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Abstract—This paper presents the automated speech signal

segmentation problem. Segmentation algorithms based on en-

ergetic threshold showed good results only in noise-free envi-

ronments. With higher noise level automatic threshold calcu-

lation becomes complicated task. Rule based postprocessing

of segments can give more stable results. Off-line, on-line and

extrema types of rules are reviewed. An extrema-type segmen-

tation algorithm is proposed. This algorithm is enhanced by

a rule base to extract higher energy level segments from noise.

This algorithm can work well with energy like features. The

experiments were made to compare threshold and rule-based

segmentation in different noise types. Also was tested if multi-

feature segmentation can improve segmentation results. The

extrema rule-based segmentation showed smaller error ratio

in different noise types and levels. Proposed algorithm does

not require high calculation resources. Such algorithm can be

processed by devices with limited computing power.

Keywords—rule base, speech analysis, speech endpoint detec-

tion, speech segmentation.

1. Introduction

Speech segmentation is a process of labeling signal areas

with symbolic information in some application. Speech

segmentation is important to various automated speech pro-

cessing algorithms: speech recognition, speech corpus col-

lection, speaker verification etc. In many papers speech

segmented using wavelet [1], fuzzy methods [2], artifi-

cial neural networks [3] and hidden Markov models [4].

Such segmentation algorithms give high accuracy, but also

require large amount of calculation resources. In some

cases this is not possible, such as mobile devices, when

calculation power is weak and/or network speed is lim-

ited. In such situations, it is needed to have an algorithm

to extract segments as accurate as possible and to send

only them through network for external processing. Com-

mon approach to speech signal zone identification is using

a threshold value.

Threshold based segmentation works in this way: feature

samples which exceed chosen threshold T H are marked as

useful signal areas, see Fig. 1. In this case, if threshold is

too low THlow the various noisy segments will be marked

as signal, if too high T Hhigh – important information at the

beginning and the end may be lost. If it is known, that in the

signal there is only one segment, it is possible to calculate

threshold by evaluating noise samples in the beginning and

the end of speech signal [5]. This algorithm for continuous

speech will not work if there is no enough noisy signal

at the ends of the signal. To have more accurate results,

Lu proposed to use multi-feature segmentation supported

by rule base to discriminate speech from music [6].

Fig. 1. Threshold-based segmentation.

To improve segmentation it is possible to use background

knowledge of vocal tract and peculiarities of the language.

Common segmentation errors: short peaks in the signal are

noise segments, two segments with short space in between

can be a sibilant consonant. This knowledge can be defined

as a rule base, and be used in postprocessing of initial seg-

mentation results. Rule based postprocessing of segments

can give more stable results [7]. Off-line and on-line rules

are working with different types of signals. Signals re-

trieved from corpus is possible to postprocess with off-line

rule base. Such rules will not perform good in on-line

mode, when the signal being processed from microphone.

1.1. Off-Line Rules

The postprocessing using a rule base can fix errors like

segment interruption at the ends and short segments of

noise. Waheed [7] proposed to use two rules (li – the

ith segment length; di i+1 – distance between i and i + 1

segment):

– if li < minLength and di i+1 > minSpace, then the

segment i is discarded, similarly if li+1 < minLength

and di i+1 > minSpace, then the segment i+1 is dis-

carded,

– if (li or li+1) > minLength and di i+1 > minSpace and

(li + li+1) < maxLength, then the two segments are

merged, and anything between the two segments that

was previously left, is made part of the speech.

The rule model proposed by Waheed works in off-line

mode, when an earlier recorded signal is processed. This

model for postprocessing requires to have two segments,

that causes processing latency, li + di i+1 + li+1, which can

be not acceptable for automated speech recognition. On-

line rules must cause smaller latency.
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1.2. On-Line Rules

In on-line mode, when signal processing is part of a record-

ing stream, a segment can be recognized faster if the recog-

nition is done in parallel, as soon as this segment starts.

For that purpose it is needed to have rules for current

frame [8], see Fig. 2. Such rule base has validation la-

tency. minLength, until recognition module can start to

process the segment in parallel and minSpace – till the end

of segment is found.

Fig. 2. Postprocessing rules for each frame: 0 – noise frame,

1 – speech frame, c – current position, si – segment start, ei –

segment end.

The rule base engine consists of working memory, asser-

tions and a set of IF-THEN rules. The rule base inference

is defined as a forward chaining system. The interpreter

walks through the rules and applies them in order to take

certain action. The rule is selected using a “first applicable”

conflict resolution strategy, where rules have a specified or-

der. Thus firing the rule with highest priority that matches

current frame facts.

Rules specify how to act on the assertion set:

– R1 signalFrame∧ noiseState : mark frame as seg-

ment start,

– R2 signalFrame∧ startState∧ validLength : accept

start marker,

– R3 signalFrame∧ endState : join to previous seg-

ment,

– R4 noiseFrame∧ startState∧¬validSpace : reject

segment,

– R5 noiseFrame∧segmentState : mark frame as seg-

ment end,

– R6 noiseFrame ∧ endState ∧ validSpace ∧

¬validLength : reject segment,

– R7 noiseFrame∧segmentState : accept marked seg-

ment end.

The noise states can last as long as noise frames are pro-

cessed. Same thing is applied for signal state with segment

frames. From the start state the machine can go to a noise

state if segment start has rejected (R6) or to a segment state

if it approved (R2). From the end state it can go to noise

state when segment end is approved (R7) or to segment

state if segments are joined (R3).

On-line and off-line rule-based approaches are dependent

on result that gives a segmentation algorithm. Threshold

algorithms can be used for such frame classification, but

this approach has weaknesses that were mentioned be-

fore. Automated syllables-like strong segments extraction

was described by [9]. Similar extrema-based segmenta-

tion can be used to find strong elements in the signal.

This paper presents such extrema-type rule-based algo-

rithm.

This article is organized in four sections: Section 2 de-

scribes proposed segmentation algorithm, in Section 3

experiment results are presented and Section 4 is a con-

clusion.

2. Extrema-Based Segmentation with

On-Line Rule-Based Processing

Proposed segmentation is based on detecting local minima

and maxima of signal feature. Segments are constructed

using extrema and processed with the help of a rule base

(see Fig. 3).

Fig. 3. Extrema-based segmentation: 0 – noise segment, 1 –

speech segment, c – current position.

2.1. Extrema-Based Segmentation

Extrema-based segmentation is working with energy-like

signal features. First of all a feature value is calculated

for given signal sample. Local minimum and maximum

are calculated. Atomic segments are initialized. A single

atomic segment contains two minima and a single maxi-

mum in between. In the next step atomic segments are pro-

cessed with a rule-based module and complex segments are

constructed. A complex segment has its own features, as:

A – area(power), S – number of sub-segments, L – length

(see Fig. 4). Complex segments are classified into classes

Fig. 4. Segment features.

using such defined segment features. Most powerful seg-

ments represent parts of vowels. Less powerful segments

represent transitions between vowels (consonants) and oth-

ers segments are background noises.
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Fig. 5. Extrema-based segmentation with rule-based postprocessing.

2.2. On-Line Rule-Based for Extrema Segmentation

The segmentation algorithm state diagram is depicted in

Fig. 5. The rule base receives calculated values from the

segmentation module and it calculates assertions. Deci-

sion are made using these assertions in the rule interpreter

module. Instruction executor send an event, dependent on

the decision, to the processing module: automated speech

recognition, automated speech corpus collector etc.

A simplified signal feature model shows how rules can be

used, see Fig. 6. The processed signal has a lot of atomic

segments. Extracted atomic segments has to be rejected or

grouped into complex segments that point the areas where

speech signal exists.

Fig. 6. Feature simplified segment model.

It is possible to define rules that can be used for segment

union and rejection. Examples of possible rules: segments

labeled by S(signalIncreasing), Z(signalDecreasing) and

M(variation) can be joined and W (weakSegment) can re-

moved.

Rules specify how to act on the assertion set:

– R1 isMinimum: a change point detected,

– R2 isMaximum∧signalIncreasing: join previous and

current segments,

– R3 isMaximum ∧ signalDecreasing: join previous

and current segments,

– R4 isMaximum∧ previousWeakSegment: reject pre-

vious segments,

– R5 isMaximum: accept previous segment.

Rules interpreter is responsible for invoking certain actions

and context changes, see Fig. 5. Such rules cause segment

detection latency up to time point when a next maximum

is found.

Proposed algorithm should perform better than a threshold

algorithm in different environment types. The extrema-

based algorithm should adapt automatically to different

noises. It should work well with different features such

as spectral flux, signal entropy, loudness, envelope, LPC

residual. Experiments show [8] that rules-based segmenta-

tion results can be improved by using not a single feature,

but several features in parallel.

3. Experiment

For the experiments there were compared 3 types of

segmentation algorithms: threshold, dynamic (adaptive)

threshold and the extrema rule-based algorithm. Threshold-

based segmentation calculates the global statistics (his-

togram) of a feature for a complete recording and then

determines a fixed decision threshold [10]. This algo-

rithm showed good performance for single word detection

in a signal. Dynamic threshold-based algorithm was work-

ing on same principle, only threshold was adjusted every

10 frames. Rule based segment extractor was working on

proposed algorithm. Segmentation results of all 3 algo-

rithms were postprocessed by the rule base [8] to make the

results more accurate.

In experiment the noisy speech corpus Noizeus was used.

It was developed to facilitate comparison of speech en-

hancement algorithms among research groups [11]. The

noisy database contains 30 sentences (from three male and

three female speakers), corrupted by 8 different real-world

noises and with different SNRs. The noise signals were

taken from the AURORA database: suburban train noise,

babble, car, exhibition hall, restaurant, street, airport and

train-station noise.

From the Noizeus speech corpus following speech samples

were taken: “The birch canoe slid on the smooth planks.”,

“He knew the skill of the great young actress.”, “Her purse

was full of useless trash.”, “Read verse out loud for plea-

sure”, “Men strive but seldom get rich.”, “The sky that

morning was clear and bright blue.”, “The set of china hit
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the floor with a crash.”. The Noizeus corpus distributes

audio signal in 8 kHz 16 bit mono audio format. The noise

signals were added to the speech signals at SNRs of 0 dB,

5 dB, 10 dB, and 15 dB. 198 speech samples were taken

in total.

Every segmentation algorithm was applied to signals de-

composed into 30 ms frames and with 66% overlap. Ham-

ming window was used to minimize the speech signal

discontinuities at the beginning and end of each analysis

frame. First order infinite impulse response filter was used

for pre-emphasis [5]. Automatically extracted segments

were compared with marked by the expert segments.

3.1. Result Evaluation

Experiment results are evaluated with modified voice activ-

ity detector minimum performance standard TIA/EIA-136-

250 [12]. In this standard there are 3 types of frames:

• Onset – few frames of speech at the beginning of

speech segment.

• Steady – speech frames between onsets and offsets.

• Offset – few frames of speech at the end of speech

segment.

Performance metrics are used:

• Probability of clipping speech onsets.

• Probability of detecting steady-state speech.

• Probability of clipping speech offsets.

• Normalized difference voice activity factor from

truth.

These 4 error values are combined into one criterion. Ideal

and testing segmentation results are processed in the same

time frame by frame. When an ideal segment is started, the

testing segment with the nearest boundaries are compared,

see Fig. 7. Also delta voice activity factor is estimated in

parallel.

Fig. 7. Segment evaluation by TIA/EIA-136-250: (a) ideal sig-

nal, (b) testing signal.

3.2. Experiment Results

There were executed two types of experiments. The first

one is to prove that rule based segmentation performs bet-

ter than threshold segmentation. In the second it is tested

if proposed algorithm shows better results in multi-feature

segmentation.

3.3. Single Feature Segmentation

In the first experiment series the spectral flux feature was

used as main segmentation feature. Spectral flux shows

rate of spectral change in a signal. It was chosen as it

showed good performance in speech segmentation [8]. The

experimental results are shown in Fig. 8.

Fig. 8. Segmentation errors in results of threshold, dynamic

threshold and rule-based segmentation.

Proposed rule algorithm overall performed better by 7.36%

in comparison with dynamic threshold and 9.33% in com-

parison with static threshold. As expected dynamic thresh-

old should perform slightly better than static one.

By comparing results in different type of noise types, ex-

trema type rule base segmentation performed with small-

est error ratio in all tested noise environments except the

restaurant noise (see Fig. 9). In the restaurant environment

Fig. 9. Segmentation error ratio comparison by noise type.

Fig. 10. Error ratio in rule, threshold and dynamic threshold-

based segmentation when SNR rises.
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Table 1

Error ratios indexed by SNR and noise types

Segmentation SNR [dB] Airport Babble Car Exhibition Restaurant Station Street Train

Dynamic 0 29.93% 30.75% 29.46% 29.78% 29.31% 28.77% 29.31% 28.79%

5 28.94% 29.57% 30.13% 28.65% 28.63% 28.46% 28.32% 30.69%

10 26.73% 24.51% 22.59% 26.59% 26.29% 24.66% 24.94% 26.98%

15 21.95% 22.32% 19.53% 23.18% 20.39% 24.74% 20.18% 21.13%

Threshold 0 47.57% 32.18% 55.54% 40.36% 17.38% 47.33% 28.65% 34.64%

5 25.63% 26.10% 44.75% 37.83% 22.60% 42.29% 30.32% 32.41%

10 30.42% 25.12% 25.88% 29.80% 16.10% 24.33% 32.38% 25.53%

15 13.97% 12.59% 18.19% 17.00% 19.55% 13.37% 25.50% 16.03%

Rules 0 23.36% 23.64% 17.50% 20.10% 26.80% 20.19% 19.03% 23.02%

5 23.61% 16.66% 20.94% 17.87% 24.92% 17.89% 19.23% 20.79%

10 18.56% 19.25% 18.59% 14.78% 16.94% 14.97% 18.50% 18.05%

15 17.16% 17.12% 15.52% 16.05% 17.24% 17.80% 15.58% 15.53%

music is played in background. The rule base made mis-

takes as this noise has many fluctuations. Proposed rules

failed to merge and reject segments that normally were ex-

pected so. Future investigation of rule base enhancement

may fix this problem. In the second place street and car

noises leaded to most mistakes. Dynamic threshold method

had stable results in all tested environments.

Figure 10 presents error ratio of segmentation results for

different noise level. Extrema type rule-based segmenta-

tion is more stable in higher noise levels, than threshold-

based segmentation. However dynamic threshold-based

segmentation performed similar in SNR = 15 dB, this was

caused by friendly conditions for noise level estimation.

Rule-based showed better performance in SNR = 5 dB and

SNR = 0 dB, as fluctuations created smaller segments and

allows more accurate segment detection.

In Table 1 error ratios are listed by noise levels and types

for each segmentation algorithm. Threshold segmentation

showed the worst result of all segmentation algorithms in

car noise with SNR = 0 dB, equals to 55.54% and the best

result in babble with SNR = 15 dB, equals to 12.59%. The

rule-based segmentation achieved the best result in exhibi-

tion noise, SNR = 10 dB equals to 14.78% and the worst

result in restaurant noise, SNR = 0 dB equals to 26.80%.

Threshold segmentation is less stable in different noise

types, but can show good performance in non-nosy en-

vironments.

The processing speed of each segmentation algorithm

was measured to find out how much CPU time extrema

segmentation process requires. In average a signal of length

2.3 s was processed in: 50 ms threshold, 55 ms dy-

namic and 69 ms extrema. Threshold-based and rule-based

segmentation time differ by 19 ms. This shows that in-

creased power demand is not significant. Such an algo-

rithm can be used in devices that have limited computation

power.

3.4. Multi-Feature Segmentation

The aim experiment of the multi-feature segmentation ex-

periment was to find out if parallel feature calculation can

perform better that single feature.

For the second experiment 6 features were chosen: spec-

tral flux, loudness, LPC residual, signal entropy, energy,

envelope. These features showed good result in speech seg-

mentation [8]. 41 possible combinations were created with

1 feature (6 combinations), 2 features (15 combinations)

and 3 features (20 combinations). Every feature of each

combination was processed in 3 steps:

– calculated feature values,

– segmented by selected algorithm,

– segmentation results were merged.

Merged final segmentation result was used to compare with

expert segmentation.

Multi-feature segmentation results are presented in Fig. 11.

It can be noted that the best result was showed by spectral

flux and loudness features. Other feature combinations with

spectral flux are in the top of the best results. spectral flux

feature alone is in the 6th place. This experiment showed,

that multiple feature usage may improve extrema type rule-

based segmentation results. Although, it is needed deeper

to investigate which feature group works better in noisy

environments.

Feature combination selection for threshold-based seg-

mentation was studied previously [8]. The order of feature

combinations presented in Fig. 11 is similar to the exper-

imental results with threshold segmentation. Although, in

our experiment continuous speech signals were tested in-

stead of short word commands, like in [8], also more types

of noises were tested. It was expected that segmentation er-

ror ratio will increase for continuous speech segmentation.
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Fig. 11. Multi-feature segmentation results with rule, threshold and dynamic threshold algorithms.

The segmentation with features: spectral flux and envelope

was higher error ratio in this experiment by 7.97% as in [8]

experiment.

4. Conclusions

In this paper an extrema type rule-based segmentation al-

gorithm was proposed:

• The main novelty is the postprocessing of extrema-

based segments by using several rules of segment

merging and deleting.

• The experiments showed that extrema rule-based seg-

mentation performed better than threshold or dy-

namic threshold-based algorithms by around 7%.

• The rule-based approach showed better result in high

noise levels environments.

• Multi-feature segmentation experiment showed that

the proposed algorithm it may also improve results

when using 2 or 3 features in parallel.

The rule-based algorithm showed weak results in some

noise type environments, this will be improved by tuning

rules in future works.
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