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Abstract—Since the notion of biometric template is not well

defined, various concepts are used in biometrics practice. In

this paper we present a systematic view on a family of template

concepts based on the L1 or L2 dissimilarities. In particular,

for sample vectors of independent components we find out how

likely it is for the median code to be a sample vector.
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1. Introduction

Biometric template is commonly understood as a certain

best representative of a set of enrolment data. This de-

scription does not actually makes a definition, since the

meaning of ‘representative’ is only intuitive and the mean-

ing of ‘best’ is also not defined. In fact, various under-

standing of those terms lead researchers to quite different

transformations of the enrolment data into the template.

In this paper we will sort out several meanings of the term

“the best representative” and discuss the resulting methods

of template construction.

2. Enrolment Measurements

as the Sample

We assume that the biometric enrolment sample X for

a given subject is a sample of size n in R
ℓ, i.e., it con-

sist of a finite sequence of biometric measurements

X = (x(1), . . . ,x(n)) , (1)

where each measurement x(i) is represented by a vector

x(i) =









x
(i)
1
...

x
(i)
ℓ









∈ R
ℓ . (2)

To differentiate between the sample elements (the vectors)

and vectors elements we call the latter the vector com-

ponents. In the probabilistic context, we always assume

that the sample vectors are independent and have identical

distribution (the i.i.d. sample). It is often useful to reinter-

pret the measurements as finite sequences of real numbers

x(i) =
(

x
(i)
1 , . . . ,xi

ℓ

)

; we will use either interpretation. Note

that we use upper indexes in parentheses to number the

measurements, and reserve lower indexes for their compo-

nents.

If ℓ = 1, the sample is called scalar. In particular, one may

consider scalar component samples that consist of selected

components of all sample vectors, namely

X j = (x
(1)
j , . . . ,x

(n)
j ), j = 1, . . . , ℓ . (3)

Elements of the scalar sample can be rearranged in a non-

decreasing order

x[1] ≤ x[2] ≤ ·· · ≤ x[n] , (4)

so that x[1] is the smallest sample element, x[r] is the rth

smallest, so that x[n] is the largest. The sample can thus be

represented by the ordered sample

(x[1], . . . ,x[n]) (5)

if the original order of sample elements is irrelevant. Note

that the ordered representation (5) is in general non unique

due to possible repetitions in the sample. This happens

in particular if a scalar sample is generated by a discrete

random variable whose support set is finite Y = {y( j), j =
1, . . . ,M}, y(1) < .. . < y(M). The sample can be then char-

acterized by the support values together with their multi-

plicities m j, namely, by the set

{

(y( j),m( j)), y( j) ∈ Y, j = 1, . . . ,M
}

. (6)

Certainly ∑M
j=1 m( j) = n. In particular, we will be interested

in the binary case with Y = {0,1}.

The enrolment sets used in biometrics can have more com-

plex structure. For instance, the measurements can be of

varying lengths, like in signature biometrics. In those cases,

the concepts discussed in this paper must be appropriately

modified.

3. Template Concepts

We now consider several concepts of the template for the

enrolment sample Eq. (1). All concepts employ the notion

of dissimilarity Dp between the sample and a vector, un-

derstood here as the average pth power of the Lp distance

of the vector to all the enrollment vectors

Dp(x,X) =
1

n
∑

x(i)∈X

d(x,x(i))p =
1

n
∑

x(i)∈X

ℓ

∑
j=1

∣

∣x j − x
(i)
j

∣

∣

p

=
1

n

ℓ

∑
j=1

∑
x
(i)
j ∈X j

∣

∣x j − x
(i)
j

∣

∣

p
, (7)
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where X j is jth component sample. In particular, Dp comes

down to the average distance (p = 1) or the average squared

distance (p = 2) between a vector and the enrollment vec-

tors. We often skip the index p when it is obvious from

the context.

Within this approach, we distinguish four elementary con-

cepts, each in either L1 or L2 versions, thus making to-

gether eight interpretations of the template. The templates

obtained by a search for “the best” sample vector will be re-

ferred to as template-S (for sample), and those obtained by

looking for “the best” vector, not necessarily being a sample

vector, will be called template-R (for real). The result of

the approach that combines the two will be called template-

RS. Finally, the template intended to minimize the average

dissimilarity between the sample vectors and an unknown

testing vector will be called template-T (for testing). Cer-

tainly, these elementary concepts are far from being exhaus-

tive, and many other, more sophisticated template concepts

can be introduced.

The solutions to the underlying minimizations problems we

discuss are typically not unique, and by Argminx∈Z(Dp) we

denote the set of vectors that minimize Dp over x ∈ Z.

In the first concept of the template, one of the enrolment

vectors is chosen to represent the sample.

Definition of template-S. The template is equal to any

enrolment vector that minimizes the average dissimilarity

Eq. (7) between this vector and the enrolment vectors of

the same subject, namely

x∗S ∈ X∗S def
= Arg min

x(k)∈X

Dp(x
(k),X) . (8)

Note that template-S is in general not defined uniquely;

it is even possible that all the enrolment vectors fulfil the

definition condition. Certainly, all x∗S ∈ X∗S lead to the

same minimal average dissimilarity

D
∗S
p

def
= Dp(x

∗S,X) for all x∗S ∈ X∗S . (9)

Template-S definition restricts the search to the enrolment

vectors. In the next definition the search is extended to the

entire R
ℓ.

Definition of template-R. The template is equal to any

vector that minimizes the average dissimilarity Eq. (7) be-

tween this vector and all the enrolment vectors of the same

subject, namely

x∗R ∈ X∗R def
= Arg min

x∈Rℓ
Dp(x,X) . (10)

The template here may not belong to the enrolment sample.

Again, the definition does not in general lead to a unique

solution. Unlike Eq. (8), definition Eq. (10) can be substan-

tially simplified: by Eq. (7), the minimization in Eq. (10)

can be performed separately for the sample components,

namely

min
x∈Rℓ

Dp(x,X) =
1

n

ℓ

∑
j=1

min
x j∈R

∑
x
(i)
j ∈X j

|x j − x
(i)
j |p . (11)

In the result, the definition of template-R, can be expressed

in an equivalent form:

The template is equal to any vector whose components min-

imize the average dissimilarities between these components

and the corresponding components of the enrolment vec-

tors, namely

x∗R
j ∈ X∗R

j
def
= Argmin

x∈R
∑

x
(i)
j ∈X j

|x−x
(i)
j |p = Argmin

x∈R

Dp(x,X j),

j = 1, . . . , ℓ . (12)

The minimization of template-R in R
ℓ has been in the above

formulation replaced by a series of minimizations in R,

which may computationally be much simpler. The minimal

dissimilarity is the sum of the component dissimilarities,

namely

D
∗R
p

def
= Dp(x

∗R,X) =
ℓ

∑
j=1

Dp(x
∗R
j ,X j) (13)

and certainly

D
∗R
p ≤ D

∗S
p , (14)

hence template-R is “better” than template-S. Note that the

minimization in Eq. (8) cannot be decomposed into com-

ponent sample minimizations due to a dependence between

the components of x induced by the restriction of x to en-

rolment vectors.

Simplification in template-R definition comes for the cost of

the template being not an element of the enrollment sample.

To overcome this, one may in a sense integrate a simplic-

ity of template-R definition with an intuitive need of the

template to be a sample element as realized by template-S.

In the next template concept, we will be looking for the

sample element closest to the reference vector calculated

according to the definition of template-R.

Definition of template-RS. The template is equal to any

enrolment vector that minimizes the distance to template-R,

namely

x∗RS ∈ X∗RS = arg min
x(i)∈X

d(x(i),x∗R) . (15)

Note that the dissimilarity comes down here to pth power

of the distance in Lp, thus the minimization just calls for

a minimization of the distance. The value of the Dp for

template-RS

D
∗RS
p = Dp(x

∗RS,X) (16)

certainly fulfils the inequality

D
∗R
p ≤ D

∗S
p ≤ D

∗RS
p , (17)

so it is the worst, in the sense of the average dissimilarity,

of the three templates considered so far.

All the concepts outlined above define the template as a cer-

tain representation of the sample, with formally sound but

arbitrary meanings of ‘representation’. This raises a ques-

tion whether ‘representation’ could not be defined less ar-

bitrarily. We thus propose a template concept based on the
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template use, introducing an unknown test vector x0 the

template will be compared to. Let g be a (Borel) function

that maps a sample (of a fixed size) in R
ℓ into a vector

in R
ℓ, i.e., g(X) = g(x(1), . . . ,x(n)) ∈ R

ℓ, and denote by GGG

the family of all such functions.

Definition of template-T. The template vector is equal to

the value of any vector-valued (Borel) function of the en-

rolment data that minimizes the conditional expected dis-

tance to the (unknown) test vector given the enrollment data,

namely

x∗T = g∗(x(1), . . . ,x(n)), where

g∗ ∈ Argmin
g∈GGG

EXd
(

x0,g(X)
)

, (18)

where x0 is a test vector, and EX denotes the conditional

expectation given X.

Here the minimization is performed over all (Borel) vector

functions of the template. The result is obviously not nec-

essarily one of the template elements. The minimization

in Eq. (18) can be performed separately for each compo-

nent of the vector function g, similarly to what we did for

template-R. Consequently, the definition of template-T, can

be replaced by the following equivalent concept:

The template is equal to any (Borel) vector-valued function

of the enrolment data whose each component minimizes

the expected distance to the corresponding component of

the test vector, namely

x∗T =







g∗1(X)
...

g∗ℓ(X)






, where

g∗j ∈ G∗
j = Arg min

g j∈G
EX

∣

∣x0
j −g j(X)

∣

∣

p
, (19)

where G is a family of (Borel) functions that map a scalar

sample into a scalar.

Within Bayesian context, we assume here that the test vec-

tor x0, and the template vectors x(1), . . . ,x(n) are indepen-

dent, identically distributed, parameterized by the same un-

known parameter vector ϑϑϑ , and moreover, that x0 and X

are conditionally independent given ϑϑϑ . We may further

rewrite G∗
j of Eq. (19) in the form

G∗
j = Arg min

g j∈G
EX|x

0
j(ϑϑϑ)−g j(x(ϑϑϑ))|p

= Arg min
g j∈G

EXEX,ϑϑϑ |x
0
j(ϑϑϑ)−g j(x)|p , (20)

so for each sample X and each (unknown) parameter vec-

tor ϑϑϑ

G∗
j = Arg min

g j∈G
EX,ϑϑϑ |x

0
j(ϑϑϑ)−g j(x)|p . (21)

In what follows we analyze some properties of the four

above template concepts in L1 and L2 spaces.

4. L1 Version of Template-R

As we earlier noticed, calculation of template-R, comes

down to a series of minimizations for scalar samples. We

will thus remind a classical issue of finding a real num-

ber x∗ closest on the average to all scalar sample elements,

i.e., the one that minimizes the average dissimilarity Eq. (7)

specified to L1, namely the average absolute distance

D1(x
∗;X)

def
=

1

n

n

∑
i=1

|x(i)− x∗| . (22)

Let us first notice that for scalar samples, the minimization

of D1 over R leads to one of the sample elements, e.a. the

minimizations over R and over X lead to the same result.

Proposition 1. For one-dimensional samples, minimiza-

tions of the average L1 distance to the sample elements

over all real values (real domain), and over all sample

values (sample domain) lead to the identical minimum

min
x∈R

D1(x,X) = min
x∈X

D1(x,X) (23)

and the solution set in the sample domain is a subset of the

one for the real domain

X∗S
1 ⊆ X∗R

1 . (24)

Proof. The function to be minimized is piecewise linear

and bounded from below. Hence the minimum always ex-

ists, and can be assumed either at a non-differentiability

point, namely one of the sample points x(1), . . . ,x(n), or at

the points of the closed segment between two neighboring

non-differentiability points (Fig. 1). In the finite support

case, the non-differentiability points are just the supporting

points y(1), . . . ,y(M) (of non-zero multiplicities).

Fig. 1. Two cases of the minimum location of D1.

Consequently, for scalar samples X ⊂ R, the points that

minimize D1 in the sample domain, minimize also D1 in

the real domain. In other words, in L1, template-S ful-

fills the requirements of the definitions of template-R and

template-RS.

Minimization of Eq. (22) has a well known solution, which

for scalar samples is related to the sample median. To for-

mulate it more precisely, we first recall the basic properties

of the sample median.
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4.1. Sample Median

For scalar samples, the sample median me(X) is understood

as any number that “bisects the ordered sample”. More

precisely, it has the property

size{i : x(i) ≤ me(X)} ≥ n/2 ,

size{i : x(i) ≥ me(X)} ≥ n/2 . (25)

The set of all values that fulfills Ineq. (25) will be called

the median set Me(x). If the sample size n is odd then

simply

me(X) = x[(n+1)/2].

Note that while in this case the sample median is defined

uniquely, this value may be taken by more than one sample

element: readily, when there are repetitions at the median

value, more than one sample element may take the identical

value equal to the median; we will call them the median

elements. This is why the requirements of Ineq. (25) must

also allow for sizes greater than the half of the sample

size.

If the sample size n is even, any number in the median set

Me(X) =
[

x[n/2], x[n/2+1]
]

, (26)

called here the median interval, fulfills the requirements

of Ineq. (25) hence the definition in this case may not be

unique. Apart from the values inside the median interval,

which are not sample values, Ineq. (25) is fulfilled also by

the two end points of this interval, which are the sample

values. If there are repetitions, x[n/2] can be equal to x[n/2+1]

so then the median interval shrinks to a single value, and

the median is again defined uniquely as the single element

of the median interval. Note that both in odd and even

sample sizes, more than one sample element can be equal

to the median.

To make the definition of median unique for any sample

size, one often chooses the middle of the median inter-

val as the median in the even sample size case, so then

me(X)
def
=

(

x[n/2] + x[n/2+1]
)

/2. We are interested in the me-

dian as a – non necessarily unique – solution to a minimiza-

tion problem, so we remain with the definition Eq. (26) for

even sample sizes, and often deal with median intervals

Me(X) rather then median values.

Summing up, the median, as an element of the median set,

can be equal to one or more sample elements, or be equal

to the values which are not sample elements at all (for even

sizes).

In the special case of odd-sized binary samples

me(X) =

{

0 if m(0) > m(1)

1 if m(0) < m(1) = 1(m(1)−m(0)) , (27)

where 1 denotes the step function, so the sample median is

equal to the sample majority value.

In what follows, we will always focus on odd-value sam-

ples. It yet straightforward to include also the even-size

samples.

4.2. L1 Minimization

We are now prepared to minimize Eq. (22) for scalar sam-

ples using an elementary reasoning. First we characterize

the function to be minimized. To avoid repetitions, sam-

ple points x(i) will be represented here by sample suport

points y(r).

Proposition 2 (Average distance). The following recursive

formula applies in the finite support case

δ (r) = δ (r−1) + 2m(r−1)

D1(y
(r),X) = D1(y

(r−1),X)+ |y(r)−y(r−1)|δ (r) , (28)

with

δ (0) = −n .

The proof of Eq. (28) is immediate and results directly from

Proposition 1.

Consequently, the value

min
x∈R

D1(x;X) (29)

is for odd n uniquely attained by the sample median, and

for even n is attained by any point of the median interval.

As seen from Proposition 2, for a given scalar sample,

D1 is segmentwise linear, with the slopes increasing from

some initial negative slope as x increases. Moreover, if n

is odd then the function decreases to the left of y((r−1)/2)

and increases to right of y((r−1)/2), where

δ (r) < 0 ,

δ (r+1) > 0 . (30)

Consequently, the function attains its minimum at y((r−1)/2),

which is the sample median. Similarly, if n is even, then

D1 decreases to the left of y(r/2) and increases to right of

y(r/2+1), hence it attains its minimum at all points of the

segment [y(r/2),y(r/2+1)] which is identical to the median

set.

4.3. Template-R: The Explicit Formula

The above discussion enables to find the vector that fulfills

the definition of the template-R in L1:

Proposition 3 ( L1 minimization in R
n). The template-R is

for odd n uniquely given by the vector of sample medians

of the component samples

x∗R = arg min
x∈Rℓ

D1(x,X) = me(X) =







me(X1)
...

me(Xℓ)






. (31)

For even n, the solution is not unique and is attained by any

vector whose components belong to the median intervals of

the corresponding component samples.
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The solution Eq. (31) will be in short called the median

vector or the median sequence, depending on the interpre-

tation. Note that for binary vector samples, the median

vector is identical to the majority code. The median vec-

tor (which fulfills the definition of template-R) is not in

general a sample vector. In fact, it is easy to see that

for two-dimensional binary samples, the median vector is

always equal to some sample element and thus template-

R and template-S are identical. However, there exist 3-

dimensional binary samples for which the median vector is

not an element of the sample. For instance, take x(1) =





1

1

0



,

x(2) =





1

0

1



 and x(3) =





0

1

1



. Then me(X) =





1

1

1



 is not equal

to any sample vector (Fig. 2).

Fig. 2. Example of a 3-dimensional binary median sample for

which the median vector is not a sample element. In the vector

interpretation (a) the sample elements are marked with filled cir-

cles, and the median vector is marked with a star. Similarly, in

the sequence interpretation of the vector sample (b) the sample

elements are marked with filled circles and joined by different line

types; the median sequence points are marked with stars.

5. L1 Version of Template-S

In the definition of template-S, the minimization of

D1(X,x) is performed over the sample elements, instead of

the entire R
ℓ. Consequently, this minimization cannot be

decomposed into independent minimizations in R, hence

D1 is minimized by a different vector than the one solv-

ing (29), and the resulting minimal L1 average distance

D
∗
1 is certainly worse.

We will now analyze what is the chance that template-S

is identical to template-R for finite support samples. We

additionally assume that the finite support sample vectors

have independent components (not necessarily binary), and

derive the probability that the median vector is a sample

vector. In this order, we first derive the median distribution

for finite support samples, and then the distribution of the

number of median vectors in the sample.

5.1. Sample Median Distribution

Consider a discrete scalar random variable ξ whose distri-

bution has a finite support Y ={y(1), . . . ,y(M)}. By P, F ,

and S, we denote its probability function, distribution func-

tion, and survival function, respectively, namely

P(y)
def
= P(ξ = y) ,

F(y)
def
= P(ξ < y) ,

S(y)
def
= P(ξ > y) , (32)

for y ∈ Y . Note that some authors use F(y) = P(ξ ≤ y),
S(y) = P(ξ ≥ y) and then the formulas below would look

differently.

To find the distribution of the ordered sample values for

finite support i.i.d. sample, we use the result of [1]. The

rth order statistic is equal to y if there are u = 0, . . . ,r−1

values less than y and w = 0, . . . ,n−r values greater than y.

The remaining s = n− u−w values must be equal to y.

Consequently, for n-element sample X , the probability that

the rth order statistic is equal to some y ∈ {y(1), . . . ,y(M)}
is given by

P(x[r] = y) =























































n−r

∑
w=0

(

n
w

)

P(y)n−w S(y)w ,

for y = y(1)

r−1

∑
u=0

n−r

∑
w=0

(

n
u

)(

n−u
w

)

F(y)u P(y)n−u−w S(y)w ,

for y = y(2), . . . ,y(M−1)

r−1

∑
u=0

(

n
u

)

F(y)u P(y)n−u ,

for y = y(M) .
(33)

To simplify the notation, we assume from this moment on

that the sample size is odd. Derivation for even-size sam-

ples must take into account the non-uniqueness of the me-

dian value, what makes the formulas a little more complex.

We now can easily find the median distribution for odd

sample sizes. Setting r in Eq. (33) to (n + 1)/2, which

corresponds to the median, we obtain the distribution µ of

the median

µ(y) = P(me(X) = y) =



































































n

∑
w=0

(

n
w

)

P(y)n−w S(y)w ,

for y = y(1)

n

∑
u=0

(

n
u

)
n

∑
w=0

(

n−u
w

)

×

×P(y)n−u−w F(y)u S(y)w ,

for y = y(2), . . . ,y(M−1)

n

∑
u=0

(

n
u

)

P(y)n−u F(y)u ,

for y = y(M) ,
(34)

where

n
def
=

n−1

2
. (35)

For example, for the binary case (Y = {0,1}, P(1) = p,

P(0) = q = 1− p) we have

µ(y) =















n

∑
w=0

(

n
w

)

qn−w pw , for y = 0

n

∑
u=0

(

n
u

)

pn−u qu , for y = 1 .
(36)
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While for the i.i.d. samples, the sample median converges

with the sample size to the population median if such is

uniquely defined, yet for samples sizes typically consid-

ered in biometrics, the two quantities may strongly differ

(see Fig. 3).

Fig. 3. Probability that the sample median is equal to one versus

the probability of success p for the scalar binary i.i.d. sample, for

several values of the sample size n. The population median is

equal to 1 for p > 0.5.

5.2. Number of Median Elements

Note that in the scalar sample there is at least one element

equal to the median, called here further the median ele-

ment. Typically, for scalar finite-support samples, there are

even more than one median element. We will derive the

distribution of the number of median elements in a scalar

finite support sample, irrespectively of the median value.

Denote by M the number of median elements in X and

by ν its distribution function, i.e.,

ν(z)
def
= P{M = z}, z = 0, . . . ,n . (37)

Proposition 4 (Distribution of the number of median ele-

ments in scalar finite-support samples). The distribution of

the number of median elements is given by

ν(s)=















































0 , for s = 0
(

n

s

)

M−1

∑
m=2

P(y(m))s
n

∑
u=n+1−s

(

n−s

u

)

F(y(m))u S(y(m))n−s−u ,

for s = 1, . . . ,n
(

n

s

)

M

∑
n=1

P(y(m))s (1−P(y(m)))n−s ,

for s = n+ 1, . . . ,n
(38)

Proof. The proof is given in Appendix A.

Corollary 1 (The binary case). For the binary sample we

obtain

ν(s) =

{

0 s = 0, . . . ,n
(

n
s

)(

ps qn−s + qspn−s
)

s = n+ 1, . . . ,n .
(39)

As we stressed, for vector samples (ℓ > 1) the median vec-

tor may not be equal to any sample vector. The question

arises, how likely it is that the median vector does belong to

the sample. For i.i.d. finite-support vector samples whose

sample vectors have independent components we now de-

rive the probability that there exists at least one median

vector among n sample vectors. Since we will be deal-

ing here with vector samples in R
ℓ with various ℓ, we

index the samples with their vectors lengths, i.e., Xℓ de-

notes a sample of ℓ-element vectors. Denote by MMMℓ the

number of median vectors in Xℓ and by νννℓ its distribution

function, i.e.,

ννν ℓ(z)
def
= P{MMMℓ = z}, z = 0, . . . ,n . (40)

Proposition 5 (Distribution of the number of median vec-

tors for finite-support independent component vector sam-

ples). The distribution of the number of median vectors in

the sample is for ℓ = 2,3, . . . given recursively by

ννν1(z) = ν(z), z = 0, . . . ,n

νννℓ(z) =
n

∑
z′=z

(

z′

z

)

νννℓ−1(z
′)

n−z′+z

∑
s=z

ν(s)

(

n−z′

s−z

)

(

n
s

) ,

z = 0, . . . ,n, ℓ = 2,3, . . . (41)

Proof. The proof is presented in Appendix B.

The main problem to overcome is the dependence of ran-

dom variables MMMℓ both for different n and for different ℓ.
The former results from a possibility of changing the

sample median by any sample vector, and the latter is

caused by the dependence between the median vector com-

ponents.

Corollary 2 (Binary case). For a binary sample with Y =
{0,1}, P(0) = q, P(1) = p, Eqs. (41) simplifies to

νννℓ(z) =
min(n,z+n)

∑
z′=z

(

z′

z

)

νννℓ−1(z
′)

n−z′+z

∑
s=max(n+1,z)

(

n− z′

s− z

)

(psqn−s + qs pn−s) . (42)

We now can easily calculate the probability of the presence

of at least one median vector in the sample, which is equal

to 1−νννℓ(0).
We illustrate the results for the vector binary case. For bi-

nary samples, the number of median vectors strongly de-

pends on P(1) = p. Exemplary results are shown in Fig. 4

for a binary sample of a fixed size n = 15 and several

vector lengths ℓ. For 0.3 ≤ p ≤ 0.7, the median vectors

cease to exist in samples in R
ℓ, ℓ > 30, while for p = 0.05

or p = 0.95 they still exist with probability > 0.7 for

ℓ = 50.

Another view of the same results is shown in Fig. 5,

where the probability 1−νννℓ(0) that the sample contains

any median vectors is plotted versus the vector length ℓ,
for two probabilities of the success: p = 0.5 (Fig. 5a) and
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Fig. 4. Probability of the presence of the median vector in

a n = 15-element binary sample versus the space dimen-

sion ℓ, with the probability of success p as a parameter, p ∈
{0.05,0.1,0.2,0.3,0.4,0.5}.

Fig. 5. Probability that there exist median vectors in the binary

vector sample versus vector length ℓ, for the probability of success

p = 0.5 and sample sizes n ∈ {3,19,29,49} (a), and for p = 0.9
and n ∈ {3,9,19,29} (b).

Fig. 6. Probability that there exist median vectors in a binary

vector sample versus the probability of success p for the sample

size n = 15 with vector lengths ℓ ∈ {3,5,10,15,20} (a) and for

the vector length ℓ = 20 and sample sizes n ∈ {3,9,19,29} (b).

p = 0.9 (Fig. 5b), each for several sample sizes n. The

chance that the median vector exists quickly goes to zero

with the increase of the vector length, and the velocity of

the decrease grows as p get closer to 1/2.

The last phenomenon is very well visible in yet another

visualization of the results (Fig. 6) where the probability

1−νννℓ(0) of the median vectors presence in a binary vec-

tor sample is plotted versus the probability of success p,

for a fixed sample size n = 15 and several vector lengths ℓ
(Fig. 6a), and for a fixed vector length ℓ = 20 and several

sample sizes n (Fig. 6b). The probability quickly increases

as |p−0.5| increases, and for each p it increases both with

ℓ and n. Note that the characteristics (Fig. 6b and Fig. 5a)

may intersect. This means that the dependence of the prob-

ability of n may not be monotonic for lower n.

Fig. 7. The absolute difference between the simulated and theo-

retical distribution values versus number of iterations; logarithmic

scales, averaged over ℓ and n.

An approximation of the discussed distribution can cer-

tainly be brought in by direct simulations. In our experi-

ments, it was necessary to use about 10000 repetitions of

the entire sample to obtain the simulation error of order

of 0.01. The experiments show (Fig. 7) that in logarithmic

scales the simulation error decreases almost linearly with

the number of sample repetitions, which comes down to an

exponential decrease of the simulation error with the num-

ber of repetitions. A decrease of the error by an order of

one requires the increase in the number of repetitions by

order of about one and a half.

6. L1 Version of Template-RS

We now consider the definition of template-RS. In L1 one

can rewrite the defining formula (15) to the form

x∗RS = arg min
x(i)∈X

ℓ

∑
j=1

|x
(i)
j −me j| , (43)

where me j = me(X j) denotes jth component of me(X). We

now consider odd-size binary samples in L1 and compare

81



Andrzej Pacut

the definitions of template-RS and template-S. The latter is

unique and by Eq. (8) equal to

x∗S = arg min
x(k)∈X

D1(x
(k),X) . (44)

Since for binary vectors ‖a − b‖1 = ‖a − b‖2
2 hence

D1(x
(k),X) can be rewritten as

D1(x
(k),X) =

1

n
∑

x(i)∈X

∥

∥x(k)−x(i)
∥

∥

2

2

=
1

n
∑

x(i)∈X

∥

∥(x(k)−me(X))− (x(i)−me(X))
∥

∥

2

2

=
∥

∥x(k)−me(X)
∥

∥

1
+

1

n
∑

x(i)∈X

∥

∥x(i)−me(X)
∥

∥

1

−
2

n

ℓ

∑
j=1

(x
(k)
j −me j) ∑

x(i)∈X

(x
(i)
j −me j) . (45)

Joining the first and the last terms we may write D1 in the

form

D1(x
(k),X) =

ℓ

∑
j=1

∣

∣x
(k)
j −me j

∣

∣

(

1−
2

n
sign(x

(k)
j −me j)

∑
x
(i)
j ∈X j

(x
(i)
j −me j)

)

+
1

n
∑

x(i)∈X

∥

∥x(i)−me(X)
∥

∥

1
. (46)

Since the last term does not depend on x(k) we finally may

write

x∗S = arg min
x(k)∈X

ℓ

∑
j=1

wk
j |x

(k)
j −me j| , (47)

where

wk
j = 1−

2

n
sign(x

(k)
j −me j) ∑

x
(i)
j ∈X j

(x
(i)
j −me j) . (48)

It is easy to show that sign(wk
j) is always equal to 1. In

fact, since the absolute value of the sum is not greater than

the sum of absolute values, and for scalar binary samples

there must be more elements equal to the median than those

nonequal, we have

∣

∣

∣

∣

2

n
sign(x

(k)
j −me j) ∑

x
(i)
j ∈X j

(x
(i)
j −me j)

∣

∣

∣

∣

≤
2

n
∑

x
(i)
j ∈X j

|x
(i)
j −me j| < 1 (49)

hence sign(wk
j) = 1. Considering Eq. (43) and Eq. (47) as

linear programming problems with respect to the variables

|x
(k)
j −me j|, we see that the solutions of both problems

are identical. In the other words, for vector binary sam-

ples, the definitions of template-R and template-RS lead

to the same template. Note that we did not make any as-

sumptions about independence of the components of sam-

ple elements.

7. L1 Version of Template-T

In L1, template-T can be by Eqs. (19) and (21) rewritten for

each sample X and each (unknown) distribution parameter

vector ϑϑϑ in the form

x∗T =







g∗1(X)
...

g∗ℓ(X)






, where

g∗j ∈ arg min
g j∈G

EX,ϑϑϑ

∣

∣

∣
x0

j(ϑϑϑ)−g j(X)
∣

∣

∣
. (50)

The minimum is attained by the (non-random) median of

the (conditional) distribution of x0
j(ϑϑϑ), hence g∗j(X) should

approximate this value. We will employ the component

sample median me j = me(X j) to estimate g∗j(X), and thus

take the sample median to estimate g∗(X), namely

x∗T ≈







me1

...

meℓ






. (51)

Note yet that for dependent components of sample ele-

ments, some information about component sample medi-

ans is contained also in other component samples, hence

the solution (51) is suboptimal. In fact, for independent

component vector samples, x∗T obtained here is identical

to x∗R.

8. Template Definitions in L2

8.1. Template-R in L2

As earlier noticed, definition of template-R in Lp comes

down to a series of minimization subproblems for scalar

samples. However, this feature is not needed to derive x∗R

in L2, since here we have just the classical issue of least

squares: find a vector x∗R whose average squared distance

to all other sample vectors is minimized

x∗R = argmin
x∈R

D2(x,X) , (52)

where

D2(x,X) =
1

n

n

∑
i=1

‖x(i)−x‖2 . (53)

This is solved in a standard way by adding and subtracting

the sample average

x =
1

n

n

∑
i=1

x(i) (54)
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to the terms inside the norm, so taking into account that

the sum of the product term is equal to zero, we obtain

D2(x,X) =
1

n

n

∑
i=1

‖x(i)−x)− (x−x)‖2

= ‖x−x‖2 +
1

n

n

∑
i=1

‖x(i)−x‖2 . (55)

Readily, for any sample, irrespectively of any assumptions

about independence of sample vector components, one ob-

tains

x∗R = x . (56)

8.2. Template-S and Template-RS in L2

Definition of template-S calls for minimization over the

selected points of the vector space, namely

x∗S = argmin
x∈X

D2(x,X) = argmin
x∈X

‖x−x‖2 . (57)

It is certainly unlikely that - even for finite support sam-

ples – the sample average is equal to any sample vectors.

Note that in L2, template-S Eq. (57) and template-RS:

x∗RS
2 ∈Argmin

x∈X
‖x−x‖2 are equivalent, irrespectively of any

independence conditions.

8.3. Template-T in L2

In L2, we rewrite template-T similarly as in L1, namely

g∗ = argmin
g∈GGG

EX,ϑϑϑ‖x0(ϑϑϑ)−g(X)‖2 . (58)

The minimum is attained by the mean value of the (non-

random) mean value of the (conditional) distribution of

x0(ϑϑϑ), so g∗(X) should approximate this value. Employing

the sample average x to estimate the mean value of x0(ϑϑϑ),
we obtain

x∗T ≈ x . (59)

For dependent components of sample vectors, the informa-

tion about the conditional mean value is contained also in

other components, hence the solution can be improved. In

other words, the solution (59) is identical to x∗R for inde-

pendent component samples.

9. Conclusions

Our analysis of the art of template creation only touches

the problem of choosing “the best representative” of bio-

metric samples. We discussed only the problems charac-

terized by measurements that could be viewed as points of

a metric space, and if so, the metric was assumed to be Eu-

clidean. The problem in general touches the notion of infor-

mation contents of biometric measurement systems. Even

if one desires to assume that the biometric measurements

lead to Euclidean spaces, there still are various possibili-

ties of choosing the “best representative”. Intuitively, such

the representative must express some “stable” properties of

the measurements for a single subject and as such, it may

strongly depend on the biological quantities under scrutiny.

Consequently, choosing the template calls for a thorough

knowledge of the biological context. On the other hand,

apart from this context, one may choose the template on

the base of one of “black box” solutions and choose the so-

lution that works best for the given biometric database(s).

In the paper we in fact analyzed several “black box” solu-

tions to show their properties and determine their mutual

relations.

The concepts we analyzed were based on L1 and L2 dis-

tances between the measurements. The possibilities we

examined included the template as an enrollment measure-

ment that is on the average closest to all other enrollment

measurements (template-S), and a vector (not necessarily

any enrollment set vector) closest on the average to all en-

rollment measurements (template-R). Since the latter is not

necessarily the enrollment vector, we may treat it as a ref-

erence measurement, and define the template as the en-

rollment vector closest to the reference (template-RS). Fi-

nally, we also introduced the template that aimed into min-

imization of the distance between the template and a test

measurement (template-T). Each of those concepts was an-

alyzed with the use of L1 and L2 distances, so eight ver-

sions of the template were investigated.

We investigated closer the L1 concepts, since they are less

known. We showed, using independent component binary

samples, that template-S differs from template-R, and the

difference grows with the dimension of the sample vectors.

Also, the difference grows as p approaches 0.5. This sug-

gests that in general, the difference between template-S and

template-R is higher for the underlying (population) distri-

butions of higher entropy. We also showed that for binary

samples template-RS is identical to template-S.

One may notice that as the enrollment sample size grows,

all the concepts considered here may lead to either the

subject’s theoretical median or the subject’s theoretical ex-

pected value. The templates based on samples of finite

size can be thus treated as various estimators of subject’s

theoretical characteristics. They may strongly differ from

the theoretical characteristics because the enrolment sam-

ple size for a single subject can be very low (as low as

three measurements). On the other hand, the dimension of

the measurements can be very high, since it must have the

information contents high enough to differentiate between

many subjects of large biometric many-subject databases.

Note that if the number of the subjects grow, as in at-

tempts to build universal identity verifiers, the templates

considered here must also be based on growing enrollment

subject’s sample sizes, to be as close as possible to the the-

oretics subjects’ characteristics. The question remains open

if these characteristics have sufficient information contents,

and even what the underlying theoretical subject and the

entire population distributions are. We only hope that the

assumption about the very existence of these distributions,

or – in other words – on the possibility of describing the

biological variability in terms of probabilities, holds.
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Appendix A

Proof of Proposition 4

To prove Proposition 4 for finite-support scalar samples X

we first derive the joint probability function of the sample

median me(X) and the number of median elements M

ρ(y,s)
def
= P{me(X) = y ∧ M = s}, where

y = y(1), . . . ,y(M), s = 0, . . . ,n . (60)

Certainly, µ(y) =
n

∑
s=0

ρ(y,s), for y = y(1), . . . ,y(M) and

ν(s) =
M

∑
m=1

ρ(y(m),s), for s = 0, . . . ,n. Assuming that the

sample size n is odd, we will find the joint probability

function ρ(y,s) for s = 0, . . . ,n, y = y(1), . . . ,y(M).

Proposition 6 (Joint distribution of the sample median and

the number of median elements for scalar samples). For

n-element discrete support scalar sample, the joint prob-

ability function of the sample median and the number of

median elements is given by

ρ(y,s)=











































0, for s = 0, . . . ,n, y=y(1)∨ y = y(M)

(

n

s

)

P(y)s
n

∑
u=n+1−s

(

m−s

u

)

F(y)u S(y)n−s−u ,

for s = 0, . . . ,n, y=y(2), . . . ,y(M−1)

(

n

s

)

P(y)s
(

1−P(y)
)n−s

,

for s = n+ 1, . . . ,n ,
(61)

where n = (n−1)/2.

Proof. We first rearrange the summation in Eq. (34) to

show the influence of the terms related to the number

s = n−u−w of the sample elements equal to the median,

namely (Fig. 8)

Fig. 8. Change of variables in Eq. (62).

µ(y) =



















































































n

∑
s=n+1

(

n

s

)

P(y)s S(y)n−s ,

for y = y(1)

n

∑
s=1

n

∑
u=n+1−s

(

n

s,u

)

P(y)s F(y)u S(y)n−s−u

+
n

∑
s=n+1

n−s

∑
u=0

(

n

s,u

)

P(y)s F(y)u S(y)n−s−u ,

for y = y(2), . . . ,y(M−1)

n

∑
s=n+1

(

n

s

)

P(y)s F(y)n−s ,

for y = y(M) .

(62)

We have

ρ(y,s)=

(

n

s

)

P(y)s
























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


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




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










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

































S(y)n−s,

for y = y(1), s = n+ 1, . . . ,n
n

∑
u=n+1−s

(

n−s

u

)

F(y)u S(y)n−s−u ,

for y = y(2), . . . ,y(M−1),

s = 1, . . . ,n
n−s

∑
u=0

(

n−s

u

)

F(y)u S(y)n−s−u,

for y = y(2), . . . ,y(M−1),

s = n+ 1, . . . ,n

F(y)n−s ,

for y = y(M), s = n+ 1, . . . ,n

0 otherwise ,
(63)

hence

ρ(y,s)=

(

n

s

)

P(y)s























































n

∑
u=n+1−s

(

n−s

u

)

F(y)u S(y)n−s−u,

for y = y(2), . . . ,y(M−1),

s = 1, . . . ,n
(

1−P(y)
)n−s

,

for y = y(1), . . . ,y(M),

s = n+ 1, . . . ,n

0 otherwise,
(64)

so Eq. (61) follows.

Corollary 3 (The binary case). For a binary sample with

Y = {0,1},P(0) = q, P(1) = p we have

ρ(y,s) =























0 , s = 0, . . . ,n
(

n

s

)

qs pn−s , y = 0, s = n+ 1, . . . ,n
(

n

s

)

ps qn−s , y = 1, s = n+ 1, . . . ,n .

(65)

Now, Proposition 4 can be easily proven.

Proof of Proposition 4. We can obtain the distribution

of the number of median elements by summing up ρ in

Eq. (61) over all y

ν(s) = ∑
y∈Y

ρ(y,s) . (66)
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Readily,

ν(s) =

(

n

s

)



















































0 , for s = 0
n

∑
u=n+1−s

(

n−s

u

)

M−1

∑
m=2

P(y(m))s F(y(m))u S(y(m))n−s−u ,

for s = 1, . . . ,n
M

∑
m=1

P(y(m))s (1−P(y(m)))n−s ,

for s = n+ 1, . . . ,n

(67)

hence we obtain Eq. (38).

Appendix B

Proof of Proposition 5

Let MMM1,...,ℓ be the number of median vectors in ℓ-dimen-

sional sample of size n, and denote by νννℓ(z) its probability

function, namely

νννℓ(z)
def
= P{MMMℓ = z}, z = 0, . . . ,n (68)

for ℓ = 1, . . .. We derive the probability function νννℓ re-

cursively. Given an ℓ-dimensional sample Xℓ we form

a (ℓ−1)-dimensional sample Xℓ−1
′ by removing a single

component (say the last one) of each vector in Xℓ. We first

calculate the conditional probability that there are exactly

z median vectors in Xℓ given there are exactly z′ median

vectors in Xℓ−1
′ and s median elements in X , namely

pℓ(z|z
′,s)

def
= P

(

MMMℓ = z|MMMℓ−1 = z′∧M = s
)

. (69)

It is easy to see that

pℓ(z|z
′,s)=















(

z′

z

)(

n−z′

s−z

)

/

(

n

s

)

,

for z ≤ z′ and z′−z ≤ n−s and z ≤ s

0, for z > z′ or z′−z > n− s or z > s .
(70)

Note that pℓ(z|z
′,s) is null except for the points in the tri-

angle z′ ≥ z, s ≥ z, s + z′ ≤ s + z in the (s,z′) plane. The

distribution νννℓ(z) of MMMℓ can be thus be found by a summa-

tion of the conditional distribution Eq. (70) with respect to

distributions: νννℓ−1 of MMMℓ−1 and ν of M of the two indepen-

dent random variables. Therefore, νννℓ(z) can be determined

recursively as

ννν1(z) = ν(z), z = 1, . . .n

νννℓ(z) =
n

∑
z′=0

νννℓ−1(z
′)

n

∑
s=0

pℓ(z|z
′,s)ν(s), z = 0, . . . ,n ,

ℓ = 2,3, . . . (71)

Plugging Eq. (70) into the above we obtain Eq. (41).

For the binary sample with Y = {0,1}, P(1) = p, P(0) = q,

ρ(s) is given by Eq. (39). Since this is equal to zero for

s ≤ n, the summation in Eq. (71) narrows down to the

triangle z′ ≥ z, s ≥ n + 1, s + z′ ≤ s + z for z ≤ n, and

the triangle z′ ≥ z, s ≥ z, s + z′ ≤ s + z otherwise. Con-

sequently, Eq. (71) simplifies to

ννν ℓ(z)=







































z+n

∑
z′=z

(

z′

z

)

νννℓ−1(z
′)

n−z′+z

∑
s=n+1

(

n− z′

s−z

)

(psqn−s+qs pn−s),

for z = 0, . . . ,n
n

∑
z′=z

(

z′

z

)

νννℓ−1(z
′)

n−z′+z

∑
s=z

(

n− z′

s−z

)

(psqn−s+qs pn−s),

for z = n+ 1, . . . ,n
(72)

and Eq. (42) follows.
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