
Paper Linux Scheduler Improvement

for Time Demanding Network Applications,

Running on Communication

Platform Systems
Marcin Hasse and Krzysztof Nowicki

Abstract—Communication platform systems as, e.g., ad-

vanced telecommunication computing architecture (ATCA)

standard blades located in standardized chassis, provides

high level communication services between system peripher-

als. Each ATCA blade brings dedicated functionality to the

system but can as well exist as separated host responsible for

servicing set of task. According to platform philosophy these

parts of system can be quite independent against another so-

lutions provided by competitors. Each system design can be

different and can face with many computer systems design

problems. One of the most difficult design problems to solve

is system integration with a set of components running on

different operating system levels. This paper presents Linux

scheduler improvement possibility to make user space applica-

tion classified as time demanding (required to be serviced by

CPU in given amount of time) running in user space together

with complicated kernel software structure in the system.

Keywords— communication platform systems, Linux, operating

system, scheduler.

1. Introduction

Today’s communication trends are consolidated to follow

platform strategy. This strategy is to provide standard

base solutions to be re-used over wide range of prod-

ucts. Advanced telecommunication computing architec-

ture (ATCA) [1], [2] is a very good example which is

successfully matching platform objectives. The communi-

cation architecture between subsystems, the major issue in

platform implementation, seems to be prepared to man-

age restricted subsystems requirements. Standard base chas-

sis with intelligent platform management interface (IPMI)

and Ethernet communication makes a very friendly base

for a big range of network products like switches and

gateways as well as for computer base products like sin-

gle board computers (SBC). Well organized communica-

tion between subsystems and advanced management op-

portunities makes ATCA platform very interesting solution

for telecommunication market, especially because these

systems are following restricted energy consumption and

thermal norms.

From the other perspective, systems prepared to match

ATCA standard have a big challenge to follow restricted

norms and propose good enough performance for end users.

The law formed by Herb Grosh in 1965 [3] indicating that

computer performance increases as the square of the cost.

Regarding to this law SBC with more RAM memory and

with bigger HDD would have a better performance, but

ATCA system performance can not be limited only to reg-

ular PC specific costs. They need to be considered as well

energy and thermal system assumptions which makes the

cost more significant. This is causing that ATCA systems

are designed with limited system resources mostly accord-

ing only to design demands.

Platform strategy gives opportunity to application designers

to choice ATCA hardware base on system demands. For

example Ethernet line card hardware (based on network

processor or other multicore processor) would be a good

choice for IPsec gateway application.

Only one disadvantage of customize hardware to match

ATCA platform standards is that blades (as line cards) can

not easily be extended to additional system resources as

RAM or flash memory. Application designers are respon-

sible for achieving software goals with available resources

starts from operating system and ends on specific applica-

tion (as IPsec IKE [4], [5] for IPsec gateway example).

Linux is a most popular platform choice for ATCA blades

used in network core: as gateways, routers, etc. It would

be as well most reasonable choice for IPsec gateway Eth-

ernet line card example. There are several Linux operat-

ing systems available with embedded system support and

with ATCA blades board support packages (BSP) as Mon-

tavista [6] or WindRiver [7]. Additional advantage of Linux

OS is its open source nature and developers have access

even to kernel sources. This is big opportunity to have more

influence on system performance while developer can place

program in the kernel level. Regarding Linux GPL [8] li-

cence programs in kernel space suppose to be published

as open source. This restriction creates a barrier for Linux

commercial application providers – which are mostly of-

fered as a user space programs. For example additional

IPsec gateway functionalities as virtual router redundancy

protocol (VRRP) [9] or simple network management pro-

tocol (SNMP) [10] can be taken from independent supplier

as a user space application.

This paper indicates problems with limited system re-

sources operated by Linux OS and common problems with

user and kernel space applications working together in net-

63

Marcin Hasse and Krzysztof Nowicki

work and real time environment. In Section 2 there will

be Linux scheduler analyzed in order to present issue with

time demand user space application working together with

real time tasks in kernel level. Proposed scheduler improve-

ment to make Linux more flexible if there are time de-

manding user space applications is described in Section 3.

Measurement of improvement results plus comparison with

standard scheduler, are described in Section 4.

2. Linux Scheduler against User Space

Time Demanding Processes

In the Linux operating system there can be determined two

kinds of threads [11]. First would be CPU bound, which

spends a lot of time using central processing unit (CPU)

and making computation. The second would be I/O bound

most time waiting for a I/O operation to complete. Sched-

uler in Linux is designed to deal with both types of threads

in the fair way, but there is no well known method to de-

termine if thread should be classified as I/O bound or CPU

bound. The reason why scheduler should tread I/O bound

threads with bigger priority is slow nature of I/O. There is

understandable requirement to service human input as fast

as possible – most people simply do not like wait especially

when they wanted to have something done by a computer.

It takes a long time for service I/O so it is good if that kind

of requests can be serviced as fast as possible.

Linux scheduler goals as efficiency and interactivity makes

this mechanism more friendly for servers (most common

usage of Linux these days) and for desktop (where Linux

would like to be more important than today). Unfortu-

nately, if something is more matching servers and desktops

then it is probably less matching core network systems as,

e.g., gateways.

In order to evaluate scheduler role in the system it would be

efficient to determinate scheduler performance. Introduc-

tion this metric should allow checking if scheduler works

properly for given set of margin conditions (different than

for normal server or desktop usage conditions). In most

cases performance determines the time required to finish

the task. For process scheduler performance it would be

time in which task (CPU or I/O) will be successfully ser-

viced. In the other words performance P (for the process

with priority X), would be a process wait time until it will

be serviced by CPU Tw and CPU execution slice time Ts

with assumption that task could not be finished in Q CPU

slices:

P(PX) =
Q

∑
n=1

[

Tw(PX)+ Ts

]

.

Waiting queue Tw time is dependent on several additional

systems conditions as number of tasks N waiting for CPU

and their priorities time slice TsX :

Tw(PX) =
X

∑
n=1

(N ·TsX) .

While there will be several the same priority tasks, e.g., S)

for scheduler it will service them in request order:

P(PX) =
Q

∑
n=1

{

X

∑
k=1

(

N ·STsX

)

+ Ts

}

.

Priorities in Linux kernel 2.6 scheduler can be set between

0 and 139, where priorities between 0–99 determine kernel

threads and 100–139 determine user threads. This thread

priority is playing significant role when scheduler in ker-

nel 2.6 assigns tasks into two queues: active and expired.

Waked up thread is placed in active queue base on its prior-

ity. This means that when there are threads in systems with

much different priorities, thread with bigger priority might

be assigned again to active queue instead of expired queue.

As long as there are threads in active queue as long threads

from expiry queue will not get CPU time for execution.

This might make situation while waked up threads stream

can delay amount of time execution of tasks from expired

queue. In the worst scenario this is possible even with only

several CPU bound threads making situation in which low

priority threads will be delayed more than several seconds.

In gateway example presented in Section 1 there is market

driven possibility in which significant system applications

are implemented to be executed in user space. As long as

application providers are interested to not general public

licence (GPL) it can not be implemented in kernel level.

It is easy to imagine that set of user space applications

can be executed in the system together with multiple ker-

nel level tasks waked up quite often. Kernel priorities will

take precedence over user space and will be serviced in

active queue. In the same time expire queue threads will

be still on hold.

The ATCA solutions on the market these days can give

lots of communication opportunities to be used in profes-

sional systems. There is no communication connected is-

sues any more. Separated parts of platform can exchange

information base on standard backplane solutions offered

by many suppliers. ATCA blades providers are proposing

as well many systems working with energy save oriented

CPUs like, e.g., ARM. For networking, these low perfor-

mance cores are used to provide management opportunity

for other CPUs like, e.g., network processors. Unfortu-

nately, systems with good communication abilities might

have some week points in low performance management

core areas. If system design assumes existence of many

Linux kernel space threads (often waked up) together with

critical for system user space applications, so less priority

threads might wait to be serviced even several seconds.

2.1. Time Demanding User Space Processes

Common practice made by ATCA system providers is sys-

tem integration on the application level. As long as stable

kernel with support is offered by companies like WindRiver

or Montavista, as long management software can be offered

by many other suppliers. Only in networking there exist

many areas in which 3th party applications can be used.

64

Linux Scheduler Improvement for Time Demanding Network Applications, Running on Communication Platform Systems

For example SNMP stack or Internet key exchange (IKE)

support can be purchased from protocol specialized sup-

pliers and integrated together with blade interfaces. There

is a big advantage for that kind of solution, especially for

companies specialized in restricted areas like, e.g., signal-

ing. Thanks to integration possibilities these companies

can provide final systems to the market even without spe-

cialized knowledge in all system functionalities. All they

need to provide is integration of solutions with support

from application suppliers.

In the group of networking applications to be used with

integration model there are some “time demanding” ex-

amples. Advanced telecommunication systems used in core

networking are often designed to provide redundancy op-

portunities. For example in the case of gateway failure

the system is prepared to switch over to backup gate-

way. This redundancy can be serviced by VRRP protocol

(see Fig. 1).

Fig. 1. Redundancy for network core nodes.

The VRRP protocol assumes continuous communication

between active and backup gateway. In the case of commu-

nication lost for specified period of time, failover between

gateways supposes to occur. In this VRRP example sys-

tem is classified as unhealthy (dead), when packet exchange

between gateways will not occur in given time.

One of the possible failover conditions would be user space

VRRP application thread stocked in the expiry scheduler

queue waiting until continuously waked up kernel threads

will finally finish their jobs.

2.2. Critical Scenario Analyses

Linux scheduler is dealing with one run queue for each

CPU in the system. Each run queue contains set of two

priority arrays. All tasks begin in active priority array,

and when they are executed on CPU there are moved to

expired priority array and new time slice is calculated.

Time slice describes time which given task will be able to

spend on CPU before another task will be given a chance.

A change between active and expiry priority array will take

place when there will be no tasks in the first active array.

Linux 2.6 scheduler is designed to schedule always all the

tasks with the biggest priority (see Fig. 2). If there are

couples of tasks with the same priority then they will be

scheduled with round robin algorithm.

Fig. 2. Scheduler priority queue model for single CPU system.

In the Linux there can be user defined static values as-

signed to the priorities (nice from 20 to –19 by default 0).

System is not intended to change static values to respect

user input. To provide a difference between service I/O

bound and CPU bound tasks scheduler uses dynamic pri-

orities (0–139), which can award a bonus or depreciate

task about 5 priority levels. Dynamic prioritization uses

heuristic based on tracking how much time a task is sleep-

ing against how long they are using CPU. Time TS AV is

never intended to be bigger than Tmax and a bonus to big-

ger priority is given to tasks with bigger TS AV . Priority can

dynamically be changed based on average time TS AV of

CPU waiting on CPU (I/O bound). When task is waked up

after TS to be executed on CPU then

∀
TS AV <Tmax

TS AV = TS AV + TS .

When task finishes using CPU after TCPU then

∀
TS AV <Tmax

TS AV = TS AV −TCPU .

Scheduler will not perform any heuristic priority changes

for real time tasks (see Fig. 2 – priorities 0–100). Real time

tasks are always executed with the current priority. For the

rest of tasks bonus B (maximum Bmax) will be calculated

in the following way:

B = NT J

(

TS AV Bmax

Tmax

)

,

where NT J − NS TO JIFFIES (see macro defined in

sched.c [12]) depends on CPU frequency f [Hz],

NT J(T) =
T

1000 000 000

f [Hz]

.

65

Marcin Hasse and Krzysztof Nowicki

When TS AV is high (I/O bound) then B might be 10 – task

priority P will be increased about 5 and when TS AV is zero

then B as well will be 0 – task priority P will be decreased

about 5 levels.

Priority is an essential metric for scheduler to calculate

time slice. The lowest dynamic priority process will get the

biggest time slice TCPU (for given Pmax – maximal priority

and Pmax U – maximal user priority):

TCPU = max

(

TCPU DEF

(Pmax −P)
Pmax U

2

,TCPU min

)

,

TCPU DEF =
100 f [Hz]

1000
,

TCPU min = max

(

5 f [Hz]

1000
,1

)

.

Figure 3 presents a set of possible waiting for CPU times for

15 tasks with different priorities (CPU 800 MHz). Lower

priorities tasks will receive less CPU time than task with

bigger priorities. This chart presents data for single active

queue without changing to expiry queue.

Fig. 3. Scheduler active queue tasks possible waiting for CPU

time.

If system administrator assign the biggest possible nice pri-

ority to user space VRRP it is easy to prove that if there

is many waked up processes in the active queue, then user

space process will not be able to get CPU even after several

milliseconds. It should be enough to set many processes in

the kernel with high priorities. Delay in servicing VRRP

process might be too big relative to its time demanding

behavior. If network node will not send frame notification

that he is alive there might be failover procedure started.

Task with higher priority will be given with longer CPU

time than task with lower priority. The CPU time slice will

even be longer on machines with higher CPU frequency

(see Fig. 4).

Fig. 4. Time slice estimation for different priorities on differ-

ent CPUs.

To marginalize possibility of this situation there always can

be said, that Linux kernel application supposes to be de-

signed to avoid having important user space process stocked

in the queue. In most cases it would be possible to work

with design to make sure that database structures serviced

in the kernel would have enough pointer references to avoid

checking field by field. Unfortunately, close to this as-

sumption exist many other possibilities (especially valid

for ATCA) like, e.g., not enough memory to implement

good enough data structures to avoid checking fields in the

loop. Another common in the market reason is changing

application assumptions when implementation is finished,

that it is easier to find another solution to solve user space

process stock issue than expensive redesign.

This set of explanations was accumulated in this section

to assure about reasonability of researches presented in the

next sections. Analyses of scheduler changes possibilities

should always become first, before system designer decides

to change base functionality of system kernel. Kernel level

changes would make whole system less stable – unless vali-

dation in the field confirms that kernel patch works properly.

On the basis of the following research results it should be

much easier to decide if application should be redesigned

or rather scheduler should be improved.

3. Scheduler Improvement for User

Space Time Demanding Applications

Linux with its open source (OS) nature is giving this useful

opportunity to provide changes even in the most critical

parts of a code. This is allowed to change application as

well as patch the kernel. Scheduler, as one of the most

critical part of kernel, is already able to deal with user

66

Linux Scheduler Improvement for Time Demanding Network Applications, Running on Communication Platform Systems

processes base on heuristic method described in previous

section.

To change a user space priority, there is average TS AV

process sleeping time metric introduced in Linux ker-

nel 2.6. This metric is working good to determine I/O bound

threads. To have time demanding user space application

running with bigger priority there is a different heuristic

metric needed.

Scheduler metric to classify time demanding applica-

tions. To create a functional metric for user space process

(which can be classified as time demanding) there needs

to be such process characteristic introduced. Base on this

characteristic the new metric can be introduced to classify

task priority to be changed.

Time demanding user space process:

– is awaked periodically for a specified amount of time;

– in most cases required to deal with I/O peripherals;

– its awake time can be different – depends on process

functionality.

Usage of I/O peripherals can match many other proces-

ses, not necessarily time demanding and is not a good char-

acteristic for metric. Much more useful seems to be peri-

odic activity of time demanding applications. If scheduler

could classify that application requests CPU access every

defined amount of time (different for different processes),

it can reassign bigger priority to application process.

In order to be more flexible in scheduler changes it would

be good to use variables already implemented in the kernel.

To classify task as time demanding the average waiting for

CPU time TS AV can not be easily used. For user space task

this time depends on many conditions in kernel. For exam-

ple TS AV can be completely different while kernel threads

are requested to make big amount of calculations. Base on

priorities kernel threads will be given with CPU time slice

before user processes (see Fig. 3).

Opposite possibility to detect time demanding tasks would

be eliminate these, which are not matching characteristic.

Scheduler on the beginning could give the same big prior-

ity to all the processes to make sure that all time slices will

be the same. To notify Linux scheduler that process/task

should get a CPU (normally based on I/O) there is kernel

variable need resched = 1 used. If time demanding appli-

cation would force need resched = 1 periodically then TS AV

should be enough to make task classification. There would

be of course impact on whole system if scheduler would

classify all tasks with the same priority at least for exe-

cuting active, backup and again active queue. It should

be enough to establish which process should be classified

as time demanding. Unfortunately, this assumption could

work when all of the processes would start the same time –

which is bad assumption in the regular OS example.

Additional opportunity would be usage of average of TS AV

to eliminate sporadic activity of bigger priority tasks activ-

ity. Scheduler could be easily changed in order to save in

additional data structure K times TS AV when given PID is

executed on CPU:

∀
schedule(),PID

TAV (K) = TS AV .

Arithmetic average could easily be calculated on the basis

of the data collected in created table:

TAAV =

K

∑
N=1

TAV (N)

K
.

This method could be successful as long as K would be

estimated correctly and K average time calculation would

be repeated couple of times. Additionally two average val-

ues would never be the same and there the range of error

would need to be considered here as well:

1 estimation : TAAV (1)

2 estimation : TAAV (1)−X < TAAV (2) < TAAV (1)+ X

.

n estimation : TAAV (1)−X < TAAV (n) < TAAV (1)+ X .

If it would be enough to classify that task matches time

demanding characteristic after n = 2 estimation, however

probability that there is no mistake after n = 3 estimation

would be much bigger.

Scheduler could be designed to increase process priority

about A when 2 estimation = TRUE and about B when

3 estimation = TRUE (B > A).

4. Scheduler Improvement Measurement

Results

Heuristic method in scheduler in kernel 2.6 assumes prior-

ity change about ±5. It is not too much, especially when

several active kernel space tasks exist in active and ex-

pired queues. Figures 5 and 6 present changes in waiting

for CPU time for 15 user space tasks with priorities from

100 to 114 and 100, 103, . . ., 140.

Scheduler changes could provide more preemption than

±5 change. Preemption patch [13] makes all tasks in-

Fig. 5. Users space priority change – impact on waiting for CPU

time – priorities 100–114.

67

Marcin Hasse and Krzysztof Nowicki

Fig. 6. Users space priority change – impact on waiting for CPU

time – priorities 100, 103,. . ., 140.

cluding kernel soft-real-time available for priority change.

For time demanding application executed in user space

it would be more accurate to make opposite preemption

and allow to change from user to kernel priority (from

SCHED NORMAL to SCHED RR).

Fig. 7. Users space priority change – impact on waiting for CPU

time and time slices – significant change –50.

Figure 7 presents total waiting for CPU and time slice val-

ues for priority change –50 (users pace moved to kernel).

Scheduler metric efficiency experiment. Time demanding

processes classification metric bases on the average TS AV

calculated after K measurement of TS AV . Average value is

more valuable when it is calculated on the basis of more

measurements. For scheduler it is not acceptable to make

too many schedule() after priority change is done. For

VRRP example if value K is determined incorrectly then

scheduler could keep calculating which process should

have priority changes while failover occurs. In the de-

scribed metric method there is introduced value X which

determines acceptable range to classify process request

for CPU as periodic. Metric success basically depends on

correct X value, which should be not too big (to not clas-

sify accidental tasks) and not too small (to catch periodic

nature even if there is major change in the queue for bigger

priorities).

Table 1

Time TAAV for different number of measurements

K User1(120) User2(130) User3(134) User4(135)

1 1352 1384 1400 1409.6

2 1420 1452 1468 1477.6

3 1431.466667 1463.46667 1479.46667 1489.06667

4 1431.6 1463.6 1479.6 1489.2

5 1420.48 1452.48 1468.48 1478.08

6 1416 1448 1464 1473.6

7 1406.857143 1438.85714 1454.85714 1464.45714

8 1405.4 1437.4 1453.4 1463

9 1398.577778 1432.35556 1447.64444 1457.06667

10 1399.52 1431.52 1447.52 1457.12

Table 1 and Fig. 8 describe possible average TS AV cal-

culated for different K. This example consider only active

queue with 10 kernel space tasks (priority 0–99) and 4 user

space tasks (priority 100–139). Every schedule() CPU is

given to the next process from active queue for a time slice

calculated on the basis of priority. For every one from

10 experiments user space tasks in active queue have the

same priorities while kernel can change to simulate differ-

ence of kernel tasks in a given amount of time.

Fig. 8. Average TAVV for user spaces processes and trend lines.

Measurement of K = 10 active queue can provide informa-

tion about average error described in Table 2.

For this example X = 80 µs would be valuable for time de-

manding process metric and would classify processes much

better than X = 40.

Scheduler should be as well resistant to an average calcu-

lation errors. For that it can elect a process to increase

Table 2

Difference between average measurement for K = 10

User TAAV (1) max TAAV min TAAV
X =

max-min
x =

(max-min)/2

User1(120) 1352 1431.6 1352 79.6 39.8

User2(130) 1384 1463.6 1384 79.6 39.8

User3(134) 1400 1479.6 1400 79.6 39.8

User4(135) 1409.6 1489.2 1409.6 79.6 39.8

68

Linux Scheduler Improvement for Time Demanding Network Applications, Running on Communication Platform Systems

X //average error range
C //allowed priority change for scheduler
PID //process ID
K //estimation
PRIO //process priority
TAVV[PID][K]

If schedule()
K=K+1
TAVV[PID][K] = TAVV
//save average waiting time
If (K==3)

PRIO[PID]=PRIO[PID]+C
//change priority
Reschedule()

end
If (K==5)

PRIO[PID]=PRIO[PID]+C*2
//change priority
Reschedule()

end
If (TAVV[PID][K] − TAVV[PID][K-1] > X)

K=0
//decline no time demanding processes

end
Reschedule()

end

Fig. 9. Scheduler estimation example pseudo code.

priority base on two values of K. Detailed algorithm is

described in pseudo code on Fig. 9.

5. Summary

Time demanding user space application issue can be solved

as many other computer science problems. To determinate

if the cost of the solution is good enough to use it in the

end user system a couple of numbers needs to be calculated

together. Most important parts of the final grate would be

the programming cost, improvement effect on real system,

system stability after change.

Goal of this paper was to prove that such improvement in

the kernel scheduler is possible and this or another idea

can make time demanding user space application working

more effective. According to measurement and calculation

presented in previous section, Linux kernel scheduler can

put more attention to the time demanding system activities.

This can be done without breaking more important sys-

tem rules. The scale of improvement depends on priority

change level, which can be performed when process/task

will be classified as time demanding. Presented solution

shows as well that metric can depend on a set of addi-

tional parameters as classification range border or number

of estimations. This leaves open door for system design-

ers and developers and improvement, the base on several

improvements can be parameterized for a dedicated sys-

tem (e.g., ATCA SBC with a set of application running or

ATCA line card with management application on it).

Acknowledgment

Effort sponsored by the Ministry of Science and Higher

Education, Poland, under grant PBZ-MNiSW-02-II/2007.

References

[1] ATCA – PICMG 3.0 R2.0: ECN 3.0-2.0-001 [Online]. Available:

http://www.picmg.org

[2] ATCA – Intelligent Platform Management Interface Specification

Second Generation v2.0, Feb. 2006.

[3] L. Null and J. Lobur, The Essentials of Computer Organization and

Architecture. Sudbury: Jones & Bartlett Publ., 2006.

[4] “Security Architecture for the Internet Protocol”, RFC 4301.

[5] “Internet Key Exchange (IKEv2) Protocol”, RFC 4306.

[6] Montavista Linux [Online]. Available: http://www.montavista.com

[7] WindRiver [Online]. Available: http://www.windriver.com

[8] Linux GPL [Online]. Available: http://www.gnu.org

[9] “Virtual Router Redundancy Protocol (VRRP)”, RFC 3768.

[10] “A Simple Network Management Protocol (SNMP)”, RFC 1157.

[11] J. Aas, “Understanding the Linux 2.6.8.1 CPU scheduler”, SGI,

2005.

[12] Linux kernel sources [Online]. Available: http://kernel.org

[13] Linux kernel preemption project [Online]. Available:

http://kpreempt.sourceforge.net/

Marcin Hasse received the

M.Sc. degree in telecommuni-

cation from the Gdańsk Univer-

sity of Technology, Poland, in

2005. Currently he works for

embedded computing leading

company providing solutions

for telecommunication market.

His research interest and current

work are related to operating

system improvements for net-

working/telecommunication usage scenarios. He is an au-

thor of several publications in computer networking mech-

anisms improvements for end user services.

e-mail: marcin@hasse.pl

Gdańsk University of Technology

G. Narutowicza st 11/12

80-952 Gdańsk, Poland

Krzysztof Nowicki received his

M.Sc. and Ph.D. degrees in

electronics and telecommunica-

tions from the Faculty of Elec-

tronics at the Gdańsk University

of Technology, Poland, in 1979

and 1988, respectively. He is

an author or co-author of more

than 100 scientific papers and

an author and co-author of five

books. His scientific and re-

search interests include network architectures, analysis of

communication systems, network security problems, mod-

eling and performance analysis of cable and wireless com-

munication systems, analysis and design of protocols for

high speed LANs.

e-mail: krzysztof.nowicki@eti.pg.gda.pl

Gdańsk University of Technology

G. Narutowicza st 11/12

80-952 Gdańsk, Poland

69

