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Abstract—Various methods of dealing with linear support vec-

tor machine (SVM) problems with a large number of examples

are presented and compared. The author believes that some

interesting conclusions from this critical analysis applies to

many new optimization problems and indicates in which di-

rection the science of optimization will branch in the future.

This direction is driven by the automatic collection of large

data to be analyzed, and is most visible in telecommunica-

tions. A stream SVM approach is proposed, in which the data

substantially exceeds the available fast random access memory

(RAM) due to a large number of examples. Formally, the use

of RAM is constant in the number of examples (though usu-

ally it depends on the dimensionality of the examples space). It

builds an inexact polynomial model of the problem. Another

author’s approach is exact. It also uses a constant amount of

RAM but also auxiliary disk files, that can be long but are

smartly accessed. This approach bases on the cutting plane

method, similarly as Joachims’ method (which, however, relies

on early finishing the optimization).

Keywords—concept drift, convex optimization, data mining, net-

work failure detection, stream processing, support vector ma-

chines.

1. Introduction

The application of optimization methods in data analysis,

especially in telecommunications, yields optimization prob-

lems with a very specific structure. To the author’s opin-

ion, this specificity will have to make deep changes in the

optimization science itself, by forcing the algorithm de-

signers to work with unusual circumstances and require-

ments.

We shall exemplify this claim with the case of linear clas-

sification of points in R
N , each preassigned to one of two

classes: A or B. We shall deal with the optimization prob-

lem encoding the linear classification task, called support

vector machine (SVM) problem. This problem will be pre-

cisely formulated later. Now it suffices to say that the prob-

lem of linear classification consists in finding a hyperplane

in R
N that properly (or as properly as possible) separates

these points into the classes.

Looking at the SVM problems that are nowadays analyzed,

we notice that many of them are obtained automatically.

This is very common to the telecommunication applica-

tions. For a very simplified example, each “point” can

represent a state of a telecommunication network measured

with the simple network management protocol (SNMP),

with coordinate values representing, e.g., the traffic in par-

ticular arcs of the network, particular elements of the con-

nection matrix, error parameters, etc. The two classification

classes could be the proper state of the network or a failure,

and the classification hyperplane, for some training points,

pre-assigned to these classes by a teacher, could be further

used in automatic failure detection.

This example shows two specific structural properties of

the data:

1. There may be very many classification points. For

example, this will happen if the SNMP data come at

regular time intervals like tens of seconds and are col-

lected through a long period, perhaps several months.

In the resulting optimization, it will be possible that

the random access memory (RAM) exhausts with all

this data, so we may be not able to store the opti-

mization problem in RAM.

2. The data may be very dense, resulting with optimiza-

tion problems that are unusually dense for the opti-

mization standards. Usually we hope for some level

of sparsity of optimization problems claiming that the

the input data must be in some way verified by a hu-

man and that he cannot conceive too many nonzero

numbers. Now, however, the situation becomes dif-

ferent: the data is not produced by a human, like

a modeler cooperating with the optimization expert

but produced automatically. And it is not surprising

that each sample is relatively dense in our example:

the traffic volume in a particular arc of the network

is usually nonzero at any moment.

Having a large, dense optimization problem is a very

untypical case for a common imagination of a spe-

cialist at optimization.

The author believes the above two features can be also

present in many other applications in which the data is

obtained automatically at regular time bases, e.g., as the

log of the behavior of customers of telephony subscribers,

bank clients, supermarket clients, medical sensor data, etc.

Stream processing. The extreme case of dealing with long

streams of input points is the case of stream processing.

Stream processing (see [1]) is a general data-mining con-

cept, relevant to problems with data that can be aligned in

a stream of similar items, like records in a database. In

linear classification, we can have a stream of preassigned

points. The algorithm for solving a problem with such

data has the stream processing character if it uses mem-

ory constant in the stream length (number of items in the

stream). This means that the each incoming portion of the

data from the input stream has to be processed in a sense

on-line, i.e., the algorithm can, for example, update some
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partial stream statistics with this portion of data but cannot

remember all the data read so far. We can think of stream

processing like a new name for an old concept of “ideal

processing algorithm”.

Stream processing is very unusual in optimization. Al-

most all optimization algorithms assume they have random

access to particular parameters defining the optimization

problem, i.e., it difficult to predict which parameter the al-

gorithm will read in its next iteration. Also, the algorithm

can return to some parameter so far read, i.e., it can read

one parameter several times. Thus all the parameters defin-

ing the problem must be constantly accessible. If they do

not fit all together in RAM but, for example, fit in a disk

file, we still can think of building a smart oracle that com-

municates the required parameter to the algorithm, cleverly

(fast) navigating through the file: we shall show such a so-

lution. In the case of stream processing we cannot even

have a long file, and this situation requires a completely

new approach to solving the optimization problem.

Concept drift. Some methods of processing long streams

are able to take into account the phenomenon of concept

drift. To explain this phenomenon it is convenient to think

of the input stream as of infinite. The algorithm solves its

problem periodically, and each time the problem instance is

defined with the portion of the stream from the beginning

to the last portion of data read. It may happen that the in-

coming data slowly change in time because of the reality or

the phenomena described by the data also slowly change.

For example, the number of user of the computer network

we probe increases, and this changes the traffic character-

istics. This is called concept drift and the solution of our

problem, like the separating hyperplane, must also slightly

evolve in time. Thus to take into account the concept drift,

our algorithm must be first of all capable of giving peri-

odic solutions with the portions of the input data stream

“from the beginning up to now”. Moreover, we often im-

pose some gradual forgetting of older data: the older the

data is, the less it weights in the definition of the current

problem instance. Of course, a precise definition of weight-

ing would have to be written, dependent on the particular

problem being solved. Still it is reasonable to assume that

our memory is far too low to store all the “new” part of

the input data stream in.

In our critical analysis in which we use results obtained by

Joachims in [2], the author’s own result from [3] and a new

author’s concept.

2. Linear Support Vector Machine

Problem

Linear support vector machine problem [4], [5] is a cer-

tain formalization of the problem of finding a hyperplane

separating as well as possible points (training examples)

in R
N that have been preassigned to two classes A or B

each. There are many variants of the way of detailed pos-

ing this problem. We shall consider the variant with an

affine hyperplane and inexact separation.

We have n training examples a j, a j ∈ R
N for j = 1, ..,n

each either of class A or class B. We look for a separating

rule of the form

ω⊤x ≥ γ, (1)

where x ∈ R
N is a variable while ω ∈ R

N , γ ∈ R are the

classifier parameters.

To obtain ω and γ we solve the following linear support

vector machine optimization problem:

minimize
ω∈IR

N ,γ∈IR,y∈IR
n
+

1

2
‖ω‖2 +Ce⊤y (2)

subject to

−d j · (a j
⊤ω − γ)− y + 1≤ 0 , for j = 1, . . .n .

Each d j is either −1 – if example a j is of class A or 1 –

if example a j is of class B.

The optimal ω and γ of this problem yield the separating

Ineq. (1) that can be used to classify any point x ∈ R
N

during the classifier working phase: if the rule is satisfied

for x, then x is classified to class A, else it is classified to

class B.

The obtained separation hyperplane tries to conceive two

phenomena depicted in Fig. 1: separation violation and

separation with a margin.

Fig. 1. Separation margin and separation errors. The training

points are black and grey, indicating their belonging to one of the

two classes.

A separation margin is obviously needed to avoid errors

in classification. The points given to the classifier are dis-

tributed similarly but not identically as the training points.

In turn, we allow that little training points be misclassified

by the separation hyperplane, first because the problem may

be not exactly linear separable, some training points may

be distorted or in other way invalid, or there is too little

of them to reasonably require the exact separation of them,

scarifying other properties of the separation hyperplane.

The variables y j represent the separation violations of par-

ticular training points. It can be shown that the separation

equals to 1/‖ω‖ – since we do not want to go into de-

tails of the scaling present in problem (2), we can refer the

reader to [4] for the proof.
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Instead of maximizing 1/‖ω‖, we can minimize ‖ω‖2,

which is easier. Having said this, we can see what the goal

function of problem (2) expresses: we tend to minimize

the total separation violation and maximize the separation

margin, the weight controlling the compromise is C.

This paper will deal mainly with two cases of size of this

problem:

1. Number n of examples is large. This is a simpler

case.

2. The RAM used by the algorithm is at most constant

in n. This is a more difficult case of stream process-

ing.

As opposed to n, we shall assume the number N of features

is at most moderate. Otherwise, having in mind also the

density of the problem, the problem would become too

difficult even for most approaches discussed in this paper.

3. Approaches with Cutting Planes

Oracles, Generation of Constraints

and Cutting Planes

For problems with many constraints it is natural cutting

plane methods connected with the oracle module that knows

the problem instance and generates proper cuts.

Two of the approaches discussed here – [2] and [3] are con-

cretizations of this idea. They differ slightly in the details of

the formulation of the SVM problem but here they both can

be described in terms of problem (2). Both the approaches

assume the training examples are stored simultaneously in

memory, so the oracle can return to some example.

Reformulation of the problem. First, we write an equiv-

alent form of problem (2), in order to get rid of numerous

decision variables y j:

minimize
ω∈IR

N ,γ∈IR,z∈IR

1

2
‖ω‖2 +Cz (3)

subject to

∑
j∈{1,...,n}

max(0,−d j · (a j
⊤ω − γ)+ 1)− z≤ 0 .

A further, redundant reformulation is:

minimize
ω∈IR

N ,γ∈IR,z∈IR

1

2
‖ω‖2 +Cz (4)

subject to

∑
j∈I

max(0,−d j · (a j
⊤ω − γ)+ 1)− z≤ 0 , for I ∈ 2

{1,...n} .

The equivalence of the formulations comes from the non-

negativity of the terms summed. Because of this nonnega-

tivity, all the constraints in problem (4) are implied by the

constraint in problem (3).

There is a huge number, 2
{1,...,n} of constraints in prob-

lem (4). Certainly, all of them have their representation in

memory. Instead, some constrained unsatisfied by an algo-

rithm iterate xk is generated by the oracle that is given xk

(if all the constraints are satisfied at xk, the oracle returns

a proper cut based on the gradient of the goal function

at xk). The gradient of this constraint defines a cut in our

algorithm.

The reason of introducing redundant constraint is to acceler-

ate the algorithm. Computing the gradient of a constrained

in which the summations runs only over some subset I of

{1, . . . ,n}, can be computationally easier than computing

the gradient of the constraint in problem (3), which requires

summing over {1, . . . ,n}.

Finding an unsatisfied constrained does not mean to try all

the 2
{1,...,n} constraints. A constraint with a bigger set I

can be certainly obtained by an update of a constraint of

a lower I. Thus the oracle needs only a single loop. In its

consecutive iterations,the current I is enhanced by a new

j. If we go up to the situation I = {1, . . . ,n} having not

found any unsatisfied constraint, we know there is no un-

satisfied constraints (since we add positive numbers). Then

the oracle can return a cut based on the gradient of the goal

function.

Solving the reformulated problem. We shall compare the

2 approaches.

In [3] the problem (4) is tackled as follows.

1. The problem is solved with the Nesterov analytic cut-

ting plane method with a penalty term [6].

2. The input data, defining the problem instance, is

stored in a disk file, as it is too big to fit in RAM.

3. The oracle reads the file but since reading files is

slow, the way the oracle navigates through the file is

smart. Namely, it involves two accelerating mecha-

nisms

(a) The first one is the already defined incremental

construction of constraints within the oracle

(b) In the late stages of an optimization run, the

above mechanism is inefficient, since near the

solution, most of the problem constraints are

satisfied, so one call of the oracle usually

involves reading nearly or exactly n training

points. But near the solution, the iterate does

not move too much between iteration. So,

instead of explicit checking violation of con-

straints by xk we can assess this violation us-

ing the knowledge whether the respective con-

straint was violated by some earlier iterate, say

xk−s. The details of the assessment are de-

scribed in [3]. It leads to the necessity of buck-

eting the input file, a certain surrogate of sorting

this file due to some quantity.

It is interesting that in navigating our file we had

to use a language characteristic for more traditional
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data processing or for databases rather than to op-

timization, e.g., we used bucketing. In the author’s

opinion this may be very indicative for the future of

optimization science, that will be faced long streams

of automatically generated data.

4. The unconstrained subproblems from the Nesterov

method are solved directly (in primal).

In the approach of Joachims [2]:

1. Problem (4) is solved with the Kelley cutting plane

method [7].

2. The subproblems from the Kelley method are trans-

formed to their duals before being solved.

3. The k subproblems dual (the dual of the subproblem

in kth iteration of the Kelley method) is a dense prob-

lem with about k variables. Also, k is the number of

cuts made so far.

4. There are several interesting features of the Joachms’

approach:

(a) The most astonishing is its linear complexity

in both N and n under given accuracy demand.

This will be discussed later.

(b) The method does not invert large matrices. The

only matrix that might have to be invert may be

the hessian matrix in some particular method

solving a subproblem from the Kelley method;

this hessian, however, is dense and of the size

about k× k while even the largest k is assumed

to be at most moderate in the algorithm, as dis-

cussed later.

Effectiveness under large number of examples. The story

about how Joachims achieves his annoying linear complex-

ity in both n and N is very meaningful and illuminating.

The author of this paper has made some experiments with

the Joachims’ solver. What quickly stroke was a very low

(loose) default accuracy setting for this solver.

It turned out that the exceptionally good complexity in N

and n is obtained at a cost of the rather quick dependence

of the number of cuts (cutting plane iterations) on accuracy

and the weight C. The number of the cutting plane method

iterations is assessed as

8CR2

ε2
, (5)

where R is the radius of the set of a js, ε is the solution

accuracy in terms of the goal function. A comment is owed

to the influence of C. The higher C, the less is the resulting

separation margin and separation violations are penalized

more. This makes the problem obviously harder, thus a

larger number of necessary iterations of the method is not

surprising.

An important conclusion is that a great gain in the speed

of processing of long files of automatically generated data

is to loosen the demands on accuracy.

A question that arise is whether the accuracy wanted by

Joachims is sufficient in practice. The answer is not clear.

A reasoning conducted in [3] says it is not enough. Simply,

Joachims assumes that the number of iterations done by

the cutting plane method will be low, even lower than the

number of features N. Then the dense subproblem with an

approximately x×k hessian is solvable within a reasonable

time1. However, the approach becomes problematic when

we see that the number of iterations of the cutting plane

method is equal to the number of cuts generated during

the optimization run. Our geometric intuition says that to

properly isolate the solution in R
N by cuts we need rather

of the rank of N cuts. In [3] we consider the following

example.

Assume the number of cuts generated by the algorithm of

Joachims is at least DN where D is a positive constant.

Then only the last iteration of this algorithm costs

O
(

θ (DN)+ nD2N3
)

. (6)

This result is obtained under a reasonable assumption that

solving a minimal optimization-state-of-art cost of solving

kth subproblem and the costs of transformation to the dual.

The above cost is already not linear in N.

Table 1

Comparison of the solvers’ reaction to increasing C,

problem covtype, n = 523293, N = 54, default accuracies

C 0.1 10 1000

Time – author [s] 1572 1510 1453

Time – Joachims [s] 384 4708 2739

Table 2

Comparison of the solvers’ reaction to increasing C,

problem biology, n = 131320, N = 74, C = 0.1; ε ,

is the accuracy setting for the Joachims’ solver

e 0.0001 0.01 1000

Time – Joachims [s] (> 2 hours) 118 287

However, the experiments with data coming from the prac-

tice do not support this theoretical reasoning. Neither do

the experiments in [2] nor the experiment the author of this

paper did in [3]. In the later experiments, a similar pattern

of the solvers of Joachims and the solver of the author of

this paper occurred. With the default settings and rela-

tively low C. Increasing C and/or decreasing the solution,

we quickly stuck the Joachims’ solver, while the authors’

solver, though maybe slower, obtained the solution (see the

sample Table 1 and Table 2 for the experiments on bench-

1Moreover, it is still solvable in the case we have excluded from the

scope of this paper, when N is big, which is the case definitely too difficult

to the [3] approach, as the nondifferentiable Nesterov method will not work

well with many variables of the subproblem.
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mark examples from KDD042). The authors’ solver use

the same very tight, default accuracy, measured in terms

of distance from the solution rather than in terms of goal

function.

Most interesting was that this increasing C or decreasing

accuracy did not lead to the increase in the quality of the

obtained classifier, measured by the accuracy of the classi-

fier, i.e., the percent of well classified testing examples.

Thus the approach of Joachims – obtaining high efficiency,

algorithm simplicity (e.g., no need to invert large matrices)

consciously sacrificing some accuracy is the potential way

of solving optimization problems with large, dense, auto-

matically generated data. Optimization specialists should

take this way into account and most attention should go to

research on what accuracies are acceptable in practice.

Also, we see by the solution from [3] that optimization

will have to borrow some language and solutions from

databases or from more traditional data processing domains

(e.g., sorting).

4. Approach for the Stream Case

Both the above solutions were semi-tools for the question

of large data streams. They both allow returning to a par-

ticular training example, thus are not feasible for streams.

We present below an idea for proceeding in the such

a case.

For streams in optimization, the most natural approach is to

make a model of the optimization problem that fits in mem-

ory constant with the stream length. We shall not go beyond

this obvious approach, unlike, say, the ambitious approach

in [8], in which we see some stream attitude in this that

an optimization algorithm is itself essentially stream: new

portion of data cause an update in the solution. However,

the accuracy of the solution obtained in [8] is not great

and the algorithm actually has an option to return to items

previously read from the stream.

We shall use problem (3). Note that the most difficult in

this problem is the sum in its constraint, which makes the

constraint not storable in memory constant in n.

Note, however, that we have the nondifferentiable function

max(0, ·) in the components of this sum. However, if we re-

place max(0, ·) with a polynomial φ : R 7→ R the constraint

will be storable in such RAM.

So, we can solve problem (3) in the following steps.

1. Reformulate SVM problem (2) as

minimize
ω∈IRN ,γ∈IR

1

2
‖ω‖2 +C ∑

j=1,...,n

φ(−d j · (a j
⊤ω − γ)+ 1) .

2. We approximated max(0, ·) in the constraint of prob-

lem (3) by a polynomial φ(·) : R 7→ R, say, for ex-

ample, of order 3.

2http://www.kdd.ics.uci.edu

The constraint of the approximate problem is easily

storable in RAM constant in n, since each function

under sum is of the form ψ : R
N+1 7→ R ≡ φ(w⊤x),

where w ∈ R
N and is representable as:

ψ(x) =
N+1

∑
k=1

N+1

∑
l=1

N+1

∑
m=1

T 3

k,l,mxkxlxm +
N+1

∑
k=1

N+1

∑
l=1

T 2

k,lxk

+
N+1

∑
k=1

T 1

k xk + T 0.

To sum such vectors we need to respectively add

the tensors defining particular components. So effec-

tively we need one 3-dimensional tensor, one matrix,

one vector and the constant. All of these objects have

sizes dependent only on N.

3. Solve the approximate problem

Certainly, the open problem is how to choose the approx-

imating polynomial so that the perturbance of the origi-

nal problem is acceptable in practice. Also, perhaps more

attention will be directed to operating on dense matri-

ces/tensors, i.e., approximations with forcing some element

values to zeros.

5. Conclusions

The conclusions from this work are following.

1. The practice yields new challenges to the science

of optimization that have a potential of substantially

change the research in optimization

(a) The data created automatically can form very

long streams, that are not storable in RAM and

even force the algorithm to have a stream char-

acter, i.e., the memory usage constant in the

stream length.

(b) Such automatically generated data can be dense,

resulting in dense optimization problems. We

are used to the situation in which a human vali-

dates all the nonzero coefficient defining an op-

timization problem, thus there may be not too

many of them. With an automatic generation,

this argument is not valid.

2. The work of the Joachims shows that the solution

to both the large size of the stream and the den-

sity of the data is to cleverly use some relaxations

in the required accuracy. Experiments shows, some

surprisingly, that so obtained solutions can be use-

ful in practice. Even better effects (stream optimiza-

tion) can be obtained by reformulating the whole op-

timization problem, not only the solution tolerance.

Thus, further research should be directed to formally

describing how a practical problem suffers from its

formalization as an optimization problem being ap-

proximated.
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