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Abstract—Since the variability of data within readings from

the same person is intrinsic property of every biometric sys-

tem, the problem of finding a good representative – the tem-

plate – was recognized and present since the beginning of

biometrics. This problem was solved differently for different

biometric types, yet usually the template somehow averages

the collected data samples. However, for the iris type, the

template is usually just one or a few samples. In this paper

we describe the experiments that suggest that the averaging is

also justified in case of iris template creation. This is an im-

portant fact, which can significantly improve a performance

of biometric template protection methods for iris.

Keywords—binary iris codes, biometric template selection, iris

biometrics.

1. Introduction

The biometric recognition is based on comparison of the

stored representative (the template) for the person in ques-

tion with the newly acquired biometric sample. The re-

sulting score of such a comparison reflects the similarity

(dissimilarity) of the sample to the template. Based on a set

threshold the system decides whether this score allows to

state that they both originate from the same person or not.

Thus it is desirable that the similarity (dissimilarity) be-

tween the selected representative and other samples from

the same person is above (in case of dissimilarity below)

this threshold. This requirement was sufficient for a stan-

dard biometric system to be effective.

By standard biometric system we mean a biometric sys-

tem, where the decision is made upon the direct compar-

ison of the template with the newly acquired sample. In

contrast to the standard biometric system are the biomet-

ric systems that incorporate technique called the biometric

template protection ([1], [2]). In those, the comparison is

done not based on the similarity (dissimilarity) of the tem-

plate and the sample but is an exact match between what

is called pseudonymous identifiers generated from the tem-

plate and the sample.

The pseudonymous identifier is a bit string that can be re-

peatable and with no errors generated from biometric data,

possibly with some additional information. It is usually

obtained with the help of an error correction mechanism,

which might be a quantization scheme, an error-correction

code or a secret sharing algorithm. For those algorithms

to be efficient (to enlarge the length of the pseudonymous

identifier and thus strengthen the security) it is desirable

that they need to correct as few errors as possible. This

yields for a template that not only will guarantee that the

similarity (dissimilarity) will be above (below) some thresh-

old, but also that the similarity (dissimilarity) between tem-

plate and the samples will be as high (as low) as possible.

Thus the problem of selecting the best representative as the

template is restated.

2. Previous Work

The importance of selecting the best template is often un-

derestimated. It happens that the template is simply any

acquired biometric sample with no systematic procedure of

its selection. In some cases there is a procedure that selects

a sample that is the most similar to other samples of the

same person. There are also cases where the template is

created as a mean feature vector of collected samples for

one person. This is well motivated by the Condorcet rule

which states that an estimator (here the template) averaged

over many estimators (here each code may be interpreted as

an estimator of the ideal code) has smaller variance, thus

is better. The question remains how to average. In this

section we discuss some known approaches for template

selection in different biometric.

2.1. Hand

The hand geometry biometrics uses the features that are

very easy to interpret. Those features are the lengths and

the widths of the fingers, the widths and the heights of the

palm and other geometric features, that are gathered in one

fixed-length feature vector F = [ f1, f2, ..., fn] that takes the

values from Rn. As a natural measure of dissimilarity of-

ten the Euclidean distance between such a vectors is used.

It is a common practice in such a systems that the tem-

plate is selected as the centroid (the mean vector) of a few

samples ([3], [4]). However one must realize an important

(though quite simple) fact. If we want to select the point

that best represents our set in the sense that it is the clos-

est to all the samples (it minimizes the sum of Euclidean

distances between itself and other samples) than it is not

the mean vector. The mean vector minimizes the squared

Euclidean distance and it is not equivalent.

To prove this we have made an experiment with hand ge-

ometry system proposed in [4]. We have used the data set
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of 149 users with at least 4 hand images each (3 of them

were used to create the template and the rest for compar-

isons). For every user two templates were created – the first

one as the mean vector of 3 sample and the second as on of

the 3 samples that was closest to other two. For those two

templates we calculated genuine and impostor scores (re-

sulting in 179 genuine scores and 45105 impostor ones) us-

ing two dissimilarity measures – Euclidean distance (Euc)

and squared Euclidean distance (Euc2). The results are

compared on the basis of the equal error rate (EER)

(Table 1) – this maybe a bit simplifying, though it shows

an important fact. The method of template selection should

be adjusted to dissimilarity/similarity measure, in particular

a mean vector is not an appropriate template when using

Euclidean distance. For Euclidean distance the best tem-

plate out of 3 gives better results and for squared Euclidean

distance the mean code performs better.

Table 1

EER results for different configurations of template

and dissimilarity measure

EER Euc Euc2

Best [%] 7.48 7.81

Mean [%] 7.56 7.24

2.2. Fingerprint

There was much research put into the feature extraction

and matching algorithms for fingerprint minutiae but re-

spectively little attention (as in other biometric modali-

ties) was given to the problem of template selection. There

were some analysis of different selection of representative

fingerprint impression that either best represents the intra-

class variations or maximizes the similarity with the rest of

the impressions [5]. The results showed that a systematic

template selection is much better than random selection.

Further work on template creation for fingerprint showed

that it is reasonable not to choose a single impression but

Fig. 1. Fingerprint features mosaicing, (a) two impressions,

(b) minutiae extracted from impressions, (c) alignment, (d) mo-

saicked template [6].

merge few impressions (mosaicing) of the same fingerprint

resulting in bigger coverage of the finger thus better repre-

sentation.

In [6] Ross et al. analyzed three different techniques of

data merging. The firs was mosaicing on the image level.

They aligned the images and merged them using thin plate

splines, and then extracted minutiae and performed match-

ing using those minutiae as template. The second approach

was to first extract the minutia form two impressions and

do the mosaicing on the minutiae level and use the merged

minutiae as the template (Fig. 1). The third method was

to separately use both impressions (matching two minu-

tiae representations) and fusing the matching scores. The

experiments showed that the second method (mosaicing on

minutiae level) gives the best results and outperforms single

impression matching.

These results are especially important for biometric cryp-

tography (template protection) methods. Most of them

that use the fingerprint use the fuzzy vault algorithm

(see, e.g., [7]) where a good coverage of fingerprint is

one of the most important aspects. This was showed by

Nandakumar in his implementation of fuzzy vault for fin-

gerprints ([8]). The usage of mosaiced template improved

the results for genuine acceptance by as much as 4% not

decreasing the security (false acceptance).

2.3. Signature

Some recent findings in the area of handwritten signatures

based on the theory of warped least squares, prove that an

template called the hidden signature can be defined that

greatly improves the performance of matching. This hid-

den signature can be interpreted as a mean template, but

the averaging is done in warped space – for any signature

a transform (a warping path) is defined that map it to the

space of the warped template were the comparison is done.

See [9] for details.

2.4. Iris

As for the iris biometrics, there is no common methodology

for template selection. In most cases the template is simply

an iris code of acquired image ([10], [11]), or a set of

iris codes ([12]). Sometimes like in BiomIris ([13]) the

template is chosen as one out of three codes, such that it

minimizes the sum of distances to two others. There were

also suggestions that average code created as the majority

code could be a better representation [14] however that has

been argued to have limited use in practice ([15]).

We have to also keep in mind that there are different coding

methods for iris recognition that end up with binary code.

The question is whether the selection method the best rep-

resentative would be the same for different algorithms or

rather it is algorithm-specific. To address this we propose

a few different candidates for the template and verify their

effectiveness for two different coding algorithms, namely

the OSIRIS implementation of Daugman coding [10] and

Czajka’s algorithm [16]. OSIRIS is an implementation of
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Daugman-like iris texture coding. In our particular realiza-

tion it produces an binary iris code of length 1974 bits.

The Czajka’s algorithm represents a different approach

to texture coding using Zak-Gabor transform. It produces

a binary iris code of length 1024 bits.

3. Selection Methods

3.1. Notation

Let us define the following notation that will be valid here-

after:

• I = {0,1}N – space of binary codes of length N (ver-

tices of a unit hyper-cube),

• A⊂ I,A = a1,a2, . . . ,aK – set of K available iris codes

for particular person, a – iris code,

• ai j – jth bit of ith code for the same person, i =
1, . . . ,K, j = 1, . . . ,N.

For simplicity, to omit unresolved cases let us assume that

the K is odd.

3.2. Possible Candidates

Now we can define different candidates for the iris template.

Let us define the average code as

ā =

(

1

K

K

∑
i=1

ai

)

, ā ∈ RN ,

where ai is an N-dimensional iris code i = 1 . . .K.

We can write also,

ā = arga′∈RN min ∑
a∈A

∥

∥a−a′
∥

∥

2
.

This follows from the fact, that the second moment is min-

imal around the mean value, thus we interpret the code

ā as the real code that minimizes the squared Euclidean

distances from all codes from set A – best represents them.

Let us also define the majority code as

aM
I =

(

Maj

(

K

∑
i=2

ai j −
N

2

)

, j = 1, . . . ,N

)

, aM
I ∈ I .

This is the code that has jth bit equal to 1 if among K

codes there were more 1’s than 0’s on this position and 0

otherwise. Since we assumed K to be odd we excluded the

case in which the number of 1’s and 0’s is equal.

The relation between the code ā and aM
I is summarized by

the following theorem.

Theorem 1: The majority code aM
I is the nearest code from

the subspace I to the average code ā.

Proof : The relation between the mean and the median is

as follows:

|m−me| = |E(X −me)| ≤ E(|X −me|) , (1)

≤ E(|X −m|) , (2)

= E(
√

(X −m)2) ,

≤
√

E((X −m)2) , (3)

= σ .

The Eq. (1) inequality comes from the property of sum

of absolute values, the Eq. (2) inequality comes from the

fact that the median value minimizes the absolute devi-

ation function. The Eq. (3) inequality comes from the

Jensen’s inequality, for the concave functions (square root

function).

Thus the mean m value is less than σ from the median me.

|m−me| < σ

what proves the theorem.
�

Yet we know that under taken assumptions (K is odd) we

have σ < 0.5 and m∈< 0,1 >−{0.5}. That means that the

median code is the closest binary code (∈ I) to the average

code.

aM
I = arga′∈I min

∥

∥a′− ā
∥

∥

2

At the same time, from the properties of median, we have

aM
I = arga′∈I min ∑

a∈A

∣

∣a−a′
∣

∣ .

Since |.| and ‖.‖2
are equal for the subspace I, we see that

the aM
I is an analog of the average code but with constraints

to the solution space.

aM
I = arga′∈I min ∑

a∈A

∥

∥a−a′
∥

∥

2

We can also point out two additional codes from the set A.

The code that is closest to the average code and the code

that is closest to majority code. Those are defined as re-

spectively

āA = arga′∈A min
∥

∥a′− ā
∥

∥

2
or (āA = arga′∈A min |a′− ā|),

aM
A = arga′∈A min

∥

∥a′−aM
I

∥

∥

2
.

There is also a code often used as the template that is

defined as

aT
A = arga′∈A min ∑

a∈A

∥

∥a−a′
∥

∥

2

and is the analog of the majority binary code but selected

from the set A (set of known sample codes). This is the

code previously called the best code.

Intuitively the best representation, contrary to [15], would

be the majority code.
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4. Experiments

According to above discussion we performed a series of

experiments to verify the usability of different template se-

lection. In the following experiments we have used part of

BATH database (110 eyes with 20 images per eye). For

each experiment always the first 10 images were used to

create the template and the rest 10 were used as samples

for comparisons. The genuine comparisons were performed

with the template against 10 genuine samples what makes

1100 = 110 ·10 comparison in total, and impostors with the

template against 10 samples of all other eyes what makes

119900 = 110 · (110− 1) · 10. The experiments were per-

formed for two coding methods - OSIRIS and Czajka’s cod-

ing. To describe the results we calculated several param-

eters including false non-match rate (FNMR), false match

rate (FMR) and, as suggested in [17], decidability index d′.

The FNMR was calculated as the rate of positive samples

wrongly classified as negative ones, FMR as the rate of

negative samples wrongly classified as positive ones and

EER as the rate where FNMR and FMR are equal.

4.1. OSIRIS Coding

First we wanted to compare the performance of the recog-

nition algorithms depending on the way the template is

created. In particular we compared the performance us-

ing the majority code defined as aM
I the best iris code de-

fined as aT
I and iris code that is the closest to the majority

code aM
A . To compute the majority code we have aligned

normalized iris images (in polar format) using 2D correla-

tion, compute the codes for each image and took the median

value for each code bit (although the number of samples

was even none of the bits for all codes was 0.5). To select

the best code we have cross-matched all the 10 codes and

selected the one that had the minimal sum of distances to

the rest 9.

Next, for different templates, we performed the verifica-

tion according to the protocol defined above. Figure 2 plots

the cumulative distributions (we do not plot the histograms

Fig. 2. Cumulative distributions of genuine and impostors scores

for different templates (best code, random code, majority code

and code closest to majority) for OSIRIS coding algorithm.

for clarity) of genuine and impostor comparisons for differ-

ent template selection method. We see that the differences

are significant and the best results were obtained for ma-

jority code – Table 2 summarizes the results. With the

majority code we obtained the perfect separation and good

decidability index. Additionally there are plotted results

obtained when using as the template one of the 10 codes

selected at random labeled as random iris code.

Table 2

Summary of verification performance for different

template selection method for OSIRIS coding algorithm

Indexes
Best Majority

Closest to
Mean

code code
majority

code
code

EER [%] 0.0017 0 0.0017 0

FNMR
(FMR = 0%) [%]

0.27 0 0.18 0

d′ 7.82 8.84 7.62 9.06

To analyze the averaging property we decided to compare

those results with two more possibilities of average tem-

plate – namely āA (iris code closest to the real-value av-

erage) and ā′A (iris code closest to the real-value average

in L1-norm). The results are plotted in the Fig. 3. Still

the majority code outperforms the others, but surprisingly

the code āA is as bad as randomly selected code whereas

the code ā′A is as good as the best code aT
A and closest

to majority code aM
A . There is one more very interesting

property worth noticing. The methods that selected one

of the iris codes as the template did select different codes

thus we cannot infer that some of presented methods are

equal. Intuitively we guess that, e.g., aM
A should be the same

as aT
A , but that is not the case.

Fig. 3. Genuine comparisons scores (normalized hamming dis-

tance) cumulative distributions for different template selection

methods

The above described experiment with use of the OSIRIS as

the coding algorithm proved the assumption that creating

the template code by averaging leads to better performance.

The difference between the performance is significant. It is

clear that the majority code gives the best results whereas

the results with the best code as the template are much

worse and with the random code are the worst. This proves
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the statement of Davida ([14], the averaging by majority

coding as the template creation has influence on the per-

formance and gives much better results.

Noting this fact we decided to go one step further and rep-

resent the template as a real-value vector Tpr = [p1..p1974]
in which each position pi represents the rate of this bit was

equal one in codes used to create the template. Thus it is

a vector with elements from < 0,1 > that could be inter-

preted as probabilities of 1 on that position in iris code of

particular person. This of course makes the template much

bigger since it is no longer represented as N bits, but N

real numbers, yet the size of it (precision) depends on the

number of samples used for template creation and could not

be very high. Nevertheless a more complicated problem is

the matching algorithm. We can no longer use the ExOR

operation and other method should be proposed.

A natural selection of a distance measure is the squared Eu-

clidean distance. The sample codes are the vertices of the

1974-dimension hyper-cube and the templates are points

inside this cube. The similarity measure is simply the dis-

tance between a vertex and that point. The results on the

same data as before with this methodology gives very good

results. We obtain perfect separability with decent-looking

histograms (Fig. 4).

Fig. 4. (a) FNMR and FMR graphs, (b) performance rates

(left) and comparisons histograms (right) for OSIRIS system

with real-valued mean template code and Euclidean distance as

similarity measure.

Yet there could be another similarity measure. If we would

extend the pi to function Pi so that it is a probability func-

tion for ith position in the code such that Pi(x = 1) = pi

and Pi(x = 0) = 1− pi a natural method to verify a new

code could be measuring how probable is it, given the tem-

plate – simply multiply. Of course the probabilities for the

elements in the vector are dependent thus multiplying them

is not theoretically justified, but the experience in machine

learning lets us expect reasonable results. Additionally we

have to guarantee that there will be no 0 probabilities to

eliminate the effect of zeroing the score (each template el-

ement with 0 value, meaning that for all codes used to

create the template that particular bit was always 0, was

set arbitrary to 0.01). Since there is 1974 bits in the code,

calculation of the pseudo-probability score (Prscore) by mul-

tiplying subsequent values is numerically difficult thus we

applied log operation and summed the logarithms.

Prscore(Tpr,a)=∏
i=1...1974

(Pi(x=ai))= exp
(1974

∑
i=1

loge(Pi(x=ai))
)

,

where Tpr is the template with probabilities functions

Pi for respective positions = 1 . . .1974. Unfortunately the

obtained values of Prscore were of form exp(k) where k

for genuine comparisons was about minus few hundreds

Fig. 5. (a) FNMR and FMR graphs, (b) performance rates

(left) and comparisons histograms (right) for OSIRIS system

with real-valued mean template code and modified matching al-

gorithm.
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and for impostors minus few thousands. Thus we decided

to divide the k by 1000 to observe the matcher perfor-

mance. Figure 5 plots the FMR, FNMR for this matcher

(Pscore = exp(∑1974
i=1 loge(pi)/1000)).

The results are very promising. With this approach we ob-

tain full separation and the histogram shapes (which have

their reflection in d′) indicate that such an approach is rea-

sonable and may lead to better results than standard one.

To look into the influence of the template selection on

the performance of the iris biometric system we observed

also plots representing so-called Dodington-zoo menagerie.

This is very helpful for security analysis. It shows whether

all irises (with respect to coding algorithm) are equally dif-

ferent or are there some types of irises that either are more

similar to others or are less similar to itself. Recent paper

from Yager and Dunstone [18] introduced new division and

naming for different behavior of biometric data depending

on mean impostor and genuine scores. We do not want to

go into the details of deciding what is a normal behavior

and what is not. Instead we want to know whether the dif-

ferent template selection algorithm influences this behavior.

Figure 6 plots the menagerie plots for scores obtained with

Fig. 6. Menagerie plot for two different template selection meth-

ods using OSIRIS coding. Each point represents a single iris

showing how well it is on average matched to itself and other

irises.

best iris code (circles) and majority code (crosses) as the

template. It shows that there is no influence as for the

mean impostors scores, what is a good property, and the

rightmost mean genuine comparisons for majority code are

much smaller what is even better property.

4.2. Czajka’s coding

We performed similar experiments using Czajka’s coding.

Again comparing the genuine cumulative distributions we

noticed that the majority code outperforms others giving

the best results (Fig. 7). However the behavior of others is

significantly different than in case of OSIRIS coding. Here

we see that the iris code closest to the majority code gives

very poor results (almost as bad as randomly selected iris

Fig. 7. Cumulative distributions of genuine and impostors scores

for different templates (best code, random code, majority code

and code closest to majority) for Czajka’s coding algorithm.

code). This lets us suspect that the codes created by this

algorithm are oddly distributed in the code space, since al-

though majority code estimates the codes well the nearest

code does not. Perhaps in this case the majority code does

refer any real iris image, but is rather an virtual object. The

behavior of impostor distributions is even more wired. For

OSIRIS, there were no differences for different templates,

and here the differences are very significant. We see that

the impostor comparisons with majority code are slightly

worse (give lower dissimilarity score) and that choosing

bad template (iris code closest to majority code gives poor

genuine scores) can move the impostors to the right. We

can guess that the first observation may be due to not equal

distributions of ones and zeros in this type of coding thus

averaging may lead to code that better fits different codes

(e.g., has more ones). The second observation results from

the fact that a bad template in more noisy, hence the impos-

tor scores look more random. Both of these facts may prove

that this type of coding codes not only the individual char-

acteristics but also some kind of more global information.

This is quite interesting conclusion and will be a subject

for further research.

Table 3 summarizes results of the experiments. We see that

we obtained worse results than for OSIRIS but the averag-

ing property of majority code is visible also in this case.

The cumulative distributions from Fig. 7 let us assume

that we may expect undesirable distribution changes in

menagerie plots. Indeed, Fig. 8 shows that changing the

template selection method for majority coding the users

tend to be more wolfy – mean value of impostor scores

gets smaller (different users are more similar).

Table 3

Summary of verification performance for different

template selection method for Czajka’s coding algorithm

Indexes
Best Majority

Closest to

code code
majority

code

EER [%] 0.662 0.542 1.60

FNMR
(FMR = 0%) [%]

0.82 0.63 3.09

d′ 6.87 7.69 4.99
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Fig. 8. Menagerie plot for two different template selection meth-

ods using Czajka’s coding. Each point represents a single iris

showing how well it is on average matched to itself and other

irises

These experiments prove that a really good understanding

of the codes and their properties is needed to propose an

bio-encryption algorithm for it.

5. Conclusions and further work

Concluding these experiments we claim (in opposite to

other authors, e.g., [15]) that for binary iris coding algo-

rithms using the majority code as the template leads to bet-

ter results. These experiment prove how important is the

template selection problem. It was not addressed before in

work on biometric template protection, but it seems to be

crucial for most of the methods used there. All of them

assume that we have a reference code that can be seen as

a codeword of error-correcting code and all the query codes

lie around it in a distance less than assumed threshold. We

showed that depending on the template selection we can

obtain different results and that the good understanding of

the space of the codes is crucial.
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