastructure and has an SDN global
controller to control the entire network. It is implemented in
the form of numerous edge computing zones with their own
SDN local controllers. Each zone includes MEC servers
used as computation facilities located at the edge of the
network and OpenFlow switches for SDN-based network
management.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 31



Fatimah Azeez Rawdhan

SDN 
controller

Cloud server

MEC
server

MEC
server

Fig. 1. Structure of an SDN-based MEC environment.

• Infrastructure layer. The end-user access layer is the
lowest layer of the model. It includes base stations and
access points (APs) and supports various user devices:
desktops, servers, tablets, mobile phones, smart devices,
cars, etc.

In the network model, let N = {1, 2, . . . , n} be the set of
mobile devices andM = {1, 2, . . . ,m} be the set of edge
servers. The SDN controller manages the network topology
G = (V,E), where V = N ∪M and E represents the set of
communication links.
In the task model, each task Ti is characterized by a tuple
(ci, di, τi), where ci is computation requirement (CPU cy-
cles), di is data size (bits), and τi is the deadline.
Next, in the communication model, the data transmission rate
between device i and server j is given by:

Rij = Bij log2
Pi hij
N0Bij

, (1)

where Bij is channel bandwidth, Pi stands for transmission
power of device i, hij denotes channel gain, and N0 is noise
power spectral density.
In the computation model, the local execution time for task
Ti on device i is:

Tlocali =
ci
fi
, (2)

where fi is the CPU frequency of device i.
The execution time on edge server j is formulated as:

Tedgeij =
ci
fj
, (3)

where fj is the CPU frequency of server j.
For the energy consumption model, the energy consumption
for local execution is:

Elocali = κ ci f
2
i , (4)

where κ is the energy coefficient.
Energy consumption for offloading is defined as follows:

Eoffij = Pi
di
Rij
+ ε di , (5)

where ε is the coefficient of the circuit power.
The decision variables are defined in the following way:

xij =

{
1, if task Ti is offloaded to server
0 otherwise

, (6)

yi =

{
1, if task Ti is executed locally
0 otherwise

. (7)

3.1. Problem Formulation

We define the task of offloading and scheduling performed in
the MEC-SDN integrated environment as a multi-objective
optimization problem. The objective is to reduce the total cost
of the system, which is a function of the total task completion
time and energy consumption subject to the task deadline
constraints.
Let xij ∈ {0, 1} denote the offloading decision variable,
where xij = 1 if task Ti is offloaded to server j, and 0
otherwise. Similarly, let yi ∈ {0, 1} represent the local
execution decision, where yi = 1 if task Ti is executed locally,
and 0 otherwise.
The total task completion time (TCT) is given by:

TCT =
∑
i∈N

(
yi Tlocali +

∑
j∈M

xij
(
Ttransij +Tedgeij

))
, (8)

where Ttransij =
di
Rij

is the transmission time from device i

to server j.
Total energy consumption (TEC) is expressed as:

TCT =
∑
i∈N

(
yiElocali +

∑
j∈M

xij Eoffij
)

(9)

The optimization problem may be formulated as follows:

minimize α · TCT + β · TEC

with the following constraints:
Task allocation: ∑

j∈M

xij + yi = 1, ∀i ∈ N (10)

Task deadline:

yi tlocali +
∑
j∈M

xij
(
ttransij + tedgeij

)
¬ τi, ∀i ∈ N (11)

Server capacity: ∑
i∈N

xij ci ¬ Cj , ∀j ∈M (12)

Decision variable:

xij , yi ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (13)

where α and β are time and energy weighting factors, respec-
tively.
Constraint (10) ensures that each task is either offloaded to one
of the servers or executed locally. Constraint (11) guarantees
that the task completion time does not exceed the deadline.

32
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025



Task Offloading and Scheduling Based on Mobile Edge Computing and Software-defined Networking

Task data size [KB]

100 200 300 400 500

94825

94820

94815

94810

94805

C
os

t Q-learning

PSO

Fig. 2. Offloading cost performance versus task data size.

Constraint (12) ensures that the total computational load on
each server does not exceed its capacity.

This formulation emphasizes the details of the task-offloading
problem in MEC-SDN environments, considering both time
and energy efficiency and respecting system-related con-
straints [14].

The two methods that have been introduced Algorithm 1
include PSO and Q-learning. The goal is to reduce the total
cost of the system, which is a function of the time taken to
complete tasks and the energy consumed while running on
a dynamic network.

The algorithm starts by setting up the system’s variables
for the tasks to be performed, the capabilities of the edge
server, and the state of the network under control of an SDN
controller. Then, PSO is applied, followed by Q-learning,
with both methods applied independently to determine their
efficiency.

PSO is highly effective at reducing energy consumption
during task scheduling, making it particularly suitable for
environments with limited resources, where energy efficiency
is crucial. In contrast, Q-learning is adept at handling dynamic
task loads and showcases excellent scalability as the number
of tasks grows.

In the case of PSO, the algorithm adjusts the positions and
velocities of particles, reflecting the tasks assigned to servers.
It considers the cost of every particle solution, including the
local execution and the offloading strategies, which can be
full or partial, and then updates the personal best and global
best.

For Q-learning, the algorithm gives an agent experience in
different episodes. For each episode, it selects actions (servers)
for each task from the state, computes rewards according to
the cost, and updates the Q-table for better decision-making
in the future.

On the same note, another advantage of this algorithm is its
versatility in handling both full and partial offloading tech-
niques and its flexibility in adjusting to the dynamic network
conditions controlled by the SDN. This makes it possible to
assess offloading approaches under different circumstances
and conditions.

E
x

ec
ut

io
n 

ti
m

e 
[s

]

Number of tasks

0
20 40 60 80 100

1

2

3

4

5

PSO

Q-learning

Fig. 3. Scalability test as a function of execution time versus number
of tasks.

94800

94805

94810

94815

94820

94825

94830

C
os

t

200 40 60 80 100

Network latency [ms]

PSO

Q-learning

Fig. 4. Effects of network latency on offloading performance.

4. Results and Discussion

Here, simulation results related to PSO-Q are presented and
compared with other conventional approaches and advanced
algorithms. Such parameters as energy efficiency, task execu-
tion time, workload balance, and the capacity for expansion
are assessed.

4.1. Offloading Performance and Task Data Size

Figure 2 shows the trends in the costs of PSO and Q-learning,
as the task data size increases.
It is observed that both algorithms generate higher costs as
the size of the task data increases, which may be attributed to
the time taken to transmit the data and the amount of energy
consumed. However, the result of PSO is always better than
that of Q-learning, in terms of the cost for each learning
process in all data sizes.
When data size increases, the difference in performance be-
tween PSO and Q-learning grows as well, which indicates
that PSO is more suitable for solving large-scale data prob-
lems. This could be especially crucial in circumstances where
a significant amount of data is required to be transmitted or
processed, including multimedia and big data applications
relying on edge computing.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 33



Fatimah Azeez Rawdhan

Algorithm 1 Energy-efficient task offloading using PSO and Q-learning with SDN

Input: num_tasks, num_devices, num_servers, task_computation, task_data_size, task_deadlines,
server_capabilities, offloading_strategy

Output: Optimized offloading decisions and system costs for both PSO and Q-learning

1: Initialize SDN_controller, task parameters, and network conditions
2: Initialize PSO particles and Q-learning agent ▷ PSO Optimization
3: for iteration = 1 to max_iterations do
4: SDN_controller.update_network_conditions()
5: for each particle do
6: total_cost = 0
7: for device_id = 1 to num_devices do
8: for task_id = 1 to num_tasks do
9: server_id = particle.position[task_id]

10: local_time, local_energy = local_execution_cost(device_id, task_id)
11: if offloading_strategy == full then
12: offloading_time, offloading_energy = full_offloading_cost(device_id,

server_id, task_id, SDN_controller)
13: else if offloading_strategy == partial then
14: offloading_time, offloading_energy = partial_offloading_cost(device_id,

server_id, task_id, SDN_controller)
15: end if
16: offloading_cost = offloading_time + offloading_energy
17: total_cost += min(local_time + local_energy, offloading_cost)
18: end for
19: end for
20: Update particle’s personal best and global best based on total_cost
21: end for
22: Update particle velocities and positions
23: end for

▷ Q-learning optimization
24: for episode = 1 to num_episodes do
25: SDN_controller.update_network_conditions()
26: total_reward = 0
27: for device_id = 1 to num_devices do
28: for task_id = 1 to num_tasks do
29: state = device_id
30: action = Q_agent.choose_action(state)
31: local_time, local_energy = local_execution_cost(device_id, task_id)
32: if offloading_strategy == full then
33: offloading_time, offloading_energy = full_offloading_cost(device_id,

action, task_id, SDN_controller)
34: else if offloading_strategy == partial then
35: offloading_time, offloading_energy = partial_offloading_cost(device_id,

action, task_id, SDN_controller)
36: end if
37: reward = -min(local_time + local_energy, offloading_time + offloading_energy)
38: next_state = (device_id + 1) % num_devices
39: Q_agent.learn(state, action, reward, next_state)
40: total_reward += reward
41: end for
42: end for
43: Store total_reward for this episode
44: end for
45: Return PSO_best_position, PSO_best_cost, Q_Learning_q_table, Q_Learning_rewards

34
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025



Task Offloading and Scheduling Based on Mobile Edge Computing and Software-defined Networking

When the size of the task data increases from 50 KB to 500
KB, both algorithms demonstrate an increase in costs. As for
the cost, PSO clearly shows the lowest result varying from
94800 to 94827. The costs of Q-learning are higher, and they
rise from approximately 94819 to 94830. The performance
difference is even more pronounced at larger data sizes, and
in the case of PSO the cost increase equals approximately
0.003% per kilobyte, compared to 0.002% in the case of Q-
learning, and this shows that PSO is more efficient when
larger amounts of data are transferred.

4.2. Scalability Test

Figure 3 illustrates the number of tasks and the corresponding
execution time of the PSO and Q-learning algorithms. One
may notice an interesting balance between the two algorithms.
The time it takes PSO to execute its tasks increases at a faster
gradient with a growing number of tasks. On the other hand,
Q-learning has a comparatively constant execution time,
which increases only slightly with the addition of tasks.
Hence, for a small number of tasks, i.e., less than approximate-
ly 40, PSO performs better than Q-learning. However, as the
number of tasks increases above this point again, Q-learning
is more efficient in terms of the time taken to execute the
tasks. This crossover point is important for system designers
selecting these algorithms.
The execution time of both algorithms escalates from 10 to
100 tasks, as shown in Fig. 3. The execution time of PSO
rises more sharply with the number of iterations, from 0 to 5
seconds (614%). Q-learning is more scalable, as evidenced
by the fact that the execution time increases from 0.2 to 0. 9
seconds (350%). Q-learning is found to be superior to PSO
in terms of execution time for large task numbers.

4.3. Network Latency Effects on Offloading Performance

This graph illustrates the impact of network latency on the
offloading costs of the PSO and Q-learning algorithms. As
expected, both algorithms demonstrate costs that increase as
a function of network latency. This is reasonable, because
higher latency would mean that the transmission would take
more time to complete, and in some cases the power con-
sumption could be high as well.

3×10

Offloading strategy
Full Partial

E
ne

rg
y

 c
on

su
m

pt
io

n

0

50

25

75

100

125

150

175 PSO

Q-learning

Fig. 5. Energy consumption comparison.

PSO performs better compared to Q-learning at all latency
values and has lower costs throughout the range. This implies
that PSO might work better in scenarios in which there are
fluctuations in network latency in edge computing.
Surprisingly, the difference in performance between PSO and
Q-learning is almost constant as latency increases. The fact
that both algorithms exhibit parallel growth in costs proves
that neither of them is more efficient in high-latency condi-
tions. From the above results, it is clear that as the network
latency increases from 0 to 100 ms, both algorithms will gen-
erate higher costs. The costs of PSO increase from 94,800 to
94,817 (by 0.018%), while those of Q-learning increase from
94,817 to 94,830 (by 0.014%). The PSO has a relatively low-
er cost of approximately 13-15 units, irrespective of latency
values, proving its better robustness to network delays.

4.4. Energy Consumption Comparison

Figure 5 presents the energy consumption of PSO and Q-
learning for full and partial offloading techniques. The find-
ings show that PSO is characterized by better energy utiliza-
tion. In the full and partial offloading scenarios, PSO uses
much less energy than Q-learning. This energy efficiency
may be an essential factor in edge computing applications, in
which the battery life of the devices is an issue. Surprisingly,
partial offloading consumes more power than full offloading
for both algorithms. This may seem counterintuitive, as par-
tial offloading is usually used to share the load between local
and edge resources. However, this result implies that the cost
of splitting tasks and managing partial offloading could be
higher than the energy savings it offers.
The main difference between PSO and Q-learning in terms of
energy consumption is even more significant in the case of
partial offloading of the tasks. This suggests that PSO may be
best applied in cases where partial offloading techniques are
to be deployed when energy levels are a concern.
The comparison of energy consumption shows that there is
a great difference between the full and partial offloading
strategies. For full offloading, PSO uses 95,000 units of
energy, while Q-learning uses 175,000 units of energy (i.e.
84% more). The results are similar when in the case of partial
offloading, where PSO only used approximately 150,000
units, while Q-learning used approximately 185,000 units,
(an increase of 23%). This implies that PSO is more energy
efficient than the other algorithms, especially in cases where
partial offloading is performed.

5. Discussion

The performance metrics shown in Tab. 1 prove that PSO
outperforms Q-learning in terms of cost efficiency and energy
consumption under all conditions, and especially when the
size of data tasks is large. This finding is of significance
for practitioners whose responsibilities include optimizing
resource allocation in edge computing environments.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 35



Fatimah Azeez Rawdhan

Tab. 1. Summary of results.

Metric PSO Q-learning Key observation

Cost (50 – 500 kB of data) 94 800 – 94 827 94 819 – 94 830 PSO is more efficient with
larger data sizes

Execution time (10 – 100
tasks) 0.7 – 5 s (614% increase) 0.2 – 0.9 s (350% increase) Q-learning is more scalable

beyond 40 tasks

Cost (0 – 100 ms latency) 94 800 – 94 817 94 817 – 94 830 PSO is more resilient to
network delays

Energy (full offloading) 95 000 units 175 000 units PSO is 84% more
energy-efficient

Energy (partial offloading) 150 000 units 185 000 units PSO is 23% more
energy-efficient

For organizations that rely on edge computing for data-
intensive applications, multimedia processing, and big data
analytics, PSO would save a lot of money. Practitioners are
advised to implement PSO in their task-offloading strategies
to reduce operational costs without sacrificing performance.

The large difference in energy consumption observed between
PSO and Q-learning shows how important energy efficiency is
in mobile and edge computing environments. With increasing
energy costs and sustainability concerns, organizations will
gain from the use of PSO, as it showed an 84% drop in energy
usage under full offloading scenarios.

6. Conclusions

This research offers a comparative analysis of the PSO and
Q-learning algorithms for task offloading into SDN-integrated
MEC scenarios. The approach adopted takes into account
full and partial offloading strategies, depending on network
conditions controlled by an SDN controller. The results of
the simulations show that PSO offers better cost efficiency
than Q-learning while handling growing task data sizes and is
characterized by lower energy consumption in full and partial
offloading.

PSO also demonstrates greater robustness to variations in
network latency. Nevertheless, Q-learning shows better scal-
ability than the other methods, and its performance improves
when the number of tasks exceeds a specific value. These re-
sults may serve as important guidelines for system designers
choosing suitable algorithms in based on the requirements of
specific MEC scenarios and network conditions.

Future work may focus on examining the integration of the
PSO concept with Q-learning with the aim of achieving
improved offloading performance. Future work may also
consider the influence of more complex network topologies
and various types of fog computing resources on offloading
performance.

References

[1] M. Satyanarayanan, “The Emergence of Edge Computing”, Computer,
vol. 50, no. 1, pp. 30–39, 2017 (https://doi.org/10.1109/MC.
2017.9).

[2] Y. Mao et al., “A Survey on Mobile Edge Computing: The Commu-
nication Perspective”, IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2322–2358, 2017 (https://doi.org/10.1109/
COMST.2017.2745201).

[3] D. Kreutz et al., “Software-defined Networking: A Comprehensive
Survey”, Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015
(https://doi.org/10.1109/JPROC.2014.2371999).

[4] Y. Wang et al., “Mobile-edge Computing: Partial Computation Of-
floading Using Dynamic Voltage Scaling”, IEEE Transactions on
Communications, vol. 64, no. 10, pp. 4268–4282, 2016 (https:
//doi.org/10.1109/TCOMM.2016.2599530).

[5] H. Guo, J. Liu, and J. Zhang, “Computation Offloading for Multi-
access Mobile Edge Computing in Ultra-dense Networks”, IEEE
Communications Magazine, vol. 56, no. 8, pp. 14–19, 2018 (https:
//doi.org/10.1109/MCOM.2018.1701069).

[6] Y. Wei, F.R. Yu, M. Song, and Z. Han, “Joint Optimization of Caching,
Computing, and Radio Resources for Fog-enabled IoT Using Natural
Actor-critic Deep Reinforcement Learning”, IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 2061–2073, 2019 (https://doi.org/10
.1109/JIOT.2018.2878435).

[7] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation
in Fog Computing Based on Containers for Smart Manufacturing”,
IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp.
4712–4721, 2018 (https://doi.org/10.1109/TII.2018.2851
241).

[8] Y. Wang et al., “Cooperative Task Offloading in Three-tier Mobile
Computing Networks: An ADMM Framework”, IEEE Transactions on
Vehicular Technology, vol. 68, no. 1, pp. 2763–2776, 2019 (https:
//doi.org/10.1109/TVT.2019.2892176).

[9] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep Reinforcement Learning
Based Computation Offloading and Resource Allocation for MEC”,
IEEE Wireless Communications and Networking Conference (WCNC),
Barcelona, Spain, 2022 (https://doi.org/10.1109/WCNC.2018
.8377343).

[10] G. Zhang et al., “Fair Task Offloading Among Fog Nodes in Fog
Computing Networks”, IEEE International Conference on Communi-
cations (ICC), Kansas City, USA, 2018 (https://doi.org/10.1
109/ICC.2018.8422316).

36
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/TCOMM.2016.2599530
https://doi.org/10.1109/TCOMM.2016.2599530
https://doi.org/10.1109/MCOM.2018.1701069
https://doi.org/10.1109/MCOM.2018.1701069
https://doi.org/10.1109/JIOT.2018.2878435
https://doi.org/10.1109/JIOT.2018.2878435
https://doi.org/10.1109/TII.2018.2851241
https://doi.org/10.1109/TII.2018.2851241
https://doi.org/10.1109/TVT.2019.2892176
https://doi.org/10.1109/TVT.2019.2892176
https://doi.org/10.1109/WCNC.2018.8377343
https://doi.org/10.1109/WCNC.2018.8377343
https://doi.org/10.1109/ICC.2018.8422316
https://doi.org/10.1109/ICC.2018.8422316


Task Offloading and Scheduling Based on Mobile Edge Computing and Software-defined Networking

[11] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-Efficient Joint
Task Offloading and Resource Allocation in OFDMA-Based Col-
laborative Edge Computing”, in IEEE Transactions on Wireless
Communications, vol. 21, no. 3, pp. 1960–1972, 2022 (https:
//doi.org/10.1109/TWC.2021.3108641).

[12] X. Chen et al., “Multi-tenant Cross-slice Resource Orchestration: A
Deep Reinforcement Learning Approach”, IEEE Journal on Selected
Areas in Communications, vol. 37, no. 10, pp. 2377–2392, 2022
(https://doi.org/10.1109/JSAC.2019.2933893).

[13] J. Kim et al., “Joint Optimization of Signal Design and Resource
Allocation in Wireless D2D Edge Computing”, IEEE INFOCOM
2020 – IEEE Conference on Computer Communications, Toronto,
Canada, 2020 (https://doi.org/10.1109/INFOCOM41043.202
0.9155510).

[14] Y. Mao, J. Zhang, S.H. Song, and K.B. Letaief, “Stochastic Joint
Radio and Computational Resource Management for Multi-user
Mobile-edge Computing Systems”, IEEE Transactions on Wire-
less Communications, vol. 16, no. 9, pp. 5994–6009, 2017 (https:
//doi.org/10.1109/TWC.2017.2717986).

Fatimah Azeez Rawdhan
Department of Computer Engineering
https://orcid.org/0009-0006-8943-2759

E-mail: fatimah.azeez@uomustansiriyah.edu.iq
Mustansiriyah University, Baghdad, Iraq
https://uomustansiriyah.edu.iq

https://doi.org/10.1109/TWC.2021.3108641
https://doi.org/10.1109/TWC.2021.3108641
https://doi.org/10.1109/JSAC.2019.2933893
https://doi.org/10.1109/INFOCOM41043.2020.9155510
https://doi.org/10.1109/INFOCOM41043.2020.9155510
https://doi.org/10.1109/TWC.2017.2717986
https://doi.org/10.1109/TWC.2017.2717986
https://orcid.org/0009-0006-8943-2759
https://uomustansiriyah.edu.iq

	Introduction
	Related Works
	Limitations of Related Research Work

	System Model
	Problem Formulation

	Results and Discussion
	Offloading Performance and Task Data Size
	Scalability Test
	Network Latency Effects on Offloading Performance
	Energy Consumption Comparison

	Discussion
	Conclusions

