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Abstract—Telecommunication networks are intrinsically

multi-layered, a single failure at a lower level usually corre-

sponds to a multi-failure scenario at an upper layer. In this

context, the concept of shared risk link group (SRLG) allows

an upper layer to select, for a given active path (AP), a backup

path (BP), which avoids every SRLG that may involve the se-

lected AP, in the event of a failure. That is a SRLG diverse

path set maybe defined as a set of paths, between an origin

and a destination, such that no pair of paths can be simultane-

ously affected by any given failure (or risk) in a single failure

scenario. Firstly we present the formulation of the SRLG di-

verse path pair calculation problem in a directed network. An

algorithm for enumerating SRLG diverse paths, by non de-

creasing cost of their total (additive) cost will be presented,

which is based on an algorithm proposed for generating min-

imal cost node disjoint path pairs. The SRLG diverse path

pairs may be node or arc disjoint, with or without length con-

straints. Computational results will be presented to show the

efficiency of the proposed algorithm for obtaining node or arc

disjoint SRLG diverse path pairs in undirected networks.

Keywords—routing, SRLG disjoint shortest paths, telecommu-

nication networks.

1. Introduction

Bandwidth usage optimization is one of the main issues

when protection schemes are used in telecommunication

networks. In global path protection, the path that carries the

associated traffic flow under normal operating conditions is

called the active path (AP), and the path that carries that

traffic when some failure affects the AP is called the backup

path (BP).

Many network providers consider sufficient to implement

protection schemes which ensure their network (or certain

connections in their network) is 100% reliable in single

failure scenarios. Because telecommunication networks are

intrinsically multi-layered, a single failure at a lower level

usually corresponds to a multi-failure scenario at an upper

layer.

A failure risk may represent a fibre cut, a card failure at

a node, a software failure, or any combination of these fac-

tors [1], which may affect one or more links at a given

network layer. In this context, the concept of shared risk

link group (SRLG) is very important in teletraffic engineer-

ing since allows an upper layer to select, for a given AP,

a BP, which avoids every SRLG that may involve the se-

lected AP, in the event of a failure. Note that this may not

be feasible for all possible APs. That is a SRLG diverse

path set maybe defined as a set o paths, between an origin

and a destination, such that no pair of paths can be simul-

taneously affected by any given failure (or risk) in a single

failure scenario. Therefore, to ensure global path protection

against a single failure affecting a single SRLG, a SRLG

diverse path pair must be calculated.

The problem of finding a SRLG diverse path pair has been

shown to be NP-complete [1]. The minimum-cost diverse

routing problem, in which the objective is finding two paths,

SRLG diverse, with minimal total arc cost (also desig-

nated as the min-sum problem), is also NP-complete [1].

Hu [1] proposed an integer linear programming (ILP) for-

mulation for the min-sum problem, and provide numerical

results showing that the ILP formulation quite effective in

networks with a few hundreds of nodes.

The necessity of calculating SRLG diverse path pairs arises

in optical and multiprotocol label switching (MPLS) net-

works, where certain connections require two paths, the

AP and the BP, in order to satisfy service level agreements

(SLA) regarding reliability. The possibility of enumerat-

ing, by non-decreasing cost, SRLG diverse path pairs, may

allow more elaborate, and possibly more efficient, forms

of SRLG diverse routing. Furthermore the ordered enu-

meration of diverse SRLG paths will make it possible

a multi-objective routing approach, with survivability re-

quirements.

Rostami et al. [2] proposed an algorithm, named CoSE

(conflicting SRLG exclusion), which is an extension to

SRLG-disjoint routing of a link-disjoint routing algorithm

called CoLE (conflicting link exclusion), proposed in [3],

which can quickly find an optimal solution path pair. The

CoSE algorithm iteratively separates the network SRLGs

into two sets and then computes the working and backup

paths. Furthermore, in [2] the authors also propose a way

of calculating two maximally SRLG diverse paths in a net-

work where no two completely-disjoint paths exist. The

CoSE algorithm can be used for solving the min-min prob-

lem, by selecting the appropriate solution from the set of

generated solutions (although the optimality of the solution

is not guaranteed).

Todimala and Ramamurthy [4] proposed an iterative

heuristic, based on a modification of Suurballe’s algo-

rithm [5], [6], for diverse routing under SRLG constraints

that computes the least cost SRLG diverse paths pair. In [7]

the same authors propose a heuristic for solving the prob-

lem of computing optimal SRLG/link diverse paths under

shared protection (considering the definition of an opti-

mal SRLG diverse path pair under shared protection as

asymmetrically-weighted [8]).

In [9], [10] the authors consider the problem of path pro-

tection in wavelength-routed networks with SRLG and pro-
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pose a heuristic method, which they compare with the trap

avoidance (TA) algorithm [11]. They conclude the new

algorithm, minimum total weight (MTW) algorithm, out-

performs TA algorithm within the first few iterations. If

more iterations are considered there is no clear advantage

of one algorithm, over the other.

This work presents an exact algorithm for enumerating

SRLG diverse path pairs in a multi-layered network by de-

creasing order of the total cost. Firstly we present the for-

mulation of the SRLG diverse path pair calculation problem

in a directed (implicitly multi-layered) network. Secondly

we formalize the proposed algorithm, that is based on Algo-

rithm 1 proposed in [12] for generating minimal cost node

disjoint path pairs. The SRLG diverse path pairs may be

node or arc disjoint, and with or without length constraints,

as will be explained. Finally, computational results will be

presented to show the efficiency of the proposed algorithm

for obtaining node disjoint SRLG diverse path pairs.

The paper is organized as follows. In Section 2 the notation

and the problem formulation are given. An algorithm for

enumerating SRLG diverse paths, by non decreasing cost

of their total (additive) cost is presented in Section 3. The

application to path pairs node or arc disjoint and with length

constraints, is briefly explained in Subsections 3.3 and 3.4.

In Section 4 results which illustrate the algorithm efficiency

in obtaining SRLG node disjoint path pairs, are presented.

Finally, some conclusions are presented in Section 5.

2. Notation and Problem Definition

The algorithm in Section 3 is based on Algorithm 1 in [12].

Therefore, we will use a notation similar to the one in [12].

Let G = (N,A) be a directed network with node set N =
{v1,v2, . . . ,vn} and arc set A = {a1,a2, . . . ,am} (where n

and m designate the number of nodes and arcs in G, re-

spectively). Let a non-negative cost function (or metric) in

the arcs, be defined:

cvavb
≥ 0, (va,vb) ∈ A , (1)

where cvavb
represents the cost of using arc (va,vb).

The cost c(p) of a path p in G with respect to metric c is:

c(p) = ∑
(va,vb)∈p

cvavb
. (2)

Definition 1: A path p is said to be simple (or loopless) if

all its nodes are different.

We will use the word path to refer to simple paths, and we

will only use the expression “simple path” when required,

namely in the algorithm.

Let path p = 〈v1,a1,v2, . . . ,vi−1,ai−1,vi〉, be given as an al-

ternate sequence of nodes and arcs of G, such that the tail

of ak is vk and the head of ak is vk+1, for k = 1,2, . . . , i−1

(all the vi in p are different). Let the set of nodes in

p be V ∗(p) and the set of arcs in p be A∗(p). Two

paths p = 〈v1,a1,v2, . . . ,vi−1,ai−1,vi〉 and q are arc-disjoint

if A∗(p) ∩ A∗(q) = /0. Two paths p and q are disjoint

if V ∗(p)∩V ∗(q) = /0, and are internally disjoint [13] if

{v2, . . . ,vi−1}∩V ∗(q) = /0. We will say that two paths are

node disjoint if they are internally disjoint.

Let R be a set representing the risks (failures) in the func-

tional network. Each risk may correspond to a fibre cut,

a card failure at a node, a software failure, or any combina-

tion of these factors. Let Ar represent the subset of network

arcs (or links) in the network logical representation (cor-

responding to a capacitated graph) that can be affected by

risk r ∈ R. Thence Ar is a SRLG (associated with r).

Let

rp = {r ∈ R : path p contains elements of Ar} . (3)

The SRLG problem can be defined as follows [1].

Definition 2: Find two paths p and q, between a pair of

nodes, such that rp∩ rq = /0. We also say that p and q are

two SRLG diverse paths (with respect to R).

The first addressed problem is to enumerate node disjoint

simple path pairs (pi,qi) (i = 1,2, . . . ), in G, from a source s

to a destination node t (s 6= t), which are SRLG diverse, by

non-decreasing total cost of the pair, defined by

c[(pi,qi)] = c(pi)+ c(qi), i = 1,2, . . . , (4)

where pi and qi have the same source and sink node.

Let Ra be the set of risks that can affect arc a ∈ A:

Ra = {r : a ∈ Ar}, ∀a ∈ A , (5)

Ra can be obtained from Ar (r = 1, . . . , |R|) and

rp = ∪a∈pRa , (6)

which is much more adequate for generating SRLG diverse

paths in the proposed algorithm.

If a path pair (p,q) is SRLG diverse then it is arc disjoint

(regardless of whether the the network is directed or not).

Definition 3: Two arcs, ai,a j ∈A are SRLG diverse if Rai
∩

Ra j
= /0.

Definition 4: An arc a ∈ A is SRLG diverse with a path p

if Ra∩ rp = /0.

The algorithm proposed in Section 3 is based on Algo-

rithm 1 in [12], which uses the MPS algorithm [14] in its

loopless version [15]. The algorithm MPS is a deviation

algorithm. Each time a path p is chosen from a set of

candidate paths, X , new paths may be added to X . In the

context of the algorithm the node vk of path p, from which

a new candidate path is generated, is the deviation node of

that new path (which coincides with p up to vk). In a path

the link the tail of which is the deviation node, is called

the deviation arc of that path [14]. By definition s is the

deviation node of p1 (the shortest path from s to t). The

concatenation of path p, from vi to v j, with path q, from

v j to vl , is the path p ⋄ q, from vi to vl , which coincides

with p from vi to v j and with q from v j to vl .

Let Tt designate a tree where there is a unique path from

any node vi to t (tree rooted at t as defined in [14]) and
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πvi
denote the cost of the path p, from vi to t, in Tt ; the

reduced cost c̄viv j
of arc (vi,v j) ∈ A associated with Tt is

c̄viv j
= πv j

−πvi
+cviv j

. So all arcs in Tt have a null reduced

cost. The reduced cost of path p is given by ∑(vi,v j)∈p c̄viv j

and it can be proved that c(p) = c̄(p)+ πs. The advantage

of using reduced costs was first noted by Eppstein [16] and

they are shown by Theorems 8 and 9 in [14] and by The-

orem 2.1 in [15] (in the context of the MPS algorithm) to

lead to less arithmetic operations and to sub-path generation

simplification.

Let T
∗
t be the tree of the shortest paths from all nodes to t

and T
∗
t (v j) the shortest path from v j to t in T

∗
t (hence πvi

=
c[T∗t (v j)]). The sub-path from vk to v j in p is represented by

subp(vk,v j). The set of arcs of A of G = (N,A) is arranged

in the sorted forward star form – for details, see [17]. That

is, the set A is sorted in such a way that, for any two arcs

(vi,v j),(vk,vl) ∈ A, (vi,v j) < (vk,vl) if vi < vk or (vi = vk

and c̄viv j
≤ c̄vkvl

).

3. Node Disjoint and SRLG Diverse

Path Pairs

The algorithm is based on the Algorithm 1 in [12] for enu-

merating node disjoint path pairs, by non-increasing total

additive cost which requires a network topology transfor-

mation as described in the next subsection.

3.1. Network Topology Modification

Let s,t be a source and destination in G. Let Pxy be the

set paths (loopless or not) from node x to node y in G.

Let G′ = (N′,A′) be a transformed network where, such

that [12]:

• the former nodes are duplicated: N′=N∪{v′i : vi ∈N};

• the former arcs are duplicated, and a new one, link-

ing t and the new node s′, is added: A′ = A∪{a′ =
(v′a,v

′
b) : a = (va,vb) ∈ A}∪{(t,s′)};

• c(v′a,v
′
b) = c(va,vb), ∀(va,vb) ∈ A;

• c(t,s′) = 0;

• Ra′ = Ra, ∀a,a′ ∈ A′.

In this new network the source node is s and the destination

node is t ′. Each path from s to t ′ in G′ is such that:

p = q ⋄ (t,s′)⋄ q′ , (7)

where q ∈ Pst and q′ ∈ Ps′t′ . If q and q′ are simple and do

not share corresponding nodes in N and N′ (except s, s′ and

t, t ′) then they are disjoint simple paths. If, additionally,

Rq∩Rq′ = /0, then q and q′ are SRLG diverse.

Let T
∗
t′

be the tree of the shortest paths from all nodes

to t ′, in G′ (the modified graph). If T
∗
t is calculated be-

fore transforming the network, then T
∗
t′

can easily be ob-

tained. This process of building T
∗
t′

ensures that T
∗
t′
(s) =

p⋄ (t,s′)⋄ p′, where p and p′ correspond to the same path.

In the transformed network, πv′i
= c(T∗t (vi)),∀v

′
i ∈N′\N and

πvi
= πv′i

+ πs′ , for any vi ∈ N [12]1.

In Remark 1 of [12] it is suggested that there is no need to

explicitly represent the new arcs in G′ except the new arc

(t,s′), because every new arc is a copy of another existing

arc, and c̄v′iv
′
j
= c̄viv j

. However, implementing Remark 1

is only feasible if T
∗
t′

is built as described in the previous

paragraph – a fact which is not pointed out in [12].

If at least two different paths, p and q, with the same min-

imal cost exist from vi to t, (with the successor of vi in

p different from the successor of vi in q), then, using Di-

jkstra’s algorithm in G′ for calculating T
∗
t′
, we may obtain

T
∗
t′
(vi) = (vi,v j)⋄T

∗
t′
(v j) and T

∗
t′
(v′i) = (v′i,v

′
k)⋄T

∗
t′
(v′k), with

v j 6= vk (and v′j 6= v′k). When this happens, two different arcs

with the “same tail”, vi and v′i, will belong to T
∗
t′
, and when

building the sorted forward star form of the arcs A∩ (t,s′),
both arcs must be the first arc with tail vi, which is not

possible! This detail is very important because the MPS

algorithm [14], which is the base of Algorithm 1 in [12],

requires the ordering of the arcs in the ordered forward star

form, such that the first arc with tail vi (equivalent to v′i)

∀vi ∈ A, belongs to T
∗
t′
, in order to be able to generate every

path by non-decreasing order of its cost.

3.2. The Algorithm

A infeasibility test can be made at the very beginning of

the algorithm:

• if we can not find at least two arcs with tail node s,

which are SRLG diverse, then there is no solution;

• if we can not find at least two arcs with head node t,

which are SRLG diverse, then there is no solution.

If this infeasibility test fails, then we can proceed to try and

find SRLG diverse path pairs.

In order to speed up path generation, the network should be

pruned of the arcs with tail s and head t such that no SRLG

diverse paths can be obtained if they belong to any of the

paths. We will say that the remaining arcs of tail s and

head t can be SRLG protected (by at least another arc of

tail s or head t, respectively). These arcs can be identi-

fied during the infeasibility test and removed from the net-

work2 before running the Dijkstra algorithm for obtain-

ing Tt′ .

A path, p, obtained in the augmented network (see Subsec-

tion 3.1 or [12; Subsection 3.2]), is made of q ⋄ (t,s′) ⋄ q′

and we assume it has deviation node dp, deviation arc ah,

1In [12], where is πi = πi′ +πs should be πi = πi′ +πs′ .
2In order to reduce the need for graph transformation, these arcs can be

simply marked as useless, as long as an adequate Dijkstra’s algorithm is

implemented.
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Algorithm 1: Determination of the KKK shortest SRLG

diverse simple path pairs

Data: Network directed graph G = (N,A) and a source

destination node pair (s,t), and c cost of the links

Result: S, the set of the K shortest SRLG diverse simple

path pairs from s to t

if the infeasibility test is successfully then Stop end1

Remove from A arcs emerging form s or incident in t,2

which can not be SRLG protected. Remove from A all

arcs with tail node t

T
∗
t′
← tree of the shortest paths from i ∈ N′ to t ′ using c3

p← T
∗
t′
(s)4

if p is not defined then Stop end5

c̄viv j ← πv j
−πvi

+ cviv j
, ∀(vi,v j) ∈ A′6

Represent A′ in the sorted forward star form concerning c̄7

// Consider: p = (s≡ v1,v2, ...,vy−1,vy ≡ t), (s,v2)
can be SRLG protected

dp← s // Deviation node of p8

X ←{p}9

S = /010

while X 6= /0∧|S|< K do11

p← path in X such that c̄(p) is minimum12

if (p is simple) ∧ Disjoint(p) ∧ SRLGDiverse(p)13

then

S← S∪{p}14

end15

X ← X\{p}16

i←min index such that vi = dp17

break ← false // Candidate paths might be18

derived from p

repeat19

l← index such that al = (vi,vi+1)20

repeat21

l← l + 122

v j ← head node of al // if l > m+ 1 then23

v j← 0

if (vi is the tail node of al)∧24

EquivalentPair(subp(s,vi)⋄ al ⋄T
∗
t′
(v j))

then

break ← true // No candidate paths25

will derive from p at vi

end26

until break ∨(vi is not the tail node of al)∨ [(al27

does not form a loop with subp(s,vi))∧
SRLGDiverse(subp(s,vi)⋄ al) ∧
Disjoint(subp(s,vi)⋄ al)]
if (¬ break )∧ (vi is the tail node of al) then28

q← subp(s,vi)⋄ al ⋄T
∗
t′
(v j); dq← vi29

X ← X ∪{q}30

end31

vi← vi+1 // Next node of p32

until (vi = t ′) ∨ ¬(subp(s,vi) is simple) ∨33

¬ Disjoint(subp(s,vi)) ∨
¬ SRLGDiverse(subp(s,vi))

end34

and that the first arc in q is a f (where a f = ah if the de-

viation node is s). Paths will only be placed in the set of

candidate paths if:

• the deviation node, dp, belongs to N and the path

subp(s,dp)⋄ ah is simple;

• the deviation node, dp, belongs to N′\N:

– the path subp(s
′,dp)⋄ ah is simple;

– c(subp(s,t)) ≥ c(subp(s
′,t ′)) (or c(q) ≥ c(q′));

note that c(q′) = c(subp(s
′
,dp) ⋄ ah), and that

c(q′) = c(p)− c(q);

– the paths subp(s,t) and subp(s
′,dp) ⋄ (ah) are

node-disjoint;

– ah is SRLG diverse with subp(s,t).

In Algorithm 1 we chose to remove from the network graph

arcs which are not useful for obtaining SRLG diverse path

pairs. This is not strictly necessary, but improves the algo-

rithm efficiency.

Note that in set X all paths are simple, disjoint and SRLG

diverse up to and including the deviation arc. Due to

this fact we have replaced all the interior while cycles of

Algorithm 1 [12] with repeat until cycles.

Function Disjoint(p), p = q ⋄ (t,s′) ⋄ q′, returns true if q

and q′ are node disjoint. Function SRLGDiverse(p) returns

true if q and q′ are SRLG diverse. At Steps 27 and 33

the value of functions Disjoint() and SRLGDiverse() is

true whenever vi belongs to N. This implies that the eval-

uation of disjointness or SRLG diverseness is only effec-

tively required at Steps 27 and 33 of the algorithm when

the deviation node belongs to N′\N. Also note that for the

calculation of SRLGDiverse(subp(s,vi)⋄al), in Step 27, it

is sufficient to evaluate if subp(s,vi) is SRLG diverse with

arc al .

Function EquivalentPair() was first introduced in [12], for

including Remark 2 in Algorithm 1. Due to Remark 2 in

[12] we may choose to store paths pairs that c̄[subp(s,t)]≤
c̄[subp(s

′
,t ′)] or c̄[subp(s,t)] ≥ c̄[subp(s

′
,t ′)]. If we choose

to store in X paths q such that c̄[subq(s,t)]≥ c̄[subq(s
′,t ′)],

then function EquivalentPair() will only be required when

vi belongs to N′\N – that is Step 24 could be rewritten:

(vi ∈ N′\N)∧ (vi is the tail node of al)∧
EquivalentPair(subp(s,vi)⋄ al ⋄T

∗
t′
(head node of al)).

Function EquivalentPair(p) returns true whenever

c̄[subp(s,t)] < c̄[subp(s
′,t ′)]. Consider that vi belongs to

N′\N and let q = subp(s,vi) ⋄ al ⋄ T
∗
t′
(head node of al),

in Step 24. In this case subp(s,t) = subq(s,t), therefore

the execution of EquivalentPair() can be simply the

evaluation of c̄[subp(s,t)]
︸ ︷︷ ︸

c̄[subq(s,t)]

< c̄(q)− c̄[subp(s,t)]
︸ ︷︷ ︸

c̄[subq(s
′
,t ′)]

.

The proposed algorithm requires a directed network graph.

For obtaining SRLG diverse path pairs in an undirected

network, we must build the equivalent directed graph: each
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undirected link is represented by two directed arcs, in oppo-

site directions,with the same costs, belonging to the same

SRLGs as the corresponding undirected link.

3.3. Link Disjoint SRLG Diverse Path Pairs

If the path pair does not need to be node disjoint, then the

only modification required in Algorithm 1 is the suppres-

sion of the function Disjoint(), assuming each undirected

link belongs to at least one SRLG.

3.4. SRLG Diverse Path Pairs With Length Constraints

Let p = q ⋄ (t,s′) ⋄ q′, represent a path pair (q,q′). If the

path pairs have length restrictions (maximum number of

allowed arcs), then two new conditions must be evaluated:

the depth of the deviation node i∈ q and j′ ∈ q′ must be less

than the length constraint (assuming node s has depth 0).

4. Computational Results

Two sets of experiments were made. The first set used:

• Randomly generated undirected networks with n =
25,50,100,200,400 and m = 3n,4n (where n is the

number of nodes and m is the number of undirected

arcs).

• The cost of each link was randomly generated in

[1..65535].

• Each undirected arc was associated with a single

SRLG.

• For each value of n and m ten randomly generated

networks were considered.

• For each network 50 end-to-end node pairs, where

selected and K = 1000 diverse path pairs were sought.

The second set of experiments considered:

• Randomly generated undirected networks with n =
100,1000 and m = 3n,4n (where n is the number of

nodes and m is the number of undirected arcs).

• The cost of each link was randomly generated in

[1..65535].

• Each undirected arc was associated with a single

SRLG.

• For each value of n and m ten randomly generated

networks were considered.

• For each network 50 end-to-end node pairs, where

selected and K = 5000 diverse path pairs were sought.

The computer used was a PC, Intel(R) Core(TM) 2 Duo

Processor, 1.82 GHz, RAM 1 GB, under Kubuntu. The

maximum number of allowed paths was 107.

Observing the average central processing unit (CPU) time

per node pair, for obtaining K = 1000 path pairs, presented

in Figs. 1 and 2, it may be concluded that it is more efficient

for obtaining node disjoint than arc disjoint path pairs, as

expected.

Fig. 1. CPU times for obtaining K = 1000 arc disjoint and SRLG

diverse path pairs.

Fig. 2. CPU times for obtaining K = 1000 node disjoint and

SRLG diverse path pairs.

Fig. 3. CPU times for obtaining K = 5000 arc disjoint and SRLG

diverse path pairs.
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That statement is still true if K = 500 is used, as can be

seen in Figs. 3 and 4. It should be noted that with n = 100

when K goes from 1000 to 5000, the CPU time grows

proximately linearly with K. Also the CPU time with n =
1000, in Figs. 3 and 4, is less than 10 times the CPU time

when n = 100.

Fig. 4. CPU times for obtaining K = 5000 node disjoint and

SRLG diverse path pairs.

The interval bars in the figures indicate the 95% confidence

interval for the average CPU time.

The CPU time grows with the number of nodes, for the

networks with the same average degree, and also tends

to increase with the average node degree, for networks

with the same number of nodes. In the cases where that

does not happen, it was due to some(s) node pair(s) with

a CPU quite above the average CPU time in one (or two)

of the ten networks. The average CPU times presented in

Figs. 1–4 were obtained for the node pairs for which the

desired K (1000 or 5000) were obtained.

The CPU time is closely related to the total number of

candidate paths that were generated and added to set X in

the algorithm, as it can be seen in Figs. 5–8.

In some cases there is no solution (and in most cases

this was discovered very fast due to the infeasibility test)

Fig. 5. Number of candidate path pairs added to X for obtaining

K = 1000 arc disjoint and SRLG diverse path pairs.

or the maximum allowed number (107) of candidate path

pairs was generated without obtaining the desired number

K of SRLG disjoint path pairs – in this last case it is un-

certain whether any more disjoint path pairs might have

been obtained if the maximum allowed number of candi-

date paths was higher. In the experiments, we tried to ob-

tain K = 1000 SRLG node disjoint path pairs for 5000 node

pairs (5 different values of n, two different average node de-

grees, 10 different seeds for network generation and 50 node

pairs per network) and failed to do it in 22 cases due to

the fact that the maximum number of candidate paths was

attained. This corresponds to a success rate of 99.56%.

The results for arc and SRLG disjoint path pairs was sim-

ilar: 99.54%. When K = 1000 the unsuccessful node pairs

occurred only for n = 200 and n = 400 and the CPU times

is approximately 2 minutes and 4 minutes, for the node and

arc disjoint path pairs, respectively.

Fig. 6. Number of candidate path pairs added to X for obtaining

K = 1000 node disjoint and SRLG diverse path pairs.

Fig. 7. Number of candidate path pairs added to X for obtaining

K = 5000 arc disjoint and SRLG diverse path pairs.

When K = 5000 the rate of unsuccessful node pairs grows

to 7.4% for n = 1000 but the CPU time remains similar

to what was observed, for the unsuccessful cases when

K = 1000.
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Fig. 8. Number of candidate path pairs added to X for obtaining

K = 5000 node disjoint and SRLG diverse path pairs.

Note that in the case n = 25,50,100,200,400 the algorithm

was able to detect that no solution could be found for thir-

teen node pairs in zero seconds. However, for n = 1000

there were two node pairs for which no solution was found

even after generating 107 candidate path pairs, as it can be

seen in Tables 1 and 2, in the line with “k = 0 (?)”.

Table 1

Arc disjoint and SRLG diverse path pairs, for m = 3n,4n:

total number of node pairs and average CPU times

when K = 5000 was not obtained

Arc disjoint m = 3n m = 4n

n 100 1000 100 1000

0 < k < 5000 3 34 2 31

CPU(s) 212 244 222 232

k = 0 (?) – 1 – –

CPU(s) – 277 – –

Table 2

Node disjoint and SRLG diverse path pairs,

for m = 3n,4n: total number of node pairs and average

CPU times when K = 5000 was not obtained

Node disjoint m = 3n m = 4n

n 100 1000 100 1000

0 < k < 5000 4 36 1 29

CPU(s) 125 139 125 132

k = 0 (?) – 1 – –

CPU(s) – 155 – –

The results show that the algorithm solves exactly the prob-

lem of obtaining K path pairs, node disjoint (arc disjoint)

and SRLG diverse in most cases. When the algorithm gen-

erates, k, 0 ≤ k < K paths (due to the allowed maximum

number of generated paths), this can be CPU time consum-

ing. Therefore, in order to avoid the high CPU time, some-

times required by the algorithm, a CPU time limit should be

imposed for obtaining the desired number of solutions (K),

so that it can be used as a subroutine in a multicriteria

approach to reliable routing taking into account SRLGs.

5. Conclusion

The multi-layer nature of telecommunication networks,

makes it more difficult to implement recovery mechanisms

to ensure routing resiliency. The introduction of the con-

cept of SRLGs allows an upper layer to select, for a given

active path, a backup path, which avoids every SRLG that

may involve the selected AP in the event of afailure. A for-

mulation of the SRLG diverse path pair calculation prob-

lem, in a directed network was put forward. An exact algo-

rithm for enumerating SRLG diverse paths in (un)directed

networks, by non-decreasing cost of their total (additive)

cost was proposed. The considered SRLG diverse path

pairs may be node or arc disjoint, with or without length

constraints.

Computational results displayed the efficiency of the pro-

posed algorithm for obtaining node or arc disjoint SRLG

diverse path pairs in undirected networks. The experimental

results show the algorithm solves the problem of enumer-

ating K = 1000 disjoint paths pairs in most cases, using

less than one second for the smaller networks. However,

when the desired value for K can not be attained, the CPU

time can grow significantly. Considering that this algorithm

can be used as a subroutine in a multicriteria approach to

resilient routing, taking into account SRLGs, we would ad-

vise a lower number of allowed maximum candidate paths

or a limit of CPU time per node pair.
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