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Abstract—The framework for testing video streaming tech-

niques is presented in this paper. Short review of error re-

silience and concealments tools available for the H.264/AVC

standard is given. The video streaming protocols and the

H.264 payload format are also described. The experimen-

tal results obtained with the framework are presented in this

paper too.
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1. Introduction

The video coding technology has been rapidly developing

during the last years. Broadband networks have been grow-

ing even faster. Media delivery over the IP networks has

been widely accepted and it seems it may replace the tradi-

tional media distribution methods in near future. However,

the network performance depends on many factors and may

not always guarantee the required quality of the transmit-

ted media. It is extremely important in many application

to increase the error resilience of the audio or video stream

and to effectively conceal any errors that may occur during

transmission.

The framework for testing video streaming techniques will

be presented in this paper. It has been used as a tool for

analysis and development of media adaptation, error re-

silience and error concealment algorithms. The framework

has been limited to the streaming of the H.264/AVC en-

coded video with the use of RTP/RTCP protocol. How-

ever, it can be easily extended for other video codecs and

transmission protocols. The experimental results obtained

with this framework will also be presented.

1.1. H.264/AVC Bitstream

The international standard MPEG-4 H.264/AVC [1] is cur-

rently the most commonly used for video coding. Its

first editions was released in 2003. The important en-

hancements: scalable video coding (SVC) and multiview

video coding (MVC) were added in 2008 and 2009 re-

spectively. The H.264/AVC standard is based on the hy-

brid motion compensation and transform algorithm [2]–[4]

implemented in almost all preceding video coding stan-

dards, including MPEG-2 Video [5]. Many improve-

ments of the classical algorithm significantly increased the

H.264/AVC coding efficiency with respect to its prede-

cessors. However, the coding efficiency was not the only

objective for H.264/AVC standard developers. The video

stream flexibility and its adaptability for different transmis-

sion channels was also an important factor. It has been

achieved by separation of the signal processing from the

transport-oriented processing – the H.264/AVC codec has

been divided into two layers:

– video coding layer (VCL) – contains all compres-

sion tools, generates bitstream of the encoded mac-

roblocks organized into slices;

– network abstraction layer (NAL) – encapsulates the

bitstream generated by the VCL in units suitable for

the transmission.

The H.264/AVC bitstream is a sequence of the NAL units

(Fig. 1). Each NAL unit starts with one-byte header con-

taining three fields:

– F – error indicator (1 bit), NAL unit with this field

set to 1 should not be processed;

– NRI – NAL unit priority (2 bits), the value of this

fields indicates the importance of the NAL unit

for a video sequence reconstruction;

– TYPE – type of the NAL units (5 bits), values 0÷23

are restricted to be used only within the H.264/AVC

standard, values 24÷31 may be used for other pur-

poses, e.g., in transmission.

Fig. 1. H.264/AVC bitstream.

NAL units contain only data representing the encoded video

sequence. Additional headers must be appended to each

NAL unit to separate them. Annex B of the H.264/AVC

standard defines such headers (start code – fixed byte

sequence) for the transmission in byte-oriented networks

(e.g., broadcasting). The headers used in packet-oriented

networks will be discussed further in this section.

The H.264/AVC syntax is not as restricted as in its prede-

cessors. There are no layers above the slice layer generated

by the VCL. The higher level information are stored in the

specific syntax elements: sequence parameter set (SPS) and

picture parameter set (PPS). Special NAL unit type are as-

signed to carry the parameter sets. Several SPSs and PPSs

can be defined and used by the encoder. Each macroblock

in the H.264/AVC bitstream refers to the SPS and the PPS
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which are used to encode it. Usually NAL units with pa-

rameter sets precede all other NAL units in the H.264/AVC

bitstream, however, it is not required by the standard. They

can be transmitted in an additional, more reliable channel,

for example. The only requirement is that the parameter

sets must be known to the decoder to allow the bitstream

processing.

The scalable and multiview extensions of the H.264/AVC

standard generally conform to the above concept. The SVC

and MVC bitstreams are sequences of the NAL units simi-

larly as the H.264/AVC bitstream. Special NAL unit types

(illegal in the AVC bitstream) have been defined to carry

additional data (video layers in SVC, views in MVC) intro-

duced by these extensions.

1.2. Error Resilience Tools in H.264/AVC

Error resilience tools are available in many video coding

standards. However they are limited to the frame segmen-

tation into slices or group of blocks (GOB) in most cases.

The H.264/AVC standard introduces new error resilience

tools [3], [6]:

– redundant slices – additional (redundant) data are

added to the normal (non-redundant) data represent-

ing the entire frame or a part of the frame;

– arbitrary slice order – the frame is divided into slices

which are transmitted in non-raster (arbitrary) order;

– slice groups – macroblocks in a frame are allocated to

a slice group. Six predefined allocation maps (Fig. 2)

can be used, additionally explicit macroblock alloca-

tion mode is also available. This technique is also

known as flexible macroblock ordering (FMO);

– bit stream partitioning – encoded slice is divided

into three partitions containing respectively: slice

and macroblock headers, residual data for intra coded

macroblocks, and residual data for inter coded mac-

roblocks.

These tools are available only in the Baseline or Extended

profile of H.264/AVC standard. It limits their applications

since most available codecs conform to the Main or High

profile.

The implementations of the H.264/AVC error resilience

tools are widely reported in the literature. Dynamic slice

group mapping based on a macroblock classification algo-

rithm for prioritized video transmission is presented in [7].

Combined flexible macroblock ordering (FMO) and redun-

dant slices algorithm is presented in [8]. Multiple descrip-

tion coding based on redundant slices is discussed in [9].

The redundant picture coding combined with reference pic-

ture selection and reference picture list reordering method

is presented in [10]. An interesting approach based on an

optimal slicing and unequal error protection is proposed

in [11]. Technique based on redundant pictures inserted

periodically into encoded sequence is presented in [12].

Fig. 2. Standard slice group allocation maps: (a) interleaved, (b)

dispersed, (c) foreground and background, (d) box-out, e) raster

scan, (f) wipe.

Error resilience tools are usually used jointly with the error

concealment techniques which try to reconstruct the parts

of the bitstream lost due to transmission errors. Usually

perfect reconstruction is not possible. However, even if

only approximation of the lost fragments can be found, the

overall quality of the reconstructed sequence is improved.

Two error concealment algorithms are implemented in the

H.264/AVC reference software [13]: frame copy and mo-

tion vector copy [14], [15]. The first algorithm simply

copies the pixel in the concealed frame from the previ-

ous decoded reference frame. The motion compensation

with the motion vectors copied from the previous reference

frame is used in the second algorithm. The algorithm re-

covering lost slices in video encoded with the FMO tool,

based on the edge-directed error concealment, is presented

in [16]. The FMO tool is also used in the algorithm pre-

sented in [17] to recover missing motion vectors. Many

error concealment techniques utilize spatial and temporal

correlation in the video sequences [18]–[20].

1.3. Video Streaming

There are generally two approaches to the media deliv-

ery over the IP networks. The first one is based on the

transmission protocols utilizing TCP as a transport proto-

col. The file download with the use of HTTP protocol is

the most obvious example. The other option is so called
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HTTP progressive download. The file transmitted with the

use of HTTP is split into many small fragments in this case.

Each fragment is transmitted in a separate HTTP request,

allowing media playback after receiving only the small part

of the entire file. The most sophisticated HTTP-based so-

lution is the adaptive progressive download [21]–[24]. The

several variants of each fragment of the media file are used,

each is encoded with different parameter sets, e.g., bit rate.

All fragments are transmitted sequentially as in classical

progressive download, however, it is possible to switch be-

tween variants at fragment boundaries. The variants are

selected depending on the actual network throughput. This

adaptation scheme provides uninterrupted media delivery

with varying quality following the change of the network

conditions. The advantage of the HTTP-based solutions is

an ability to traverse firewalls so it is widely used in the

Internet (e.g., YouTube). However application in real-time

systems is limited due to delays introduced by the TCP

transmission.

The other approach to the media delivery is based on the

user datagram protocol (UDP) as a transport protocol. It

is preferred in real-time applications, e.g., videoconferenc-

ing or video surveillance. There are usually very strict

requirements on the transmission delay in such applica-

tions. These requirements can be fulfilled only if the UDP

is used. However, since the UDP is an unreliable proto-

col, some datagrams may be lost, duplicated or may ar-

rive to the destination in the wrong order. The real time

protocol (RTP), accompanied by the RTP control proto-

col (RTCP) [25], [26], were developed to eliminate these

drawbacks. The RTP provides data transport mechanism,

while the RTCP is a tool for data transmission monitoring.

Both protocols are most often used on the top of the UDP,

however, it is possible to use them with other transport pro-

tocols too. It is worthwhile to mention that the secure en-

hancement of the RTP has been developed [27]. It defines

the media encryption algorithm as well as media integrity

and authenticity verification method.

The RTP is very universal and can be used for deliv-

ering media of different types. The RTP payload for-

mat for the delivery of H.264/AVC bitstream is presented

in [6], [28]. It is based on the NAL units concept pre-

sented in the Subsection 1.1. Three encapsulation modes

are specified:

– single NAL unit in the RTP packet,

– multiple NAL units in the RTP packet (aggregation

mode),

– NAL unit split into multiple RTP packets (fragmen-

tation mode).

The first mode is very simple: an entire NAL unit is in-

serted into the RTP packet as its payload (Fig. 3). The

one-byte NAL unit header serves as the RTP payload

header. The NRI and TYPE fields can be used to classify

how important the payload is for the sequence reconstruc-

tion. The RTP header contains additional data describing

the payload:

– PT – payload type identifier; certain media types have

been assigned fixed identifiers [29]. The identifiers

for other media types, including H.264/AVC, must

be assigned dynamically, e.g., within the SDP [30]

messages;

– M – marker bit set to 1 if the payload contains the

last NAL unit in the current frame;

– TS – timestamp of the NAL unit carried as a payload;

the clock frequency for the H.264/AVC video is equal

to 90 kHz;

– SN – sequence number of the RTP packet; allows

detection of the packet loss, duplication or incorrect

order;

– SSRC – synchronization source identifier; each par-

ticipant of the RTP session is identified by its unique

identifier;

– CSRC – contributing source identifier; used only if

mixers or translators [25] are used in the RTP session;

– CC – CSRC count; number of the CSRC fields in the

RTP header; set to zero in most cases;

– P – padding flag; if set the last byte of the payload

contains number of the padding bytes following the

packet payload; used to increase the length of the

RTP packet to the fixed value required, e.g., by the

encryption algorithm.

Fig. 3. Single NAL unit in the RTP packet.

Single NAL unit mode is effective if the NAL unit length

fits to the network characteristic. The length of the RTP

packet must not exceed the maximum length of the UDP

datagram equal to 64 kB. It should also not exceed the

length of the maximum transfer unit (MTU) for the given

network (e.g., 1500 B for Ethernet). If the RTP packet is

longer than MTU it will be fragmented by the lower layers

in the IP stack. The packet fragmentation increases the

probability of the packet loss.
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The length of the encoded slice depends on many factors.

It may easily exceed the limit of 64 kB, e.g., if the high

resolution sequence is encoded with good quality (high bit-

rate) and no frame segmentation is used (i.e., the entire

frame is encoded in one slice). In many cases it exceeds

the MTU value too. The fragmentation mode provides the

way to handle NAL units containing such long slices. The

NAL unit is split into fragments transmitted in consecutive

RTP packets. There is also an option to change the order

of the NAL unit fragments. Each NAL unit fragment is

appended by an additional field containing its order in this

option.

The NAL units containing, e.g., parameter sets, SEI mes-

sages or encoded slices of fine fragmented frame can be

very short. Their transmission in single RTP packet is

ineffective due to the header overhead. The aggregation

mode allows to join such short NAL units in one longer

RTP packet. The aggregated RTP packet can contain ei-

ther NAL units with identical timestamps or with different

timestamps. Similarly, as in the fragmentation mode, NAL

units do not have to be inserted into aggregated packet in

its decoding order.

The payload format for the scalable extension (SVC) of the

H.264/AVC is proposed in the draft specification [31]. Two

modes of the SVC bitstream transmission are defined:

– single-session: all layers of the SVC stream are trans-

mitted in a one RTP session. All packetization modes

available for the H.264/AVC bitstream may be used

in this mode;

– multi-session: layers of the SVC stream are trans-

mitted in different RTP sessions. All sessions are

synchronized to the same system clock. Four special

packetization modes are defined for this transmission

mode.

Multi-session mode is especially suitable for the multi-

cast transmission. Separation of the SVC bitstream lay-

ers simplifies the stream adaptation to the network condi-

tions. Specialized network devices, so called media aware

network elements (MANE), can simply discard the layers

which require higher throughput than is currently available.

The proposed payload format [32] for multiview extension

(MVC) of the H.264/AVC is very similar to the specification

for the SVC. The views contained in the MVC bitstream can

be transmitted in either one RTP session (single-session

mode) or in multiple synchronized RTP sessions (multi-

session mode).

2. Video Streaming Framework

Overview

The following requirements for the framework were speci-

fied:

– streaming of the H.264/AVC encoded video with the

use of RTP/RTCP;

– monitoring and visualisation of the network parame-

ters during transmission;

– acquisition and real-time encoding of the analogue

video signal;

– decoding of the H.264/AVC stream and displaying of

the reconstructed video in real time.

The open source software has been extensively used in the

framework development. The framework is running under

the Linux operating system. It has been written mostly in

the C++ programming language, some code fragments di-

rectly interfacing with underlying libraries have been writ-

ten in C. Video4Linux2 (V4L2) [33] application program-

ming interface has been used for video capture. The graph-

ical user interface has been created with the use of Qt li-

brary [34]. The classes from the Qwt library [35] have been

used to create diagrams for network parameters visualisa-

tion. The open source library JRtpLib [36] has been used

to sent and receive RTP packets and handling of the RTCP

messages. The FFmpeg library [37] has been used for the

H.264/AVC stream decoding. The H.264/AVC parsers have

been based on the H.264 reference software [13]. The

x264 [38] library has been used to encode video.

The most important classes of the framework are:

– NalUnit – represents the NAL unit and its timing

information;

– AnnexBReader – parser for the H.264/AVC bitstream

stored in the Annex B [1] format;

– JmRtpReader – parser for the H.264/AVC bitstream

stored in the RTP format defined in the H.264 refer-

ence software;

– AnnexBWriter – stores H.264/AVC bitstream in the

Annex B format;

– JmRtpWriter – stores H.264/AVC bitstream in the

JM/RTP format;

– Rfc3984Packetizer – encapsulates NAL units

in the RTP packets in compliance with the

RFC 3984 [28];

– Rfc3984Depacketizer – restores NAL units encap-

sulated in the RTP packets;

– RtpStreamer – creates RTP/RTCP session for send-

ing NAL units;

– RtpReceiver – creates RTP/RTCP session for re-

ceiving NAL units;

– V4LConfigWidget – configures the V4L2 video cap-

turing device;

– V4LStreamerThread – streams video from the cap-

turing device to the memory buffers;

– X264ConfigWidget – configures the x264 encoder;
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– X264EncoderThread – encodes video stored in the

memory buffers;

– Decoder – decodes H.264/AVC bitstream and con-

verts decoded YUV frames into RGB images.

Fig. 4. Screenshot showing two framework applications. The

H.264/AVC streamer is shown on the left, diagrams displays bit

rate, packet loss ratio and a quality measure for the reconstructed

video. The decoded H.264/AVC stream is displayed on the right.

The framework (Fig. 4) has been compiled and tested on

the Fedora 10/12/14 and Ubuntu 10.10 distributions. The

framework has been developed with the use of standard

libraries and development tools so it should be possible to

use it on other Linux distributions too. Adaptation for the

other operating systems will require the complete rewrite

of the classes responsible for video capture.

3. Experimental Results

The framework presented in the previous section has been

used for analysis, development and testing of video stream-

ing techniques. The comparison of the H.264/AVC error

resilience techniques will be presented as an example of

the experimental results obtained with the framework.

The CIF resolution Carphone test sequence has been en-

coded by the H.264/AVC reference software encoder [13]

configured for the Baseline profile [1]. Group of pictures

composed of 12 I/P frames and a constant value of the

quantization parameter QP have been used. Three frame

segmentation modes have been used: an entire frame in

one slice (denoted as frame), slices containing one row of

macroblocks (row) and slices with the length not exceeding

the 1400 B which is less then the MTU value. Additionally

two slice group modes have been used: interleaved (in-

ter) and dispersed (disp). The rate-distortion (R-D) curves

for the selected coding parameters are presented in Fig. 5.

The error resilience tools reduce the coding efficiency, es-

pecially if the row slices segmentation or the dispersed slice

group is used.

Fig. 5. The R-D curves for coding parameters.

The test sequences encoded with the QP = 30 (bit rate

250÷ 300 kbit/s depending on coding parameters) have

been streamed over IP network with controlled throughput.

Single NAL unit in the RTP packet has been used in all

experiments. Each sequence have been transmitted 5 times

for selected network throughputs. The averaged packet loss

ratio (PLR) is shown in Fig. 6. The PLR is higher for the

row slices segmentation mode than for any other mode.

Fig. 6. The PLR for coding parameters.

The received bitstreams have been decoded by the

H.264/AVC reference software decoder [13]. The peak

signal-to-noise ratio (PSNR) values for each decoded bit-

stream have been calculated. If the bitstream has not been

decoded due to transmission errors it has been assumed

that PSNR = 0 dB. The averaged PSNR values without any

error concealment in the decoder are shown in Fig. 7. The

most effective is frame segmentation into slices shorter than

MTU, slice group modes are slightly better than coding the

entire frame in one slice.

The effectiveness of the slice group increases if the

error concealment techniques are used in the decoder.
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Fig. 7. Averaged PSNR with no error concealment in the decoder.

Figures 8 and 9 present the averaged PSNR for the frame

copy and the motion copy error concealment mode respec-

tively.

Fig. 8. Averaged PSNR for the frame copy error concealment

mode.

Fig. 9. Averaged PSNR for the motion copy error concealment

mode.

The experimental results show that slice groups – new error

resilience tool available in the H.264/AVC standard can im-

prove the effectiveness of the transmission if the error con-

cealment techniques are used in the decoder. However, the

proper NAL unit encapuluation mode must also be selected.

The lengths of NAL units in the test sequences selected for

the experiment do not exceed the MTU value in most cases.

Therefore, the single NAL unit in the RTP packet has been

used. The results for other test sequences, with longer NAL

units, would be different. The fragmentation mode would

have to be used to achieve comparable effectiveness. It is

worthwhile to mention, that frame segmentation into slices

of length not exceeding the MTU value provides high effec-

tiveness even if no error concealment algorithms are used

in the decoder. This frame segmentation mode is available

in all profiles of the H.264/AVC standard and it can always

be used with the single NAL unit packetization mode.

4. Conclusions

The framework presented in this paper is a tool for testing

video streaming techniques. It is based on the open source

software, the H.264 reference software is also used. The

framework allows streaming of the H.264/AVC video with

the use of RTP/RTCP. The preencoded video stored in the

file or real-time encoded video from capturing device can

be transmitted. The received video can be decoded and

displayed in real-time or stored in the file for further pro-

cessing. The transmission parameters: bit rate, packet loss

ration can be continuously displayed. The framework can

be easily extended for other codecs and transmission proto-

cols. It has been developed for the Linux operating system,

but most of the libraries are portable, so the adaptation for

other operating systems is possible.
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