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Abstract—In addition to the benefits of hybrid phase shift

keying (HPSK) modulation in reducing the peak to average

power ratio of the transmitted signal to reduce the zero cross-

ings and the 0◦◦◦-degree phase transmissions, HPSK enhances

the bit error rate (BER) measure of the signal performance.

The constellation of the HPSK is analyzed, and an expression

for the conditional probability of HPSK modulation over ad-

ditive white Gaussian noise (AWGN) is derived. This BER

measure of HPSK is shown to outperform quadrature phase

shift keying (QPSK) modulation. HPSK performance through

Nakagami – m fading channel is also considered.

Keywords—bit error rate, hybrid phase shift keying, quadrature

phase shift keying.

1. Introduction

Hybrid phase shift keying (HPSK) is used in wideband

code division multiple access (WCDMA) systems thanks

to its low peak-to-average power ratio. This low ratio of

peak-to-average power results in reducing the number of

zero crossing of phase transitions of the output transmitted

signal. In this paper we prove that HPSK outperforms other

quadrature modulation techniques, such as offset quadrature

phase shift keying (OQPSK) by 3 dB.

The paper is organized as follows: Section 2 describes the

HPSK constellation in case of two channels at different

amplitudes. Section 3 derives an expression for the condi-

tional probability of error of HPSK modulated signal over

an additive white Gaussian noise (AWGN). In Section 4 we

apply the obtained expression in evaluating the performance

of HPSK modulated signal over a generalized Nakagami –

m channel. Finally, Section 5 includes numerical results

and comments.

2. The Hybrid Phase Shift Keying

Constellation

The HPSK has been proposed as the spreading technique

for WCDMA to eliminate the zero crossings for every other

signal transition and to eliminate the 0◦-degree phase shift

transitions for every other chip point, as well as to improve

the bit error rate (BER) measure of the direct sequence

WCDMA (DS-WCDMA) system performance.

In 3G systems the mobile station (MS) can transmit more

than one channel. The different channels are assigned to

either I or Q path.

Fig. 1. The basic reverse channel structure of 3G system. Expla-

nations: DPCCH – dedicated physical control channel, DPDCH –

dedicated physical data channel, R-FCH – reverse fundamental

channel.

In the case of transmitting only two channels, as in Fig. 1,

one of the channels (DPDCH or R-pilot) is applied to

the I path and the other channel (DPCCH or R-FCH) is

applied to the Q path [1]. Additional, high data rate chan-

nels are combined alternatively on the I or Q paths. Each

channel is spread by a different orthogonal even-numbered

Walsh code. In the general case the channels can be at

Fig. 2. The 4-QAM constellation for two channels at different

amplitudes.

different power levels, as in Fig. 2 which maps onto a rect-

angular four quadrature amplitude modulation (4-QAM)

constellation.
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The QAM signal waveforms may be expressed as

Sm(t) = Re
{

Aejθmg(t)ej2π fct
}

= Achg(t)
[

cos(2π fct)cos(θm)

−sin(2π fct)sin(θm)
]

, (1)

where: Ach =
√

I2
ch + Q2

ch, where Ich and Qch are the infor-

mation bearing signals amplitudes of the I path channel

and Q path channel, respectively, g(t) is the pulse shape

signal, θm = tan−1 Qch
Ich

is the phase of the signal vector and

it varies with m = 1, 2, 3, 4.

So, the QAM signal waveform may be viewed as a linear

combination of two orthogonal wave forms f1(t) and f2(t)
such that [2]:

Sm(t) = Sm1 f1(t)+ Sm2 f2(t) , (2)

where Sm1 and Sm2 are the component of the two dimen-

sional vector Sm:

Sm =
[

Sm1 Sm2

]

=
[

Ich Qch

]

. (3)

In the 4-QAM according to the position of the vector point

and according to the value of Ich and Qch:

∴ Sm =
[

Ach cosθm Ach sinθm

]

. (4)

In the reverse link of DS-CDMA systems the Ich and Qch

are complex scrambled with a complex scrambling signal

(Is + jQs) as in Fig. 3.

The final I and Q signals are produced mathematically by

the multiplication of the two complex signals; the complex

data signal (ID + jQD) which has already spread into chips

(Ich + jQch), and the complex scrambling signal (Is + jQs)
so the final I and Q signals are:

I + jQ = (IchIs−QchQs)+ j(IchQs +QchIs) = AchAse
j(φch+φs) ,

I = AchAs cos
( π

M
(2n−1)+θm

)

= Acos
( π

M
(2n−1)+θm

)

,

(5)

Q = AchAs sin
( π

M
(2n−1)+θm

)

= Asin
( π

M
(2n−1)+θm

)

.

(6)

Fig. 3. Complex scrambling of HPSK.

Since final constellation is formed by complex multi-

plication of the two signals of chip constellation and

scrambling constellation which is always QPSK constel-

lation as in Fig. 4, then: from Eqs. (5) and (6) we con-

clude that the final signal (I + jQ) is a QPSK constel-

lation with two dimensional vector representation Smn,

where:

Smn =

[

Acos
( π

M
(2n−1)+ θm

)

Asin
( π

M
(2n−1)+ θm

)

]

,

(7)

where A = AchAs; n = 1, 2, 3, 4; m = 1, 2, 3, 4 and M = 4.

Fig. 4. The chip constellation (a) and the scrambling constella-

tion (b).

This new constellation has points that rotate according to

the angle: π
4
(2n− 1) + θm, while θm changes according

to the value of Ich and Qch, for example, if n = 1, the

point (Ich, Qch) will be transferred by the angle equal to

(45◦+θm). So the new constellation is really an eight point

constellation with two independent QPSK constellation as

shown in Fig. 5 according to the value of θm. One of these

two constellations corresponds to θm > 45◦ and it rotates by

angle equal to φ1 = (θm −45◦) from the original axes. The

other QPSK constellation corresponds to θm < 45◦ and ro-

tates with angle equal to φ2 =−(θm−45◦) from the original

axes. So the new final constellation consists of two inde-

pendent QPSK constellations with complex scrambling:

Sn =

[

Acos

[

2π

M
(n−1)+φ1

]

Asin

[

2π

M
(n−1)+φ1

]

]

, (8)

S′n =

[

Acos

[

2π

M
(n−1)+φ2

]

Asin

[

2π

M
(n−1)+φ2

]

]

. (9)
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Fig. 5. The final constellation of the scrambled chip of different

channel amplitudes.

So, the final constellation has eight points, as in Fig. 5, with

the angular distribution determined by the relative levels of

the two channels signals.

3. Probability of Error of Hybrid Phase

Shift Keying Modulated Signal

over Additive White Gaussian Noise

We concluded in the previous section that the final con-

stellation of the two channels at different amplitudes con-

sists of two independent QPSK constellations with com-

plex scrambling. The average value of the amplitude of

the new constellation is
√

2 times the value of the am-

plitude of the traditional QPSK. To obtain the BER of

the HPSK modulated signal as a measure of its perfor-

mance we will assume that this signal is transmitted over

AWGN channel. The received signal is demodulated with

correlated demodulator or a matched filter demodulator

and the decision for the received observation vector r =
[r1, r2, r3, . . . , rN ] among all the transmitted signals Sm is

based on the maximum of the conditional probability distri-

bution function (pdf) P(r/Sm), which is the maximum like-

lihood (ML).

The optimum ML detector computes a set of M correla-

tion metrics C(r, Sm) = −2rSm and selects the signal cor-

responding to the largest correlation metric [3].

Applying this metric in our study case, r is the re-

ceived signal vector r = [r1 r2] which is projected onto

each of the four possible transmitted signals vectors Sm

for m = 1, 2, 3, 4, where M = 4. We can consider that

the correlation detector in the case of HPSK modulated

signal is equivalent to a phase detector that computes the

phase of the received signal from r and selects the sig-

nal Sm whose phase is closest to r, where the phase of r

is θr = tan−1 r2
r1

.

The probability of error can be computed if we determine

the power density function of θr Pθr
(r). We consider the

case in which the transmitted signal phase is equal to zero,

as in Fig. 6.

Fig. 6. The HPSK vector constellation.

The transmitted vector S1 =
[√

εs 0
]

, where εs is the energy

of the transmitted HPSK signal S1(t). The received signal

vector is r = [r1 r2] =
[√

εs +n1 n2

]

, where n1 and n2 are

jointly Gaussian random variables with mean and variances

E(r1) =
√

εs, E(r2) = 0 and σr12 = σr22 = σr2 = 1
2
N0.

Consequently, the joint pdf of r1 and r2 is:

P(r1, r2) =

(

1

πN0

)

exp

[

− (r1 −
√

εs)
2 + r2

2

N0

]

. (10)

The pdf of the phase θr is obtained by a change in variables

from (r1 ,r2) to (A, θr), where:

A =
√

r2
1 + r2

2, θr = tan−1 r2

r1

,

P(A, θr) =A
( 1

πN0

)

exp

[

− (A2+εs−2
√

εsAcosθr)

N0

]

, (11)

Pθr
(θr)=

∞
∫

0

P(A, θr)dA=
1

2π
e−2γs sin2 θ

∞
∫

0

Ae−
A−√4γs cosθ )2

2 ,

(12)

where γs = εs
N0

is the signal-to-noise ratio (SNR).
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For large values of γs ≫ 1 and |θr| ≤ π
2
, Pθr

(θr) is well

approximated as

Pθr
(θr) =

1

2π
e−2γs sin2 θr I , (13)

where

I =

∞
∫

0

Aexp

(

− (A− cosθr

√
4γs)

2

2

)

dA , (14)

I = cosθr

√
2π

√

4γs , (15)

Pθr
(θr) =

√

2γs

π
cosθre

−2γs sin2 θr . (16)

When s1(t) is transmitted a decision of error is made if the

noise causes the phase to fall outside the range
[

− π
4
, π

4

]

,

and hence the probability of a symbol error is:

P4 = 1−

π
4

∫

− π
4

Pθr
(θr)dθr . (17)

By substituting for Pθr
(θr) and performing the change of

variables from θr to µ , where µ = sinθr

√
2γs, we find

P4 = 2Q

(
√

2γs sin2
(π

4

)

)

= 2Q
(√

γs

)

. (18)

In case of HPSK

εs = 2(kεb) = 4εb ∴ P4 = 2Q

(
√

4εb

N0

)

. (19)

Since the transmitted signals represented by the vector

points of the final constellation are equally likely to be

transmitted and since the 8-points are distributed around

a circle consisting of two independent QPSK constellations

with complex scrambling then the average probability of

the symbol error in the case of two channels at different

amplitudes is:

Psymbol =
1

2

[

P1(e)+ P2(e)
]

, (20)

where P1(e) is the probability of symbol error of the first

QPSK constellation, P2(e) is the probability of symbol error

of the second constellation:

PS = 2Q

(
√

4εb

N0

)

. (21)

The bit error probability in this case is:

Pb = Q

(
√

4εb

N0

)

= Q
(
√

4γ
)

, (22)

where γ is the SNR = εb/N0.

It is simply interesting to compare the performance of

HPSK with that of QPSK since both types of signals are

two dimensional. Since the error probability is dominant

by the arguments of the Q function, we may simply com-

pare the arguments of Q for the two signal formats of

HPSK and QPSK. The ratio of the two arguments is equal

R = 2. So, HPSK has SNR advantage of 10 log 2 ≈ (3 dB)

over QPSK.

4. The Performance of HPSK Signal over

a Generalized Nakagami – m Channel

The mobile communication channel is noisy, multipath and

is subjected to fading. The channel fading conditions de-

pend on the propagation conditions and the clutter types

the waves propagate through. In some cases the fading can

be more severe than Rayleigh, while in other cases where

line of sight or near line of sight conditions is available,

the signal will be more stable. The Nakagami distribution

is shown to fit results more generally than other distribu-

tions [4]. In this section we will evaluate the average BER

of HPSK systems subjected to Nakagami fading. We will

evaluate the expected value of the conditional Pb as given

by Eq. (22) over Nakagami distribution. In Nakagami chan-

nel the path amplitude probability density function is given

by

fr(r) =
2

Γ(m)

( m

Ω

)m

r2m−1 exp
(

− m

Ω
r2

)

, (23)

where m is the fading parameter and it describes the fading

severity which is defined as the ratio of moments or it is the

ratio of the square of the mean signal power to the variance

of the signal power

m =
Ω2

E
[

r2 −Ω
] , m ≥ 0.5, Ω = E

[

r2
]

. (24)

The received signal power γ follows gamma distribution

and its pdf is given by

fr(γ) =
(m

Ω

)m γ m−1

Γ(m)
exp

(

− m

Ω
γ
)

; γ ≥ 0, m ≥ 0.5 .

The average probability of error will be given by

P(e) =

∞
∫

0

P(e/γ) fγ (γ)dγ =

∞
∫

0

Q
(
√

4γ
)

fγ (γ)dγ . (25)

The integral of the average probability is evaluated in [5].

The average probability of error is finally given by

Pe =

(

1

2
√

π

) Γ
(

m+ 1
2

)

Γ(m+1)

(

2m

2m+4Ω

)m

× 2F1

(

1

2
, m; m+1;

2m

2m+4Ω

)

, (26)

where 2F1(a, b; c, x) is the Gauss hypergeometric func-

tion [6] defined by

2F1(a, b; c, x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

Γ(n + 1)
(27)

or with integral representation:

2F1(a, b; c, x) =
Γ(c)

Γ(b)Γ(c−b)

1
∫

0

tb−1(1−t)c−b−1(1−xt)−adt ,

(28)

where c > b > 0.
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The integral representation of 2F1 is valid under the as-

sumption that |x| ≤ 1. In our case, it reduces to:

2F1

(1

2
,m; m+ 1; x

)

=
Γ(m+ 1)

Γ(m)

1
∫

0

tm−1

√

(1−xt)
dt . (29)

The average BER can then be given by

Pe =

(

1

2
√

π

) Γ
(

m+ 1
2

)

Γ(m)
xm

1
∫

0

tm−1

√

(1−xt)
dt , (30)

where

x =
2m

2m+ 4Ω
. (31)

The substitution (t = sin2(θ )/x), is useful to solve the in-

tegral. Finally, we have for arbitrary value of m:

Pe =

(

1√
π

)

Γ
(

m+ 1
2

)

Γ(m)

arcsin(
√

x)
∫

0

sin2m−1 θ ..dθ (32)

and for integer m, Eq. (32) will result into:

Pe =

(

1√
π

)

Γ
(

m+ 1
2

)

Γ(m)

m−1

∑
n=0

(

m−1

n

)

(−1)n

2n + 1

[

1− y(n+ 1
2 )

]

,

(33)

where

y =
√

1− x =

√

4Ω

2m+ 4Ω
. (34)

Fig. 7. The BER versus SNR of HPSK in Nakagami fading

channels.

Special cases. The probability of error is computed for

different value of m (Fig. 7). For the case of severe

fading:

• m = 1
2

(the half Gaussian distribution) Eq. (32) re-

duces to:

Pe = arcsin(
√

x)/π , (35)

• m = 3/2, Eq. (33) will reduce to:

Pe =
(

arcsin(
√

x−
√

x(1− x)
)

/π , (36)

• m = 1 (the case of Rayleigh fading), the average prob-

ability of error in Eq. (33) reduces to:

Pe = (1− y)/2 , (37)

• m = 2, Eq. (33) will result to:

Pe = (2−3y + y3)/4 , (38)

• m = 3 (very close to Rician fading), Eq. (33) will

result to:

Pe =
(

8− (15y−10y3+ 3y5)
)

/16 . (39)

5. Conclusion

In this paper we come to an easy to evaluate expressions

for the BER of HPSK performance in Nakagami fading

channel as shown in the previous section. The cases of

more severe fading than Rayleigh (m = 1) and Racian

(m = 3) fading are considered. Figure 7 shows the prob-

ability of error of HPSK for different values of m. Also

we proved that HPSK has SNR advantage of nearly 3 dB

over QPSK.
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