
Paper

Query Optimization

in Teradata Warehouse

Agnieszka Gosk

Abstract—The time necessary for data processing is be-

coming shorter and shorter nowadays. This thesis presents

a definition of the active data warehousing (ADW) paradigm.

One of the data warehouses which is consistent with this

paradigm is teradata warehouse. Therefore, the basic ele-

ments of the teradata architecture are described, such as

processors parsing engine (PE) and access module proces-

sor (AMP). Emphasis was put on the analysis of query op-

timization methods. There is presented the impact of a pri-

mary index on the time of query execution. Furthermore,

this paper shows different methods of optimization of data se-

lection, data joins and data aggregation. All these methods

can help to minimize the time for data processing. This pa-

per presents experiments which show the usage of different

methods of query optimization. At the end some conclusions

about different index usage are included.

Keywords—active data warehouse, query optimization, tera-

data.

1. Introduction

The time of data processing is important nowadays. There

are popular solutions which improve this time, for example,

OLAP systems, streaming databases. There is also a new

solution – active data warehousing (ADW), which is not

used as often as the systems mentioned before.

The ADW paradigm is related to data warehouse, which

is updated as fast as possible. ADW allows minimization

of the time between events and decisions which are made

in connection with this event. Therefore, such decisions

are much more valuable. The primary objectives of ADW

are to decrease the time of decision-making, as well as to

enhance the reliability of these decisions [1].

The reliability of decisions can be increased thanks to bas-

ing them on current data. Therefore, in data warehouse

which is consistent with the ADW paradigm, data should

be updated as fast as possible [2]. At the moment of ap-

pearance of any event (modification of the data in a source

system) the data warehouse should be updated. It is possi-

ble by introducing a mechanism of triggers, which after the

appearance of an event that is meeting certain conditions,

update the data warehouse [3].

A rapid response to a query is possible through optimization

of queries. The overview of selected query optimization

methods is the objective of this document.

2. Theoretical background

2.1. Teradata Architecture

The teradata architecture is very specific. It is presented

in Fig. 1 [4].

Fig. 1. The architecture of teradata warehouse.

The BYNET is a high-speed network element. It is used

to transfer data between parsing engine (PE) and access

module processor (AMP).

The PE is a virtual processor. It is responsible for commu-

nication between client application and the database (re-

ceives a request from the client applications and returns

response rows to the requesting client). When PE receives

a query, it checks the session parameters (manages session)

and divides the query into steps. Then it controls the step

execution that is performed by the AMPs. The PE has a few

elements, which are described below.

The parser checks if a query, which was sent by a client

application, is written correctly. It checks its syntax and

whether the user has appropriate rights to all objects, which

were used in that query. The optimizer chooses the best

method of query execution. For example it can choose

a sequence of table joins. The best method of the query

execution is presented as a tree and is sent to the generator.

The generator converts the tree, which was sent by the op-

timizer, into steps and sends all the steps to the dispatcher.

The dispatcher sends steps of the query to the appropri-

ate AMPs. Then it controls the execution of all the steps

and the sequence in which they are executed. Some steps

can be executed parallelly, but there are steps that can be

executed only after finishing other steps.

The AMP is a virtual processor. It controls a specific disk

subsystem – virtual disk. The AMP manages its own disk

subsystem and sets the response rows on the basis of its

own disk subsystem. It can execute aggregation, sorting,

57



Agnieszka Gosk

joins. All data transformations are executed according to

the steps, which were sent by the PE.

The disk storage unit (DSU) is a physical disk subsystem –

virtual disk. It is managed by one and only one AMP [4].

In teradata warehouse there are several types of indexes:

– primary index,

– secondary index,

– join index,

– hash index.

It is important to build indexes, because they can dramati-

cally improve the time of data processing. The description

of each type of indexes is given below.

2.1.1. Primary Index

It is the most important index, because it has to be in each

table. When a primary index is created, the database does

not build any additional table, which can store values of

that index. If a primary index is not created on a table,

then the database creates it. On the basis of values of

the column set that define the index, the hash value of

each row is calculated. This value determines on which

AMP the mentioned row is going to be kept. Therefore,

when a search for data with a specific index value is per-

formed, the database hashes this value. On the basis of this

hash value the database knows on which AMP appropriate

data is stored. Only one AMP software is searching for

the requested data. So the entire table does not have to be

scanned.

There are two types of primary indexes:

– unique primary index (UPI),

– nonunique primary index (NUPI).

In a table with a unique primary index each value of pri-

mary index has to be unique [4].

2.1.2. Secondary Index

Secondary indexes are not required. They do not affect the

data distribution. Like a primary index, a secondary index

can be:

– unique,

– nonunique.

A secondary index can improve the time of query execu-

tion, when a table with a defined secondary index value

is searched. Additionally, a unique secondary index forces

uniqueness of the index values.

When a secondary index is built on a base table, a subtable

is created. This subtable stores secondary index values,

secondary index hash values and hash values of the primary

index of each row. Therefore, when a search for data with

a defined secondary index value is preformed, the database

hashes this value. The AMP, which was indicated by the

secondary index hash value, searches for the appropriate

row in the subtable. In this row there is the hash value of

the primary index. This last hash value indicates the AMP

which stores the requested row from the base table. Finally,

the indicated AMP searches for the requested row [4].

2.1.3. Join Index

A join index can be defined in one or more tables. When

the join index is built on a base table/tables, a subtable is

created. In this subtable there is a copy of some data from

the base table/tables or a subset of base table columns.

A query can be executed accessing the index (subtable)

instead of joining and accessing the base tables. Generally,

join indexes can improve the time of data processing [4].

2.1.4. Hash Index

A hash index can be compared with a join index and a sec-

ondary index. Like the join index defined on one table, the

hash index can redistribute rows from the base table across

the AMPs. Like a secondary index each row of the hash

index has a pointer to an appropriate row from the base

table [4].

Summarizing, it is known that the primary indexes influ-

ence data distribution. Therefore, they can improve the time

of all operations. The time of data selections can be im-

proved by primary index, secondary index or hash index.

The data joins can be executed faster thanks to primary in-

dexes, secondary indexes, hash indexes or join indexes. The

join indexes also improve the time of data aggregations.

But it is not known how strong various types of indexes

can improve the time of different operations. It is difficult

to say how much disk storage various indexes can occupy

or how many costs they cause. In the next part of this

paper some experiments are presented, which give some

answers.

3. Experiments

Experiments were performed on the same server, with the

following parameters:

• Dual Core AMD Opteron

Processor 880

2,39 GHz

• 2,00 GB RAM

The Microsoft Windows Server 2003 Standard Edition sys-

tem was installed on the server.

Experiments were executed on the Teradata Warehouse

8.1Demo. In this version of the teradata system there are

only 2 AMP processors and 1 PE processor available. In

the DEMO version BYNET element does not exist and disk

space is limited to 4 GB.

58



Query Optimization in Teradata Warehouse

Two tables were prepared and used to carry out tests.

A definition of these tables is presented below.

CREATE TABLE CLIENTS (

client id INTEGER NOT NULL,

name VARCHAR(20),

surname VARCHAR(20),

street VARCHAR(20),

home no VARCHAR(8),

city VARCHAR(20),

tariff plan VARCHAR(15),

status CHAR(1),

phone type VARCHAR(18),

phone number INTEGER,

activation date DATE);

CREATE TABLE CLIENT CONNECTIONS(

client id INTEGER NOT NULL,

connection type VARCHAR(1),

connection direction VARCHAR(2),

count INTEGER,

volume INTEGER);

The CLIENTS table stores basic data about clients, who

are active. The CLIENT CONNECTIONS table stores data

about connections, which were performed by active clients.

In the experiments described, various primary indexes and

added indexes are defined in the tables. These indexes are

presented in experiment descriptions.

For each table four sets of data were prepared. In each

set there was a different number of clients and a different

number of rows. Tables 1 and 2 present information about

the CLIENTS and CLIENT CONNECTIONS tables.

Table 1

The CLIENTS table statistics

Data set
Number Number

Size[B]
of clients of rows

A 500 000 500 000 43 822 080

B 1 000 000 1 000 000 86 585 344

C 1 500 000 1 500 000 129 408 512

D 2 000 000 2 000 000 172 274 688

Table 2

The CLIENT CONNECTIONS table statistics

Data set
Number Number

Size[B]
of clients of rows

A 500 000 2 141 184 77 952 000

B 1 000 000 4 282 709 155 574 784

C 1 500 000 6 425 485 232 721 920

D 2 000 000 8 567 631 310 469 632

The problem of query optimization is not new. There are

many papers concerning this. Many of the optimization

methods show how to write a query. Disappointingly, in ter-

adata warehouse these methods are not effective. But there

are methods of query optimization, which rely on index

usage. These methods can be used in teradata warehouse.

In this paper these methods are presented.

3.1. Influence of Data Distribution on Query Execution

Time

As it was said, a primary index is the most important index

which influences data distribution. In this section exper-

iments which show how data distribution determines the

time of the execution of various types of queries, are pre-

sented.

Experiment 1

Firstly, there was checked the primary index affected on the

time of selection of all rows from the CLIENTS table. In

this experiment a following query was executed:

SELECT *

FROM CLIENTS;

The skew factor shows how equally data is distributed

across the AMP processors. The bigger this factor value is,

the more unequally data is distributed. During this ex-

periment the primary index of the CLIENTS table was

changed, so the skew factor of the CLIENTS table changed.

In Fig. 2, there are line graphs which show the query ex-

ecution time in seconds as a function of data set size for

different values of the skew factor.

Fig. 2. Influence of the primary index on the time of data selec-

tion.

In the figure it is shown that the query execution time in-

creases with growing number of rows. For the same set of

data, the query execution time is slower for the CLIENTS

table with bigger skew factor values (about 25% for data

set D). Therefore, it must be remembered that unequal data

59



Agnieszka Gosk

distribution influences the time of data selection signifi-

cantly.

Experiment 2

This experiment checks how data distribution influences

the time of data join. For this test a following query,

which chooses number of different connections from

CLIENT CONNECTIONS table for active clients from

CLIENTS table, was selected:

SELECT C.client id, CC.connection type,

CC.connection direction, CC.count

FROM CLIENTS C,

CLIENT CONNECTIONS CC

C.client id = CC.client id;

This query was performed on various sets of data. In the

CLIENTS and CLIENT CONNECTIONS tables there were

different primary indexes (they were created on different

columns sets). Once the skew factor for the CLIENTS ta-

ble was 0 and once 38. Results are shown in Fig. 3, there

Fig. 3. Influence of the primary index on the time of data joins.

are line graphs which show the query execution time in

seconds as a function of data set size for different indexes

available in the database. The line graphs are marked ac-

cording to description:

• The same indexes. In the CLIENTS and

CLIENT CONNECTIONS tables there were

the same primary indexes. They were defined on the

client id column.

• CLIENTS SF 0. In the CLIENTS and

CLIENT CONNECTIONS tables there were various

primary indexes. The skew factor of the CLIENTS

and CLIENT CONNECTIONS tables was 0.

• CLIENTS SF 38. In the CLIENTS and

CLIENT CONNECTIONS tables there were dif-

ferent primary indexes. The skew factor of the

CLIENTS table was 38, and the skew factor of the

CLIENT CONNECTIONS table was 0.

It can be seen, that the time of data join depends on a value

of the skew factor. When only one table has a high value

of the skew factor the time of query execution is get-

ting worse. In the case when skew factor of CLIENTS

table is 38, the time of data processing is even 2 times

greater than in the case when skew factor of CLIENTS

table is 0. The time of data joins is the best when the

tables, which are joined, have the same primary indexes.

3.2. Different Methods of data Selection Optimization

Experiment 3

This experiment examines how indexes can influence the

selection of one row from a table.

For the needs of this experiment a following query, which

chooses one row from the CLIENTS table, was prepared:

SELECT *

FROM CLIENTS

WHERE phone number = 300001019;

During this experiment indexes, which were created in

the phone number column of the CLIENTS table, were

changed. Figure 4 presents the experiment results – the

query execution time in seconds as a function of data set

Fig. 4. Influence of various indexes on the time of data selection.

size in a form of different line graphs. These experiments

were performed when different indexes were available. The

description of graphs is presented below:

• UPI – a unique primary index of the CLIENTS table

is defined on the phone number column,

• NONE – a primary index of the CLIENTS table is de-

fined on the client id column, on the phone number

column there is no index,

• USI – a unique secondary index of the CLIENTS

table is defined on the phone number column, the

CLIENTS.client id column – is the primary index,

60



Query Optimization in Teradata Warehouse

• Hash – a hash index of the CLIENTS table is defined

on the phone number column.

The worst results are received when there is no index on

the phone number column. The best results are received

when the primary index is created on the phone number

column. When database uses USI or hash index the re-

sults are similar to results when the database uses UPI.

In Fig. 4 it can be seen that whatever any index is used:

hash, secondary or primary, the time of selection of one

row from the table is not dependant on the number of rows

in this table.

It must be remembered that USI and hash indexes cause

additional costs, they increase the time of table updating

and they use additional storage space. In Table 3 there is

presented the time of 2 000 000 rows insertion and dele-

tion from the CLIENTS table when additional indexes are

available in the database.

Table 3

The time of 2 000 000 rows insertion and deletion

from the CLIENTS table (data set D), when additional

indexes are available in the database

Operation NONE USI Hash index

Insert [s] 1 9 603

Delete [s] 1 1 238

Secondary and hash indexes on the

CLIENTS.phone number column require additional

storage space (for data set D) - 68 MB and 84 MB. There-

fore, it is better to create the secondary index, because it

influences the time of data insertion and deletion from the

CLIENTS table less than the hash index and it occupies

less disk space than the hash index.

Experiment 4

The next experiment checks how different indexes influence

the selection of many rows from one table.

To carry out this test, a following query, which chooses

clients from the CLIENTS table who use PT 1 tariff plan,

was prepared:

SELECT *

FROM CLIENTS

WHERE tariff plan = ’PT 1’;

During this experiment the number of available tariff

plans was changed. A different number of clients used

plan ‘PT 1’, therefore, the query which is presented above,

returns a different number of rows. The results of this ex-

periment are presented in Fig. 5, there are line graphs which

show the query execution time in seconds as a function of

number of rows, which are returned, for different indexes

available in the database. The line graphs are described as

it is presented below:

• NONE – a primary index of the CLIENTS table is

defined on the client id column, on the tariff plan

column there is no index.

• NUPI – a nonunique primary index of the CLIENTS

table is defined on the tariff plan column.

• NUSI – a unique primary index of the CLIENTS

table is defined on the client id column and

a nonunique secondary index of this table is defined

on the tariff plan column

It can be seen that the best results are received when in the

CLIENTS.tariff plan column the nonunique primary index

is created. The worst results are received when in the same

column there is no index.

Fig. 5. Influence of different indexes on the time of selection of

many rows from the table.

An interesting line graph is received when on the

CLIENTS.tariff plan column a nonunique secondary index

is created. When a query returns 3500 records or less the

time of query processing is quite good, but when a query

returns more than 3500 records, the results are the same as

in the case when on the CLIENTS.tariff plan column there

is no index. It is so because when a query returns more

than 3500 records it is more efficient to retrieve rows from

the base table than from the secondary index. When com-

mand EXPLAIN is used to check how a query is executed,

two different explanation are returned. One, in the case

when a query returns 3500 records or less, the other when

a query returns more than 3500 records.

NUSI occupies about 20 MB of disk space and it influences

the time of data insertion and deletion from the CLIENTS

table slightly. Therefore, when a primary index cannot be

created on a column set, which is used for data selection,

it can be replaced by a secondary index.

61



Agnieszka Gosk

3.3. Different Methods of Optimization of Data Joins

This section presents how different type of indexes can in-

fluence the time of data join. It is checked by the experi-

ment which is presented bellow.

Experiment 5

To execute this experiment the following query was pre-

pared, which calculates the number of types of connection

directions for voice connections for active clients who have

PT 1 tariff plan:

SELECT C.client id,

COUNT(DISTINCT CC.connection direction)

FROM CLIENTS C,

CLIENT CONNECTIONS CC

GROUP BY C.client id

WHERE C.client id = CC.client id

AND CC.connection type = ’V’

AND C.tariff plan = ’PT 1’;

The query which was presented above, was executed us-

ing different types of indexes. The results are presented

Fig. 6. Influence of different indexes on the time of data join.

in Fig. 6, where the line graphs show the index influence

on the time of data join according to description:

• JI CC 1 – a join index JI CC 1 is defined on the

CLINET CONNECTIONS table;

• JI C CC 1 – a join index JI C CC 1 is defined on the

CLIENTS and CLIENT CONNECTIONS tables;

• HI CC 1 – a hash index HI CC 1 is defined on the

client id column of the CLIENTS CONNECTIONS

table;

• THE SAME PI – In the CLIENTS and

CLIENT CONNECTIONS tables there are the

same primary indexes (on the client id column).

Definition of join indexes JI CC 1 and JI C CC 1 is

presented below.

CREATE JOIN INDEX JI CC 1 AS

SELECT *

FROM CLIENT CONNECTIONS

PRIMARY INDEX(client id);

CREATE JOIN INDEX JI C CC 1 AS

SELECT C.client id, CC.connection direction

FROM CLIENTS C,

CLIENT CONNECTIONS CC

WHERE C.client id = CC.client id

AND CC.connection type = ’V’

AND C.tariff plan = ’PT 1’

PRIMARY INDEX(client id);

When the JI CC 1 join index, the hash index or

the same primary indexes on the CLIENTS and

CLIENT CONNECTIONS tables are used, the time of

query processing is similar. In each case data in the

JI CC 1, HI CC 1 and the CLIENT CONNECTIONS ta-

ble is distributed by the client id column. When the

query is executed, data is read directly from the JI CC 1,

HI CC 1 or the CLIENT CONNECTIONS table in the dif-

ferent cases and it is joined with the CLIENTS table in each

case. In joined tables data is distributed by the same key,

therefore, data is joined in AMPs.

When on the CLIENTS and CLIENT CONNECTIONS ta-

bles there are different indexes, the time of query processing

is 20 minutes for data set D. It is so because data has to be

redistributed across AMPs during join.

The best query execution time is received when join index

is defined on the CLIENTS and CLIENT CONNECTIONS

tables (JI C CC 1). In this case the two tables do not have

to be joined, data can be read directly from JI C CC 1.

But indexes like JI C CC 1 do not have as wide usage as

indexes like JI CC 1.

It must be remembered that the JI C CC 1 index influences

the time of data insertion and deletion from the CLIENTS

and CLIENTS CONNECTIONS tables. Indexes JI CC 1

and HI CC 1 influence the time of data insertion and dele-

tion only from the CLIENTS table. When in the database

the JI C CC 1 index is defined, the time of 8 567 631

rows insertion into the CLIENT CONNECTIONS table is

about 3 minutes, when in the database index JI CC 1 or

HI CC 1 is defined this time is about 20 minutes. It is so

because the time of data insertion or deletion from the table

is dependent on the number of rows from this table, which

are inserted into the index, which is defined on this table.

Therefore, the more rows in the index, the longer time of

data insertion and deletion from the table.

The size of indexes JI C CC 1, JI CC 1 and HI CC 1 is

308MB, 690KB and 119 MB. It could be critical when

database storage is limited.

62



Query Optimization in Teradata Warehouse

3.4. Different Methods of Data Aggregation Optimization

This section presents a method of data aggregation

optimization. The experiment performed is presented

below.

Experiment 6

To show how different indexes influence the time of data

aggregation, a query was prepared, which summarizes the

number of connections and volume of these connections

for clients from the CLIENT CONNECTIONS table:

SELECT client id,

SUM(count) as count,

SUM(volume) as volume

FROM CLIENT CONNECTIONS CC

GROUP BY client id, ;

The query was executed when various indexes were avail-

able in the database. The results are presented in Fig. 7 and

particular line graphs show the time of query processing in

Fig. 7. Influence of different indexes on the time of data aggre-

gation

seconds as a function of data set size, when different in-

dexes are available:

• NONE – in the CLIENT CONNECTIONS table

there is a primary index defined on the column set:

client id, connection type, connection direction;

• AI CC 1 – in the database there is available the

AI CC 1 index;

• AI CC 2 – in the database there is available the

AI CC 2 index;

• PI – in the CLIENT CONNECTIONS table there is

a primary index defined on the client id column.

A definition of AI CC 1 and AI CC 2 indexes is presented

below:

CREATE JOIN INDEX AI CC 1 AS

SELECT client id, connection type,

SUM(count), SUM(volume)

FROM CLIENT CONNECTIONS

GROUP BY client id, connection type;

CREATE JOIN INDEX AI CC 2 AS

SELECT client id, SUM(count), SUM(volume)

FROM CLIENT CONNECTIONS

GROUP BY client id;

When in the database there are not available any join in-

dexes, the time of query processing is not good. It can be

improved when a join index is created or when the primary

index is changed. When the primary index is created on

the same column as the column which groups data in the

query, which is presented above, the time of query execu-

tion is quite short. The reason for this behavior is because

data aggregation is performed in AMPs.

When in the database the AI CC 2 index is available, the

time of query processing is promising. It is because data

is read directly from the index, and it does not need to

be aggregated. While in the database there is available the

AI CC 1 index, the time of query processing is worse. Data

is read directly from the index, but it has to be additionally

aggregated. However the AI CC 2 index has wider usage

than the AI CC 1 index. The AI CC 1 can be additionally

used to query which groups data by client id and connec-

tion type. The AI CC 1 index occupies more disk storage

than the AI CC 2 index.

4. Conclusions

As it was said the primary index is the most important

index. It has influence on the time processing of all oper-

ations. The time of data join is shorter when joined tables

have the same primary indexes. The time of data aggrega-

tion is shorter when a table has the same primary index as

the grouping column in a query. However, as the experi-

ments have shown, when the primary index is chosen, the

most important is the skew factor value of the table. The

smaller it is, the better the processing time of all operations

is. Furthermore, the primary index should be adapted to

executed joins and aggregation.

When there is need to optimize time of data selection on

the basis of column set, we can choose the primary index

on this column set, a secondary index or a hash index.

However, the secondary index and the hash index increase

the time of insertion and deletion of data from a table. Most

often the hash index has a bigger maintenance cost than

the secondary index.

63



Agnieszka Gosk

During the data join, there can be used: a join index, a hash

index or the primary index can be changed. Different in-

dexes cause different additional costs. Most frequently, the

hash index causes lower costs than the join index. Data

aggregation can be optimized by the join index or the pri-

mary index. The join index which has aggregated data can

help to avoid aggregation during query execution.

The above-mentioned conclusions were drawn on the basis

of experiments, which were presented in the previous sec-

tions. However, in different conditions costs caused by in-

dexes can change. Therefore, it should be remembered that

when indexes are chosen, it is most important to calculate

additional costs caused by this indexes. It must be known

what is more important the processing time improvement

or the database space size. Then the best indexes can be

chosen.

References

[1] S. Brobst and J. Rarey, “The five stages of an Active Data Ware-

house evolution”, Teradata Magazine Online, 2001 [Online]. Avail-

able: http://www.ncr.com/online periodicals/brobst.pdf

[2] M. Gonzales, “Getting Active”, DB2 Mag., iss. 1, Q1, 2005 [Online].

Available: http://www.dbmag.intelligententerprise.com/story/

showArticle.jhtml?articleID=59300861

[3] E. Kanana and M. Farhi, “Enhancing data preparation processes

using triggers for active datawarehousing”, in Proc. Int. Conf. Data

Mining, Las Vegas, USA, 2006, pp. 153–160.

[4] Teradata Documentation, Database Design, pp. 335–561, Introduc-

tion to Teradata. NCR Corporation, 2005.

Agnieszka Gosk received the

M.Sc. degree in computer sci-

ence from the Warsaw Uni-

versity of Technology (WUT),

Poland, in 2009. She had been

employed by the National In-

stitute of Telecommunication in

Warsaw till 2009. She is cur-

rently working in the area of

data warehousing for a telecom-

munication operator. Her scien-

tific interests include: data mining, modeling and decision

support.

e-mail: agnieszkagosk@gmail.com

64


