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Abstract—Performance of the face verification system depend

on many conditions. One of the most problematic is varying

illumination condition. In this paper 14 normalization algo-

rithms based on histogram normalization, illumination prop-

erties and the human perception theory were compared using

3 verification methods. The results obtained from the exper-

iments showed that the illumination preprocessing methods

significantly improves the verification rate and it’s a very im-

portant step in face verification system.
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1. Introduction

Face is one of the most commonly used by people to
recognize each other. Over the course of its evolution,
the human brain has developed highly specialized areas
dedicated to the analysis of the facial images [1]. In the
past decades, face recognition has been an active research
area and many types of algorithms and techniques has
been proposed to equal this ability of human brain. It
is however questioned whether the face itself is a suffi-
cient basis for recognizing, a person from large popula-
tion with great accuracy. Indeed, the human brain also re-
lies on many contextual information and operate on limited
population.
The most problematic perturbation affecting the perfor-
mance of face recognition systems are strong variations in
pose and illumination. Variation between images of differ-
ent faces in general is smaller than taken from the same
face in a variety of environments [2]. In face verification
system authenticates a person’s claimed identity and decide
that claimed identity is correct or not. In this case we have
limited user group and in the most cases we can forced
or demand frontal pose orientations. Unfortunately we still
have problems with illumination condition. Face recogni-
tion tests [3]–[6] revealed that the lighting variant is one of
the bottlenecks in face recognition/verification. If lighting
conditions are different from the gallery identity decision
is wrong in many cases.
There are two approaches to this problem. Model-
based [7], [8] and preprocessing-based. Model-based at-
tempt to model the light variation. Unfortunately, this re-
quires large amount of training data and sometimes fall
when we have complicated lighting configuration.

The second approach using preprocessing methods to
remove lighting influence effect without any additional
knowledge. In this paper, we compare 14 normalization
algorithms using 3 verification methods.

2. Histogram Normalization

Illumination preprocessing on 2D images can be divided
into two groups: histogram transformation and photometric
normalization.

2.1. Histogram Equalization (HQ)

Histogram normalization is one of the most commonly
used methods. In image processing, the idea of equaliz-
ing a histogram is to stretch and/or redistribute the original
histogram using the entire range of discrete levels of the
image, in a way that an enhancement of image contrast is
achieved. The most common used histogram normalization
technique is histogram equalization where one attempts to
change the image histogram into a histogram that is con-
stant for all brightness values. This would correspond to
a brightness distribution where all values are equally proba-
ble. For image I(x,y) with discrete k gray values histogram
is defined by:

p(i) =
ni

N
, (1)

where: i ∈ 0,1, . . . ,k−1 grey level and N is total number
of pixels in the image.

Transformation to a new intensity value is defined by:

iout =
k−1

∑
i=0

ni

N
=

k−1

∑
i=0

p(i) . (2)

Output values are from domain of [0,1]. To obtain pixel
values in to original domain, it must be rescaled by the
k−1 value.
Figure 1 shows two face images with different light con-
dition and preprocessed images with corresponding his-
tograms.

2.2. Histogram Truncation and Stretching (HT)

Histogram stretching consists in distributing the pixel ap-
pearance frequencies over the entire width of the histogram.
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Fig. 1. Two sample images with histogram before (upper) and after (lower).

Fig. 2. Two sample images with histogram after histogram truncation and stretching.

Thus, it is an operation that consists in modifying the his-
togram in such a way as to distribute the intensities on the
scale of values available as well as possible. This amounts
to extending the histogram so that the value of the low-
est intensity is zero and that of the highest is the maxi-
mum value. In this way, if the values of the histogram
are very close to each other, the stretching will make it
possible to provide a better distribution in order to make
light pixels even lighter and dark pixels closer to black.
Additional ten percentage of the lower and upper ends of
an image histogram are truncated. This solves the problem
when few very bright or dark pixels have the overall ef-
fect of darkening or brightening the rest of the image after
rescaling (see Fig. 2).

2.3. Histogram Modeling

Histogram preprocessing is not only limited for HQ and
stretching. We can model it with different density func-
tion where brightness distribution will be mapped to a spe-
cific probability distribution. According to [9], [10] general
mapping function for the distribution function f (x) may be
calculated from:

N −R + 0.5

N
=

t
∫

x=−∞

f (x)dx , (3)

where: R is rank of the pixels ordered from smallest inten-
sity to the largest intensity value with assigned rank from
1 to N.

The right side of Eq. (3) represents target cumulative
distribution function (CDF). The searching t parameter
will be computed by from the inverse CDF of the left
side Eq. (3).

2.4. Normal Distribution (ND)

The first consider distribution is normal distribution, which
is the most commonly observed probability distribution. It
was first described by De Moivre in 1733. Laplace used the
normal curve in 1783 to describe the distribution of errors.
Subsequently, Gauss used the normal curve to analyze as-
tronomical data in 1809. The normal curve is often called
the Gaussian distribution and its defined by the following
equation:

f (x) =
1

σ
√

2π
exp

(−(x− µ)2

2σ2

)

, (4)

where: µ is the mean and the second, σ is the standard
deviation.
In our experiments (Fig. 3) we use the standard normal
distribution, where µ = 0 and σ2 = 1.

2.5. Lognormal Distribution (LN)

The lognormal distribution is an asymmetric distribution.
Many physical, chemical, biological, toxicological, and sta-
tistical processes tend to create random variables that follow
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Fig. 3. Two sample images with histogram after mapping the
histogram to a normal distribution.

lognormal distributions. For example, lognormal distribu-
tions can model certain instances, such as the change in
price distribution of a stock or survival rates of cancer pa-
tients or failure rates in product tests.
Density function for this distribution is defined by:

f (x) =
1

xσ
√

2π
exp

(−(lnx− µ)2

2σ2

)

, (5)

for our experiments (Fig. 4) mean µ = 0 and standard de-
viation σ = 0.25.

Fig. 4. Two sample images with histogram after mapping the
histogram to a lognormal distribution.

2.6. Extreme Value Distribution (EV)

The third distribution is called extreme value distribution
and appropriate for modeling many rare events, and has the
following probability density function:

f (x) = σ−1 exp
(x− µ

σ

)

exp

(

− exp
(x− µ

σ

)

)

, (6)

where: µ is the location parameter, and σ is the distribution
scale (set to 0 and 1 in the experiments, see Fig. 5).

Fig. 5. Two sample images with histogram after mapping the
histogram to a extreme value distribution.

2.7. Exponential Distribution (EN)

The exponential distribution is a commonly used distribu-
tion in reliability engineering. Density function for this
distribution is defined by:

f (x)− 1

β
exp

(−x

β

)

, (7)

where β is the scale parameter. In our experiments (Fig. 6)
we use the standard exponential distribution, where β = 1.

Fig. 6. Two sample images with histogram after mapping the
histogram to a exponential distribution.

3. Photometric Normalization

The second approach for illumination normalization is
based on human perception theory and illumination prop-
erties.

3.1. Single Scale Retinex (SSR)

In 1971 Land and McCann introduce the idea that im-
age I(x,y) is the product of two components, illumination
L(x,y) and reflectance R(x,y) [11].

I(x,y) = L(x,y)R(x,y) . (8)

Illumination contains geometric properties of the scene
(i.e., the surface normals and the light source position) and
reflectance contains information about the object. Based on
the assumption that the illumination varies slowly across
different locations of the image and the local reflectance
may change rapidly across different location, the pro-
cessed illumination should be drastically reduced due to
the high-pass filtering, while the reflectance after this fil-
tering should still be very close to the original reflectance.
The reflectance can be also finding by dividing the image
by the low pass version if the original image, which is
representing illumination components.
Land proposed a technique called retinex, which is a com-
bination of the words retina and cortex. Its try to explain
model of the human visual system. The most interesting
point for illumination normalization is the assumption, that
perception depends on the relative or surrounding illumi-
nation. It means that reflectance R(x,y) equals the quotient
of image I(x,y) and the illumination L(x,y) calculated by
the neighborhood of I(x,y). It improves the visibility of
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dark object while maintaining the visual different of the
light area.
Single scale retinex algorithm proposed by Jobson and
Woodell [12] defines a Gaussian kernel to estimate
the neighborhood illumination. Additional the logarithmic
transformation is employed to compress the dynamic range.
Reflectance image is takes from the form:

RSSR(x,y) = log I(x,y)− log
[

F(x,y)∗ I(x,y)
]

, (9)

where: ∗ denotes the convolution operation and F(x,y) is
the surround Gaussian function.
Figure 7 shows two sample face images received from sin-
gle scale retinex.

Fig. 7. Two sample images received from SSR.

3.2. Mutli Scale Retinex (MSR)

Rahman [13] improved previous method by estimating illu-
mination as a combination of several weighting (ωn) Gaus-
sian filters with different scales (N). Reflectance image is
defined by:

RMSR(x,y)=
N

∑
n=1

ωn

{

log I(x,y)−log
[

F(x,y)∗ I(x,y)
]

}

. (10)

Two sample face images received from multi scale retinex
are shown in Fig. 8.

Fig. 8. Two sample images received from MSR.

3.3. Adaptive Single Scale Retinex (ASR)

ASR was presented by Park in [14]. The proposed method
estimates illumination by iteratively convolving the input
image with a 3× 3 smoothing mask weighted by a co-
efficient via combining two measures of the illumination
discontinuity at each pixel, see Fig. 9.

Fig. 9. Two sample images received from ASR.

3.4. Homomorphic Filtering (HOMO)

Homomorphic filtering [15] using the same properties as
previous methods, that reflectance is connected with high
frequency. In this case high-pass filtering is performed in
frequency domain using Fourier transform. The processed
image can be found by following equation:

I′ = e
Re

(

IFT (FT (log I)∗H)
)

, (11)

where: H is a high-pass Butterwoth’s filter, FT – Fourier
transform, IFT – inverse Fourier transform.
In Fig. 10 are shown two sample images received from
homomorphic filtering.

Fig. 10. Two sample images received from HOMO.

3.5. Single Scale Self Quotient Image (SSQ)

The self quotient image was developed by Wang [16] in
2004 and is based on Land’s human vision model. From
Eq. (8) it can be derived that the reflectance is given by:

I(x,ky)
1

L(x,y)
= R(x,y) . (12)

Because illumination can be consider as the low frequency
component then, it can be estimated as:

L(x,y) ≈ F(x,y)∗ I(x,y) , (13)

with F(x,y) is a low pass filter.
From Eqs. (12) and (13) the self quotient image Q(x,y) is
defined as:

Q(x,y) =
I(x,y)

F(x,y)∗ I(x,y)
≈ R(x,y) . (14)

Two sample face images received from single scale self
quotient are shown in Fig. 11.
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Fig. 11. Two sample images received from SSQ.

3.6. Multi Scale Self Quotient Image (MSQ)

Properties of the previous Q(x,y) are dependent on the ker-
nel size of filter F(x,y). If it will be to small than Q ≈ 1

and all reflectance information will be lost. On the other
hand if kernel size will be too large then will appear halo
effects near edges. To avoid this problems Wang propose
multi scale approach where:

Q(x,y) =
n

∑
k=1

mkT{Qk(x,y)} , (15)

where: mk are weighting factors, T is nonlinear function
and Qk are quotient images corresponding to k scale.

Qk(x,y) =
I(x,y)

( 1

N
WkGk

)

∗ I(x,y)
, k = 1, . . . ,n , (16)

where: N is normalization factor, WkGk are weighted Gaus-
sian kernels.
Figure 12 shows two sample face images received from
multi scale self quotient.

Fig. 12. Two sample images received from MSQ.

3.7. DCT-Based Normalization (DCT)

This technique [17] is based on fact that illumination can
be consider as the low frequency component. First image

Fig. 13. Two sample images received from DCT-based normal-
ization.

is transform into frequency domain using discrete cosine
transform (DCT) and then some number of DCT coeffi-
cients are sets to zero. This removes some of the low-
frequency information contained in the images and re-
duce illumination influence (see Fig. 13). Target image
is obtained after applying inverse discrete cosine trans-
form (IDCT).

3.8. Wavelet-Based Normalization (WAV)

Next method combine two approaches based on histogram
normalization and illumination low frequency properties.
In the first step discrete wavelet transform is used to decom-
pose the facial image into approximation, horizontal, verti-
cal and diagonal components. The approximation compo-
nents represents low level image components. Next equal-
izes the histogram of the approximation coefficients matrix.
As a final step it performs an inverse wavelet transform to
recover the normalized image.
In Fig. 14 are shown two sample face images received after
wavelet-based normalization.

Fig. 14. Two sample images received after wavelet-based nor-
malization.

4. Feature Discrimination

Biometric pattern verification is conceptually different from
traditional class membership verification. This is involving
with following terms:

1. We deal always with a subset of the whole collection
of classes.

2. The number of classes used in training time of recog-
nition system is small and usually different from
classes which are recognized in exploiting time.

Since natural human centered pattern classes cannot be
used in person verification biometric systems, another cat-
egorization has to be sought. It appears that differences
of human features for the biometric measurements of the
same person (within-class differences) and for different per-
sons (between-class features) create a consistent categoriza-
tion including two specific classes. The specificity of this
two classes follows from the fact that means of these two
classes are both equal to zero. Moreover, for the within-
class feature variation (varw) could be sometimes greater
than between-class feature variation (varb), i.e., usually the
squared within-class errors are of the same magnitude as
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squared between-class errors. Therefore, it is natural to
look for such a linear transformation W : RN → Rn of orig-
inal measurements x ∈ RN (e.g., vectorized pixel matrix of
face image or its 2D frequency representation) into a tar-
get feature vector z = W tx for which intra-class differences
are decreased while inter-class differences are increased.
This is the problem of the classical linear discriminant
analysis (LDA) [18]. However from the previous works
described in [19] it is already known that in case of face
verification the dual linear discrimination analysis (DLDA)
leads to better results than the optimization of Fisher ra-
tio (LDA). Difference between DLDA and Fisher LDA if
a way we founding optimal W :

Fisher LDA W = argmaxw

varb(Z)

varw(Z)
,

dual LDA W = argminw
varw(Z)

varb(Z)
,

(17)

where: Z = [z1, . . . ,zL] and L number of images. In our next
experiments we are using LDA, DLDA and oldest method
principal components analysis [20]. PCA-based face recog-
nition method was proposed in [21] and became very pop-
ular. Using PCA method we find a subset of principal
directions (principal components) in a set of the training
faces. Then like in LDA we project faces into the space of
these principal components and get the feature vectors.

5. Experimental Results

The experiments are carried out on normalized images
taken from the following databases (Fig. 15):

– Altkom (80 persons 1680 images),

– Banca (52 persons 474 images),

– Valid (106 persons 1575 images),

– WUT database (143 persons 769 images).

Which gives 391 persons with 4525 images. Picture from
this databases were taken in different light conditions and
except the Altkom database in some time interval. Accord-
ing to [22] images are normalized to the size 46×56 based
on fixed eye center position.
To quantify verification performance we are using receiver
operating characteristic (ROC). This characteristic shows
the tradeoff between two types of verification’s errors false
rejection error against false acceptance error. To more clar-
ity presentation in Table 1 we show only the equal error
rate (EER), which is the value were false rejection and false
acceptance errors are equal. Based on the results we can
conclude that except homomorphic filtering all compared
methods gives verification improvements, especially using
DLDA as the discriminative algorithm. The best results
was conducted using multi scale quotient images where we
get 38% less errors.

Fig. 15. Face databases – from upper Altkom, Banca, Valid,
WUT.

Table 1
Performance comparison of different normalization

methods

EER
OCA LDA DLDA

ORG 0.2138 0.2571 0.2173
HQ 0.1737 0.1868 0.166
HT 0.1935 0.1976 0.1656
ND 0.1681 0.1746 0.164
LN 0.1772 0.2058 0.1857
EV 0.1585 0.1857 0.1521
EN 0.1535 0.1845 0.165
SSR 0.1941 0.2178 0.1896
MSR 0.1987 0.2073 0.1883
ASR 0.1423 0.1898 0.1458

HOMO 0.3464 0.3376 0.26
SSQ 0.1566 0.1957 0.15
MSQ 0.1494 0.1865 0.1346

DCT 0.226 0.2287 0.1854
WAV 0.1813 0.17 0.1435
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6. Conclusion

In this paper we analyze 14 illumination invariant algo-
rithms. The performance of the presented methods were
compared on database contains 4525 images of 391 per-
sons taken in different light conditions. The results ob-
tained from the experiments showed that the illumination
preprocessing methods significantly improves the verifica-
tion rate. The best results were achieved using human per-
ception related MSQ algorithm, with 38% less verification
errors compared to the same DLDA discriminant method
with using not preprocessed images. Very promising seems
to be combination of both analyzing approaches (histogram
and photometric normalization) as a field to future work.
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