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Abstract—Tunnel establishment, like HTTPS tunnel or re-

lated ones, between a computer protected by a security gate-

way and a remote server located outside the protected net-

work is the most effective way to bypass the network security

policy. Indeed, a permitted protocol can be used to embed

a forbidden one until the remote server. Therefore, if the re-

sulting information flow is ciphered, security standard tools

such as application level gateways (ALG), firewalls, intrusion

detection system (IDS), do not detect this violation. In this

paper, we describe a statistical analysis of ciphered flows that

allows detection of the carried inner protocol. Regarding the

deployed security policy, this technology could be added in

security tools to detect forbidden protocols usages. In the

defence domain, this technology could help preventing infor-

mation leaks through side channels. At the end of this article,

we present a tunnel detection tool architecture and the results

obtained with our approach on a public database containing

real data flows.

Keywords—cyberdefense, network security, decision trees, hid-

den Markov models, HTTPS tunnel, RandomForest.

1. Introduction

Controlling flows going through network boundaries is

a key point of information systems security. The filtering of

these flows and the verification of their conformance to the

network security policy is done in security gateways by ap-

plication level gateways (ALG) and firewalls. In particular,

these tools enforce the restrictions on forbidden protocols

over the network. This task is achieved by packets filtering

techniques and deep inspection of carried payloads.

Nonetheless, firewalls and ALG may become completely

ineffective in two cases: if a permitted protocol is used to

embed a forbidden one or if the flow is ciphered. This en-

Fig. 1. High level scheme of a TLS tunnel.

ables a legitimate or malicious user to infringe the security

policy of an information network, using covert application-

layer tunnels to bypass security gateways (Fig. 1).

Tunneling tools such as HTTPHost [1] or STunnel [2] are

easily available on the Internet, and may be used by a le-

gitimate user to establish a forbidden connection with an

external Internet server. These connections consist in a pro-

tocol usually filtered by the gateway (e.g., ICQ, FTP, SSH,

Skype, Gnutella, BitTorrent, etc.) embedded in a hyper-

text transfer protocol (HTTP) or hypertext transfer protocol

secure (HTTPS) connection. The resulting data exchange

is not controlled by the security gateway and may lead to

critical information leaks or malware intrusions. For exam-

ple, an invited participant to a meeting on a military vessel

may use a hidden tunnel to leak out classified information

via a VoIP protocol. Moreover, similar hidden tunnels are

used by attackers on the Internet to communicate with local

hosts that have previously been infected by a backdoor.

In this paper, we propose a solution to this problem based

on machine learning techniques. Our system relies on a sta-

tistical analysis of ciphered flows enabling identification

of the carried inner protocol, and therefore, detection of

tunneling activities. This solution consists in computing

features for each flow and comparing these parameters to

a statistical model previously built. The parameters used

are derived from the size and the inter-arrival delays of the

packets in the flow.

2. Related Work

Many flow level classifiers have been presented in former

works and applied to protocol identification [3], [4], [5], [6].

These studies use different parameters and machine learn-

ing techniques (Bayesian methods, support vector machine,

etc.) to classify the flows into several categories (SSH,

HTTP, P2P, GAMES, etc.), with promising results. How-

ever, none of these studies specifically address the security

issues. Therefore, they use parameters easily tampered with

by an attacker, such as port numbers or transmission control

protocol (TCP) flags.

To our knowledge, the methods presented in [7] and [8] are

the only ones that share our goal to classify encrypted or

encapsulated traffic. Nonetheless, both of these works use

only the first packets of a connection to classify the entire

flow. Thus, by simulating a legitimate flow using only the

first packets, an attacker can easily bypass these systems.

Considering the security approach specifically, i.e., tun-
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nels detection, we describe a classification method based

on a decision trees forest. This method leads to better

results than other machine learning algorithms. A study

dealing with the impact of transport layer security (TLS)

encapsulation on flows features used for classification is

also presented. Then, we present a tunnel detection tool

architecture and the classification results obtained with our

approach. Finally, we propose a means to decrease the false

positive rate.

3. Machine Learning Techniques

Applied to Tunnel Detection

Many different machine learning tools have been applied

to the flow classification problem. A machine learning al-

gorithm is used to classify a vector among several pre-

determined classes. It consists in two phases:

• A learning phase, taking as input a set of vectors for

each class and returning a classifying model. During

this phase, the class of each vector is known.

• A challenge phase taking as input a set of vectors,

each belonging to a hidden class, the model and re-

turning the class of each vector.

In our case, the classes are the protocols (HTTP, etc.), and

the vectors are the flows (TCP, etc.) over the gateway.

However, related studies were conducted on different

databases, with different parameters, and results cannot be

compared from one paper to another. An interesting quali-

tative survey of several methods is presented in [6], but no

quantitative comparison is carried out.

In order to determine the most effective algorithm and

the best parameters to use for classification, we con-

ducted several experiments on a public database described

in [9] and [10]. This database is composed of more than

20,000 flows captured on a real network. The distribution

of the database flows by traffic classes are presented in

Table 1.

Table 1

Distribution of the database flows by traffic classes

HTTP

Mail

FTP Attack Peer-

Multimedia Services Inter-

(POP, (WM player, (X11, active

SMTP, ...) to-peer real DNS (SSH,

IMAP player, ...) NTP, ...) Telnet)

5707 3519 3107 1822 5717 649 2150 283

First, we selected the parameters that will be used to build

statistical models. In order to classify the ciphered or en-

capsulated flows, these parameters must not be related to

the packets payload. We thus kept only the parameters cal-

culated from the sizes of exchanged packets and the inter-

packets delays. In order to select the most discriminating

ones, a correlation based feature selection with BestFirst

search was applied, as described in [11]. A subset of 10 pa-

rameters was determined by this means:

– the number of transmitted packets, client to server

direction,

– the number of transmitted bytes, client to server di-

rection,

– the IP packets mean size, client to server direction,

– the IP packets maximum size, client to server direc-

tion,

– the minimum inter-arrival delay between two IP pack-

ets, client to server direction,

– the maximum inter-arrival delay between two IP

packets, client to server direction,

– the number of transmitted bytes, server to client di-

rection,

– the maximum IP packets size, server to client direc-

tion,

– the variance of the IP packets size, server to client

direction,

– the number of uploaded bytes/total number of ex-

changed bytes’ ratio.

Afterwards, we applied six different machine learning al-

gorithms to the database, using a cross-correlation method

to classify the entire database. These methods are: support

vector machine (SVM), Gaussian mixture model (GMM),

K-Means, naïve Bayes method, C4.5 decision tree and Ran-

domForest (a forest of random decision trees). For each al-

gorithm, several criterions were evaluated, such as correct

classification rate, false positive rate, computation time, etc.

Figure 2 shows the correct classification rates obtained for

each algorithm.

Fig. 2. Correct classification rates for tested machine learning

algorithms.

It appears that RandomForest, a machine learning tool never

applied before to flow classification, leads to the best per-

formances in terms of correct classification rate and com-

putation time.
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4. Impact of TLS Encryption on

Classification Parameters

Previous experiments were carried out on a database made

of clear flows. Unfortunately, there is no publicly available

payload trace set composed of ciphered flows. Our work

aims at demonstrating the feasibility of tunnel detection

for ciphered flows, and thus it is necessary to prove that

results similar to those mentioned above would be obtained

on ciphered flows. We conducted a complementary study

to evaluate the impact of encapsulation on classification

parameters. In particular, we studied the effect of TLS

encryption on the set of 10 parameters we use to classify

a flow (note that TLS encryption is used to establish an

HTTPs tunnel) following these steps:

– pairs of clear/ciphered flows and extracted are gener-

ated for different protocols (HTTP, SCP, SSH, etc.),

– the classification features are extracted for each flow,

– an affine transformation function from clear to ci-

phered was estimated for each parameter,

– the accuracy of these transformation functions was

estimated by calculating the residual quadratic error

of approximation.

The results obtained showed that the transformation in-

duced by TLS encryption on classification parameters can

be correctly approximated by affine functions for 8 features

out of 10. On the opposite, two of them (minimum inter-

arrival delays between packets from client to server and

variance of the size of packets from server to client) were

transformed in a more complex way.

We can reasonably conclude from this results that TLS

encryption will not lead to a significant loss of performance

for the classification algorithm mentioned above.

5. A Tunnel Detection Tool

Architecture

The biggest drawback of statistical methods is their high

rate of false positive (i.e., legitimate flows classified as ma-

licious). We propose a specific tunnel detection tool archi-

tecture designed to lower the false positive rate. Figure 3

describes this architecture.

The system consists in a network capture tool (such as

TCPDump [12]) combined with a flow demultiplexer. Clas-

sification features are then extracted from each flow, and

a RandomForest model is used to determine the class of

each connection. In order to minimize false positive cases

due to errors of classification, a set of heuristic rules is

applied to generate an analysis report composed of a list of

alerts. These rules take into account past results of clas-

sification, and a level of confidence for each classification.

No alert is raised if the confidence level is too low, if the

IP address of the local or remote host is on a white list, etc.

Fig. 3. High level tunnel detection tool architecture.

The analysis report generated by the application of this set

of rules could have the syslog format, for future integration

in a complex intrusion detection system.

The proposed architecture was implemented on an experi-

mental platform and give very encouraging qualitative re-

sults. These results are presented in the next section.

6. Qualitative Results of the Proposed

Solution

6.1. Network Simulation

At first, we implemented our detection tool on a network

simulator. The simulator consisted in 3 machines, simu-

lating respectively the local network, the gateway and the

Internet. This simulator has been used to measure the TLS

impact (Section 4) and the efficiency of the detection tool.

The resulting detection rates for the protocols shown in Ta-

ble 2 are close to 100%. However, this did not provide

a convincing proof because the diversity of the flows is

reduced compared to a real network:

– the topology of the network is too simple,

– the behavior of the user is unique,

– the material is also unique (one OS, one hardware,

etc.).

Table 2

Distribution of the database flows according

to the protocols

HTTP HTTPs SSH SMTP

DNS

FTP
Active

POP3s NetSteward(over
directory

TCP)

2500 2500 2500 2500 2500 2500 1069 1503 1611

The results obtained for the TLS impact remain valid, but in

order to evaluate the accuracy of the tool, a more complex

set of flows had to be tested.

6.2. A Flows Database in Order to Evaluate Our

Detection Tool

The public database containing real data flows used for

our experimentations is provided by the MAWI working
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Table 3

Confusion matrix obtained using the RandomForest method to classify the database

HTTP HTTPs SSH SMTP DNS FTP
Active

POP3s NetSteward Protocols
directory

93.08 4.36 0.0 1.08 0.04 0.24 0.08 0.36 0.76 HTTP

2.36 91.56 0.08 3.2 0.0 0.48 0.48 2.36 0.28 HTTPs

0.0 0.12 99.44 0.08 0.0 0.08 0.0 0.28 0.0 SSH

0.96 2.28 0.0 91.12 0.2 3.48 1.12 0.72 0.12 SMTP

0.0 0.0 0.0 0.32 99.64 0.0 0.04 0.0 0.0 DNS

0.08 0.6 0.0 3.0 0.0 95.88 0.2 0.24 0.0 FTP

0.19 0.09 0.0 0.47 0.0 0.0 99.16 0.0 0.09 Active directory

0.13 1.2 0.27 0.73 0.0 0.0 0.0 97.67 0.0 POP3s

1.37 0.06 0.0 0.0 0.0 0.0 0.0 0.0 98.57 NetSteward

group [13]. The database is a recording of the whole set

of flows carried by a transpacific 150 Mbit/s network line

between Japan and USA, during 96 hours. The payloads

have been removed and the headers from layers 1 to 4 from

the OSI model have been anonymised.

In order to illustrate the performance of our solution, we

classified nine kind of network flows. For each protocol,

the number of flows contained in the database and used for

the experimentation is shown in the Table 2.

Note that the flows used for the experimentation are

mostly clear flows, i.e., unciphered flows. Indeed, there

is unfortunately no public database of ciphered flows pre-

cising for each flow which protocol is ciphered. Nev-

ertheless, our analysis with this database is interesting

and can be extended to ciphered flows for the following

reasons:

– the flow classification features can be calculated with

ciphered flows exactly as for the clear flows,

– the impact of ciphering on the parameters is limited.

Parameters like the delay induced by the user behavior (as

the password capture for a secure shell (SSH) session or the

frequency of HTTP request while surfing) are not affected

by the encryption.

6.3. Classification Results

Table 3 shows the corresponding confusion matrix obtained

with this algorithm. The procedure used to get the confu-

sion matrix is:

1. For each flow, compute the features regarding the full

connection.

2. Train the classifying model (i.e., RandomForest) on

a subset (the learning set) of flows.

3. Challenge the model on the remaining vectors (the

challenge set.

4. Report the results.

For example in this table:

– the number 93.08 in the first row indicates that

93.08% of HTTP flows have been correctly classi-

fied as HTTP,

– the number 4.36 in the first row indicates that 4.36%

of HTTP flows have been erroneously classified

as HTTPs.

Therefore, the correct classification rates are on the ta-

ble’s diagonal. The average rate of correct classification

is 95.81%.

In a standard configuration, the only allowed protocol

might be HTTP and HTTPs. Any flow classified in an

other class (e.g., SSH, POP3, . . . ) would then be con-

sidered as malicious. Hence, if we set this configuration,

the tool detects 98.68% of illegitimate flows (corresponding

to 1.32% of false negatives) with 4.72% of false positives

(i.e., false alarms). This last rate is too high for an actual

use, since most of flows are legitimate. In Subsection 6.7

we propose a way to decrease the number of false alarms

sent by the tunnel detection tool.

6.4. Classification Computation Time

As shown in Table 4, the classification computation time

is quite short. The implementation has been realized on

a 3.06 GHz PC platform running under a Debian distribu-

tion. The langage used is Java, therefore this computation

time could be reduced using a faster langage such as C if

needed.

Table 4

Computation time with a 2500 flows database

Phase Time

Learning phase 1143 ms

Challenge phase 223 µs
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6.5. Impact of the Flows Length

The procedure described in Subsection 6.3 works with

a full connection. Thus, it does not allow the gateway

to take a real time decision such as ending a session as

soon as an illegitimate flow is detected (the decision is

a posteriori). In order to take a proactive decision, a small

number of packets can be used rather than the full con-

nection. As a consequence, it increases dramatically the

computation power required by the security gateway. Our

study showed that the decision can be taken with only very

few packets (about 3 packets). This could be explained by

the fact that the considered protocols have different behav-

iors from the beginning of the connection, which helps to

distinguish them with a small number of packets.

6.6. Impact of the Database Size

Another issue is the size of the learning database. Depend-

ing on the context, it may be hard to generate a large

database for each flow. For example, the database built

with our simulator had to be manually filled. Figure 4 il-

lustrates the impact of the database size on the detection

accuracy.

Fig. 4. Impact of the database size on the detection accuracy.

6.7. A Simple Method to Lower the False

Positive Rate

We saw in Subsection 6.7 that the false positives rate

(i.e., legitimate flows classified as malicious) is too high

for an actual use while the illegitimate flows rate is, on the

opposite, very good. Depending on the use case, it could

be better to limit the number of false positives, because it

could disturb most of the network users.

For this reason, we propose to set a confidence indica-

tor. Therefore, a flow with a confidence indicator below

a specific threshold will be automatically considered as le-

gitimate. This rule can be added in the heuristic part of the

tunnel detection tool architecture (Fig. 3).

Figure 5 shows the rates of false positives and false neg-

atives obtained by applying this simple heuristic, based

on the confidence indicator set. We can see that such

a rule can reduce the false positives rate. However, this

method seems too ’naive’, because the increase of false

negatives rate (i.e., illegitimate flows allowed by the se-

Fig. 5. Impact of a rule based on a confidence indicator on the

rates of false positives and false negatives.

curity gateway) is significantly faster than the decrease of

false positives rate.

7. Conclusion

In this paper, we presented a solution to the key problem

of encapsulated illegitimate flows detection across network

boundaries. In a first part, we compared the performances

of different machine learning algorithms and identified the

best one in our specific case. In a second part, we con-

ducted a complementary study showing that the effect of

TLS encryption on classification features should not signif-

icantly affect classification performances. Finally, in a last

part, we described a high-level tunnel detection tool archi-

tecture. We pointed out qualitative results using this tool

with a public database and the impact of variation around

the protocol on its accuracy. Finally we proposed, regard-

ing the results obtained, a simple method to lower the false

positive rate.

The construction of our solution is generic and can be tuned

to be used for automatic classification, pro-active reaction

or small learning database. In a global cyberdefense sys-

tem, the proposed architecture could be efficiently used with

a classical security tool, such as an IDS, in order to improve

the security level.
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