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Abstract—The paper proposes a new iris coding method based

on Zak-Gabor wavelet packet transform. The essential compo-

nent of the iris recognition methodology design is an effective

adaptation of the transformation parameters that makes the

coding sensitive to the frequencies characterizing ones eye. We

thus propose to calculate the between-to-within class ratio of

weakly correlated Zak-Gabor transformation coefficients al-

lowing for selection the frequencies the most suitable for iris

recognition. The Zak-Gabor-based coding is non-reversible,

i.e., it is impossible to reconstruct the original iris image given

the iris template. Additionally, the inference about the iris

image properties from the Zak-Gabor-based code is limited,

providing a possibility to embed the biometric replay attack

prevention methodology into the coding. We present the final

prototype system design, including the hardware, and evaluate

its performance using the database of 720 iris images.

Keywords—biometrics, iris recognition, Zak-Gabor transform.

1. Introduction

Biometric researchers are still looking for the ideal biomet-

rics, i.e., both a part of the human body and the applied

methodology of its symbolic description fused in one sys-

tem that is characterized by high usability, produces no

errors, is robust with respect to variations of attributes of

the human body within a large time scale, immune to dis-

eases, resistant to forgery, and produces no social, religious

and ethical objections.

The iris is a complex set of interworking muscles, placed

anteriorly to the human eye, thus easy to be observed and

measured. It is strongly protected by the cornea and eye-

lids, minimizing the probability of injuries during human

life. The structure of the iris tissue is characterized by high

stability over the human life span, high degree of struc-

tural richness, and almost neglectful dependence on human

genotype [1], allowing for recognizing identical twins. In

consequence, iris seems to have all of the attributes we’d

like to have in biometrics. This paper presents a new iris

recognition methodology, that was used to construct fast,

highly reliable and non-invasive biometric system.

2. Iris Images and Their Preprocessing

2.1. Iris Image Capture and Database of Images

Estimation of the method parameters presented in this work

are based on proprietary database of 720 iris images, called

here further BioBase. The data was collected for 180 differ-

ent eyes, with 4 images of each eye. We used 3 images of

each eye to calculate the iris templates, and the remaining

single image of each eye in the verification stage. Images

were collected by IrisCUBE camera (Fig. 1) designed and

constructed by the authors to capture the iris from a conve-

nient distance, with the desired speed and a minimal user

Fig. 1. IrisCUBE camera employed to collect the database used

in this work.

cooperation. The camera has an automatic optics to com-

pensate for small depth-of-field that is typical in iris recog-

nition systems. The IrisCUBE camera implements selected

aliveness detection methods [2] to deliver actual biometric

samples, what still is not a wide practice in commercial

iris acquisition systems. The quality of acquired iris im-

ages exceeds the highest quality level specified in ISO stan-

dard (marked as ‘High’ in [3]). Since the hardware used

allows for one-eye capture, the images taken may be mutu-

ally rotated and the rotation of images used in the estima-

tion stage was corrected using the correlation techniques.

The remaining fourth image (used in the verification stage)

was not altered and the rotation correction mechanism is

inscribed in the recognition methodology.

2.2. Iris Segmentation

The raw images contain the iris and its surroundings, thus

the iris must be first localized. To detect a boundary be-

tween the pupil and the iris, we use a method being a spec-

imen of a commonly applied family of methods sensitive to

circular dark shapes, and unresponsive to other dark areas

as well as light circles, such as specular reflections. Our

implementation is based on a modified Hough transform

10



Iris Recognition System Based on Zak-Gabor Wavelet Packets

that employs the image gradient (the so called directional

image) rather than solely the image gradient value (the so

called edge image, which neglects the gradient direction).

A boundary between the iris and the sclera is approximated

by Daugman’s integro-differential operator [1] applied to

two opposite horizontally placed angular sectors, 45◦ each,

since the entire circular iris boundary may be partially dis-

turbed by eyelids. The two radii of the resulting arcs are

averaged to construct a circle approximating the outer iris

boundary.

The iris ring limited by the two circular boundaries may

still be disrupted by irregular objects like reflections or eye-

lashes, hence it is desirable to use occlusion detection that

does not assume any particular occlusion shape. We thus

assess a non-uniformity along the radial direction within

the iris ring and then construct map of irregular occlu-

sions. To do so, we first calculate the sample variances

of the iris image intensity for a set of radial sectors along

entire iris ring. These variances are then compared to the

maximum allowed variance obtained for directions in which

the probability of iris occlusion is minimal (i.e., set of di-

rections placed horizontally on both sides of the iris ring).

Those directions in which the calculated variance exceeds

the threshold value is marked as an occlusion direction, and

the appropriate occlusion radius is stored.

Based on the localized occlusions, we select two opposite

90◦ wide angular iris sectors for coding. The experiments

(see also [1]) revealed much higher correlation of the iris

Fig. 2. (a) Raw camera image processed by our system. The

eyelids were automatically detected, and the sectors free of oc-

clusions are selected. Star-like shapes on the pupil are reflections

of the illumination NIR diodes, and the ’+’ marks represent the

pupil and the iris centers. Full circles correspond to the detected

eyelid occlusions. (b) Left and right iris stripes automatically

determined for the image shown on (a).

image in the radial direction as compared to the angular

direction, thus each iris sector is transformed by resampling

and smoothing to a P×R rectangle, where P = 512 and

R = 16. The rows fℓ of these two rectangles will be further

referred to as iris stripes (Fig. 2).

3. Iris Features

3.1. Choice of Features

It is often convenient to characterize a discrete-time signal

in the frequency domain, thus describing stationary energy

distribution. For non-stationary signals, it might be worth-

while to characterize the frequencies locally, and to find the

distribution of signal energy in local (possibly overlapping)

time segments by application of time-frequency or time-

scale analysis. Similarly, any constant (time-independent)

space-homogeneous 1D or 2D pattern (e.g., image) can

be characterized in a 1D or 2D frequency domain using

“position” statement instead of “time”. If a pattern is not

space-homogeneous, its spatial frequency contents may be

analyzed locally, with the use of space-frequency or space-

scale analysis. Two important candidates for such anal-

ysis are windowed Fourier transform (WFT, also called

“short time Fourier transform”, or STFT) and wavelet trans-

form (WT). Both approaches differ. WFT makes use of

window functions constant in size, and frequency shifts are

achieved by modulating the window. This property is some-

times at a disadvantage, since for each frequency, the num-

ber of cycles inscribed in the analysis window differs, re-

sulting in different averaging horizons for different frequen-

cies. In turn, wavelet analysis achieves frequency shifts by

scaling the position index. Scaling does not change the

number of cycles inscribed into the analysis window, thus

providing an even analysis for each frequency. These prop-

erties of WFT and WT result in different tilings within the

2D position-frequency plane, namely linear for WFT and

logarithmic for WT.

The Gabor transform belongs to WT family, and uses

a Gaussian window characterized by its width. The win-

dow width significantly influences the resulting iris features

and must be carefully chosen. We use the space-frequency

analysis that employs waveforms indexed by space, scale

and frequency simultaneously, what results in a larger set

of possible tilling in the space-frequency plane, possibly

redundant. This directs our methodology toward a wavelet

packet analysis. There is a need to select appropriate fre-

quencies and scales simultaneously to make the transfor-

mation sensitive to individual features existing in the iris

image. In this paper we propose a systematic selection of

appropriate scales and frequencies of the iris coding. Al-

though the iris texture makes a 2D pattern, we simplify it

to a set of 1D patterns with a certain loss of information

and apply the space-frequency analysis locally to the iris

circular sectors to describe their local features and to con-

struct a compact iris features set. This approach enables

our method to be applied for databases of images of vari-

ous resolution.
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3.2. Gabor Expansion

Gaussian-shaped windows are not orthogonal (the inner

product of any two of all windows is nonzero), there-

fore Gabor’s expansion coefficients cannot be determined

in a simple way. Suggested algorithms include making the

window function bi-orthonormal to the Gaussian-shaped

elementary function and the matrix-based algorithm [4].

However the Gabor’s expansion coefficients determination

by application of Zak’s transform [5] is considered as the

fastest method and it is often referred to as Zak-Gabor’s

transform. In this section we explain briefly the princi-

ples of Gabor expansion coefficient calculation through the

Zak’s transform for one iris stripe and fixed window width.

Denote by gs a one-dimensional Gaussian elementary func-

tion of the width index s, sampled at points 0, . . . ,P− 1,

namely

gs(p) = e
−π

(

(p+ 1
2
)/2s

)2

, p = 0, . . . ,P−1 , (1)

where s = 2,3, . . . ,S, and for the stripe length P = 512 we

set S = 8. If P is (typically) chosen to be even, the 1
2

term

in Eq. (1) makes gs to be an even function.

Let M be the number of possible translations of gs, and K

be the number of frequency shifts, where, following Bas-

tiaans [5], we always take M = P/K. A shifted and mod-

ulated version gmk;s of the elementary function gs can be

constructed, namely

gmk;s(p) = gs(p−mK)eikp2π/K, p = 0 . . .P−1 , (2)

where m = 0, . . . ,M − 1 and k = 0, . . . ,K − 1 denote the

space and frequency shifts, respectively, and gs is wrapped

around in the P-point domain. The finite discrete Gabor

transform of the iris stripe fℓ is defined as a set of complex

coefficients amk;sℓ that satisfy the Gabor signal expansion

relationship, namely

fℓ(p) =
M−1

∑
m=0

K−1

∑
k=0

amk;sℓgmk;s(p), p = 0 . . .P−1 . (3)

Following Bastiaans [5], we further set K = 2s. Note that

once the frequency index k is kept constant, gmk;s may be

localized in frequency by a modification of s. This is done

identically as the scaling in a wavelet analysis, hence we

call s the scale index. The number of Gabor expansion

coefficients amk;sℓ may be interpreted as the signal’s number

of degrees of freedom. Note that the number S of scales

together with the stripe size P determine both M and K.

3.3. Zak’s Transform

The discrete finite Zak transform Z fℓ(ρ ,φ ;K,M) of a sig-

nal fℓ sampled equidistantly at P points is defined as

the one-dimensional discrete Fourier transform of the se-

quence fℓ(ρ + jK), j = 0, . . . ,M−1, namely [5]

Z fℓ(ρ ,φ ;K,M) =
M−1

∑
j=0

fℓ(ρ + jK)e−i jφ2π/M , (4)

where M = P/K. Discrete Zak’s transform is periodic both

in frequency φ (with the period 2π/M) and location ρ
(with the period K). We choose φ and ρ within the fun-

damental Zak interval [5], namely φ = 0,1, . . . ,M−1 and

ρ = 0,1, . . . ,K−1. Similarly to the Fourier transformation,

one may reconstruct the original function fℓ from its Zak

transform by way of the inverse discrete Zak transform,

using the following formula

fℓ(ρ + jK) =
1

M

M−1

∑
φ=0

Z fℓ(ρ ,φ ;K,M)ei jφ2π/M (5)

and restricting the domain of the results to the fundamental

Zak interval.

3.4. Application of Zak’s Transform

Application of the discrete Zak transform to both sides of

Eq. (3) and rearranging the factors yields

Z fℓ(ρ ,φ ;K,M) =

=
M−1

∑
j

[

M−1

∑
m

K−1

∑
k

amk;sℓgs(ρ+ jK−mK)eikρ2π/K

]

e−i jφ2π/M =

=

[

M−1

∑
m=0

K−1

∑
k=0

amk;sℓe
−i2π(mφ/M−kρ/K)

]

·

·

[

M−1

∑
j=0

gs

(

ρ + jK
)

e−i2π jφ/M

]

=

= Fasℓ(ρ ,φ ;K,M)Z gs(ρ ,φ ;K,M) , (6)

where Fasℓ[ρ ,φ ;K,M] denotes the discrete 2D Fourier

transform of an array of asℓ that represents Gabor’s ex-

pansion coefficients determined for the iris stripe fℓ and

scale s, and Z gs[ρ ,φ ;K,M] is discrete Zak’s transform of

the elementary function gs.

This shows that Gabor’s expansion coefficients can be re-

covered from the product form Eq. (6). Once K and M are

chosen to be powers of 2 (making also the signal length P

to be a power of 2), the calculation of both Z f [ρ ,φ ;K,M]
and Z g[ρ ,φ ;K,M], and inversion of 2D Fourier series can

employ fast Fourier transform thus yielding computation

times proportional to those in the FFT.

3.5. Definition of Iris Features

Calculation of Gabor’s transform for all iris stripes and

for all scales results in a set of coefficients a indexed

by the quadruple: within-stripe position, frequency index,

scale and stripe index (m,k,s, ℓ). Inspired by Daugman’s

work [1], we define the signs of the real and imaginary parts

of Zak-Gabor coefficients as the feature set B, namely

B =
{

sgn(ℜ(amk;sℓ)), sgn(ℑ(amk;sℓ))
}

, (7)

where: m = 0, . . . ,M−1, k = 0, . . . ,K−1, ℓ = 0, . . . ,2R−1

and s = 2,3, . . . ,S.
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Since the Fourier transform is symmetrical for real signals,

for each position m the coefficients with the frequency in-

dex k > K/2 can be ignored. Since M = P/K, for each s

there are (N − 1)P/2 coefficients to be determined. Tak-

ing into account that this analysis is carried out for all iris

stripes, and remembering that R = 16, S = 8 and P = 512,

the total number of coefficients calculated for the iris im-

age is R(S−1)P = 57,344. Both real and imaginary parts

are coded separately by one bit, hence N = |B| = 114,688

features may be achieved, where | · | denotes the number

of elements in a finite set. The features, positioned iden-

tically for each iris, may thus form a binary vector. Thus,

matching two features requires only a single XOR opera-

tion, and the Hamming distance can be applied to calculate

the score.

We stress that B should not be confused with the so called

iriscodeTM invented by Daugman. The latter one is a re-

sult of an iris image filtering, while B is constructed with

Gabor expansion coefficients. We now describe how to se-

lect a subset of features B to be included in a final feature

set B
∗.

3.6. Feature Set Selection

The selection of scales and frequencies of Zak-Gabor

coefficients included into the code, and thus selection of

the scale s in Eq. (1) and the frequency index k, cannot

be guessed a priori, due to significant and undetermined

iris texture variability. Both parameters are interdepen-

dent, have a strong influence on the overall method’s ef-

ficiency and should be considered simultaneously. More-

over, the full feature set B is significantly oversized, since

it consists of features representing all, possibly inade-

quate, frequencies of the analyzed image. We thus pro-

pose a two-stage method that selects optimal Zak-Gabor

based features and can be used to estimate optimal fea-

ture set given the quality of iris images. Since only cer-

tain subset of B will be included into the final feature set,

all elements of B will be further referred to as candidate

features.

Stage one: selection of useful features. The first selec-

tion stage consists of choosing a subset B
0 of candidate

features B, called here the useful features. To determine B
0,

we analyze a variability of candidate features.

For each feature b we calculate the within-eye sum of

squares SSW (b), and the between-eye sum of squares

SSB(b). Intuitively, a feature is useful if at least SS
(W)
n <

SS
(B)
n . Typically, the number of bits that meet this require-

ment is still too high (approximately half of bits bn) and

ends up with highly correlated features. We thus introduce

a stronger selection mechanisms and categorize features to

maximize SSB and minimize SSW solving this multicrite-

ria problem by minimizing the distance from the most de-

sired point on SSW × SSB plane. This point was set as
(

minb∈B SSW (b),maxb∈B SSB(b)
)

, Fig. 3.

Fig. 3. Within-eye sum of squares versus between-eye sum of

squares and the area of useful features. Each dot corresponds to

real or imaginary part of one Zak-Gabor coefficient. The “desired”

point is also marked (we favor coefficients with minimum within-

eye and simultaneous maximum between-eye sum of squares).

We use the order introduced by the above procedure in

the set of candidate features B in a procedure removing

a high correlation of candidate features to increase an “in-

formation density”. We include kth candidate feature into

the set B
0 only if it is not strongly correlated with all the

features already selected.

We base our useful feature definition on the decidability

coefficient d′ [1] calculated for a given feature subset. We

calculate the decidability coefficient for each set of candi-

date features included into B
0. The decidability varies with

the number of candidate features included: it first grows to

reach the maximum and then decreases. Experiments show

that the decidability d′ is highest for the correlation thresh-

old around 0.3, Fig. 4.

Fig. 4. Decidability coefficient versus number of useful features

selected for a few sample correlation coefficients (0.2, 0.3, 0.7

and 0.8) allowed within the useful features set.
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Fig. 5. Score distributions for 360 genuine (left) and 64,440

impostor (right) comparisons, denoted by ξg and ξi, respectively.

Only the useful features B
0 are used. No sample errors were regis-

tered for a wide range of acceptance threshold τ ∈ (0.2932,0.358),
and in particular for optimal threshold τ0 = 0.3256.

Fig. 6. 2D histogram of how families Bk,s are “populated” by

useful features B
0 determined separately for the real (a) and imag-

inary (b) parts of Zak-Gabor coefficients.

For this solution there is no between-eye – within-eye over-

lap of sample distributions, i.e., there are no false matches

and no false non-match examples in the estimation data set,

Fig. 5. The resulting 324 useful features pass to the sec-

ond feature selection stage. We may add that our procedure

included only such features for which SSW < SSB.

Stage two: selection of feature families. Let ν(k,s) de-

note the number of useful features in the candidate features

family Bk,s, which represent all candidate features that are

labeled by the same scale k and frequency s, and differ by

space indices m and ℓ, namely

Bk,s = {sgn(ℜ(amk;sℓ)),sgn(ℑ(amk;sℓ)) : (8)

m = 0, . . . ,M−1, ℓ = 0, . . . ,2R−1} .

The higher is ν(k,s), the more important are the frequency

indexed by k and the scale indexed by s in iris recognition.

To decide for the best frequencies and scales, independently

for real or imaginary parts of the Zak-Gabor coefficients,

we sort Bk,s by decreasing ν(k,s) separately for real and

imaginary parts of coefficients. Figure 6 depicts the ‘popu-

lation’ of scale-frequency families by winning features B
0.

Note that the number of winning features is not identical

for all families.

We further prioritize the families that are most frequently

‘populated’ by the useful features. The sorting rule for

families of features mirrors the rule used for useful fea-

tures selection: we sort Bk,s by the decreasing number of

useful features B
0 included in a given family, separately for

real and imaginary parts of coefficients. We check the de-

cidability d′ and separation d (the difference between maxi-

mum genuine score and minimum impostor score, note that

d > 0 denotes perfect separation between distributions of

genuine and impostor scores) and chose the families result-

ing in maximum d′ for a given database, Fig. 7.

Fig. 7. Decidability d′ and separation margin d versus the number

of sorted feature families Bk,s included in the feature set.

This rule allows finding the frequency-scale pairs of real

and imaginary parts of Zak-Gabor coefficients, which, if

chosen as iris features, result in the best separation of dis-

tributions of genuine and impostor comparison scores. The

feature families set resulting in maximum d′ constitutes

the final feature set B
∗, which in our case contains only
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Fig. 8. Same as in Fig. 5, except the selected feature families are

used to build the iris feature set. No sample errors are registered

for a wide range of acceptance threshold τ ∈ (0.3271,0.3701),
and in particular for optimal threshold τ0 = 0.3486.

four families, what ends up with 1024 bit code. For this

final feature set, we still achieved no sample verification

errors, Fig. 8.

3.7. Personalize Feature Subsets

Once the optimal feature families, namely the best scale-

frequency pairs indexed by s and k, are selected, the iris

features set is calculated for those chosen s and k and all

m = 1, . . . ,M − 1, and ℓ = 0, . . . ,2R− 1. Each Zak-Gabor

coefficient can ‘measure’ the correlation between the mod-

ulated Gaussian elementary function gmk;s and the corre-

Fig. 9. Decidability versus minimum value of Zak-Gabor coef-

ficients, required to be included in the feature set. For BioBase

data, best decidability d′ = 10.5095 is achieved if using coeffi-

cients amk;sℓ ≥ athr = 459

sponding iris stripe. The question arises how ‘robust’ are

the consecutive Zak-Gabor coefficients against noise, and

iris tissue elastic constrictions and dilations.

Due to a significant variability of the iris tissue, some gmk;s

may not conform with the iris body, resulting in small co-

efficients. Such a situation is dangerous, since once the co-

efficients are close to zero, their signs may depend mostly

on a camera noise, and consequently may weaken the fi-

nal code. This motivates personalization of the iris feature

sets that employ only those Zak-Gabor coefficients that ex-

ceed experimentally determined threshold athr, which is the

minimum value of Zak-Gabor coefficiens amk;sℓ required

to become a relevant coefficient being a base of an iris

feature.

To answer the question how big the value of athr should be,

we maximize the decidability d′ using athr as a parameter

given a database of iris images. By increasing athr a greater

number of coefficients are neglected. According to obser-

vations (Fig. 9) the system reliability first increases, then

deteriorates, and the maximum d′ = 10.51 for athr = 459

can be found, which is higher than d′ = 7.67 achieved for

a full set of 1024 feature bits (cf. Fig. 8). Although the

separation margin d is not increased significantly for the

determined athr, the distribution tails are larger, and the

score averages for the comparison of the same and different

eyes are spaced more widely compared to non-personalized

technique, Fig. 10.

Fig. 10. Same as in Fig. 5, except the personalized features

are used for each person, in the way to guarantee the best pos-

sible decidability d′ for BioBase data, and the optimal threshold

τ0
pers = 0.2185.

To distinguish between relevant and irrelevant features

within the final feature set B
∗, we introduce a set of mask-

ing bits, thus enlarging twice the required data for the iris

template (we need to add 1024 bits to the existing set of

1024 bits representing iris features).
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4. Iris Recognition System

4.1. Iris Template Creation

Image quality influences the reliability of the feature set.

Consequently, a quality check is usually performed during

enrollment which is slightly longer than the verification

stage. We propose a two-stage procedure that leads to tem-

plate internal consistency. This procedure has been applied

in the prototype system. The first stage encompasses raw

image quality check (calculation of the focus factor, eye-

lids/eyelashes coverage, identification of existence of spec-

ular reflections). After a successful check, eyeball rotation

is corrected using correlation methods for all three images

used for template creation. Since the aim is to enroll sam-

ples which are close in terms of the comparison score, the

second stage investigates the consistency of acquired im-

ages as measured within the feature space. To check this,

all possible comparisons are made between template fea-

ture sets. To pass the consistency check, all resulting scores

should be lower than the acceptance threshold. We used

thresholds established at the estimation stage (Subsecs. 3.6

and 3.7) as those values guarantee no sample errors, yet

it is a choice of system administrator who may tune the

template quality settings adequately to his needs. Conse-

quently, as the iris template we select this feature set, for

which the distance to the remaining feature sets is minimal

(best candidate approach).

4.2. Eyeball Rotation Correction and Iris Verification

Small eyeball rotations in consecutive images may lead

to considerable deterioration of within-eye comparison

scores, Fig. 11. Since during verification the iris image

Fig. 11. Comparison score ξ vsersus mutual rotation angle α
for two images of the same iris (results shown for one sector).

Note that without rotation compensation, a non-match would be

observed. The eye rotation tolerance αtol (given the acceptance

threshold) of a single code, illustrating its robustness to eyeball

rotations is also marked; for BioBase data and the acceptance

threshold τ0 = 0.3486 the average tolerance α tol ≈ π/60.

corresponding to the template is unavailable, the rota-

tion cannot be corrected by maximizing the correlation

between the images and another methodology must be

applied.

We use an iterative minimization of the comparison score

between Zak-Gabor-based features determined for a set of

small artificial shifts of the iris stripes being verified. This

method is applied to both iris sectors independently, and

the resulting codes corresponding to both sectors are com-

pared separately. Obtained scores are averaged into the final

score. However, correcting each incoming image is not rea-

sonable, since a number of them do not require additional

action, due to initial code robustness to eyeball slope. Thus,

we apply a staged verification procedure that compensates

for eye rotation only if necessary, i.e., if the comparison

score does not drop below the acceptance threshold. Such

an approach takes into account engineering aspects, since

this minimizes the verification time. Approximately 55% of

iris images in BioBase captured for verification do not

require rotation correction for the threshold τ0 = 0.3486,

and in the remaining genuine transactions we needed only

5 iterations (i.e., calculation of iris template for artificially

shifted iris stripes) to find the best match.

5. System Evaluation

5.1. Recognition Methodology Performance

For the purpose of evaluation, Ng = K = 180 genuine and

Ni = K(K − 1)/2 = 32,220 impostor comparisons were

made, where K = 180 is the number of verification im-

Fig. 12. Sample distributions of scores for non-personalized

recognition method employing iterative minimization for eyeball

slope correction. No sample errors were encountered for BioBase

data and selected threshold τ rot = 0.3350.

ages, each representing different eye. Prior to the eyeball

slope correction procedure, one should select the accep-

tance threshold τ rot. Note that the thresholds τ rot = 0.3486
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Fig. 13. Same as in Fig. 12, except the personalized recogni-

tion method is employed. No sample errors were encountered for

BioBase data and selected threshold τ rot
pers = 0.2610.

used for Zak-Gabor-based coding for initially rotated sam-

ples (and τ rot
pers = 0.2185 when the personalized coding

is used) are no longer valid, since the score calculation

in this approach differs, i.e. it is iteratively minimized.

Thus, to select the operating thresholds, full inspection

is performed for all possible eyeball rotations and we

set τ rot = 0.3350 and τ rot
pers = 0.2610 for non-personalized

and personalized coding, respectively. No sample errors

were encountered for BioBase data and selected thresholds,

Figs. 12 and 13.

5.2. Operating Times

The methodology (and its variants) presented in the pa-

per was implemented as the Software Development Kit [6]

and was integrated with the IrisCUBE camera forming

Table 1

Iris image acquisition and processing times achieved by

the prototype system employing IrisCUBE camera,

averaged for all BioBase acquisition sessions

Task
Average time

[s]

Head positioning by skilled volunteer 2.5

Acquisition of frames 1.0

Best frame selection 1.5

Iris boundary localization 0.8

and occlusions detection

Representation of iris image 0.5

as a sequence of stripes

Zak-Gabor coefficients calculation 0.05

and transformation into a features vector

Matching (with iterative 0.25

minimization)

Total 6.6

a standalone recognition system prototype. Current proto-

type is based on a PC workstation equipped with a 2.0 GHz

Pentium processing unit, 1 GB RAM, controlled by

Windows XP operating system, yet the system require-

ments guarantying reasonable processing times are much

lower.

Table 1 summarizes acquisition and processing times

measured for all IrisCUBE acquisitions for BioBase. Al-

though short training was offered to volunteers prior to

data collection, the acquisition times are prone to relatively

high uncertainty, due to the huge variability and unpre-

dictability of human skills while positioning the subject’s

head. Processing times depend only on software implemen-

tation, hence the results may be predicted with a higher

certainty in comparison to the volunteer behavior. The en-

tire verification time, including the volunteer’s mandatory

cooperation and image acquisition, typically does not ex-

ceed 7 s, which is recognized by volunteers as an accept-

able result.

6. Summary

The iris recognition project detailed in this paper encom-

passes the entire recognition system. We proposed a sys-

tematic approach of selection of the Zak-Gabor based

coding parameters employing variance analysis of the iris

features. The procedure allows selecting the frequency

and scale of the image transformation appropriate in terms

of the system reliability to the given iris image quality

and resolution. This feature selection procedure can be ap-

plied also to other iris coding methods based on wavelet

analysis. Presented methodology was used in a number of

applications, for instance in remote access scenario and

biometric smart card development. It was also evaluated

in iris recognition system prototype with eye aliveness

detection.
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