
Paper Incrementally Solving

Nonlinear Regression Tasks

Using IBHM Algorithm
Paweł Zawistowski and Jarosław Arabas

Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland

Abstract—This paper considers the black-box approximation

problem where the goal is to create a regression model using

only empirical data without incorporating knowledge about

the character of nonlinearity of the approximated function.

This paper reports on ongoing work on a nonlinear regression

methodology called IBHM which builds a model being a com-

bination of weighted nonlinear components. The construction

process is iterative and is based on correlation analysis. Due

to its iterative nature, the methodology does not require a pri-

ori assumptions about the final model structure which greatly

simplifies its usage. Correlation based learning becomes in-

effective when the dynamics of the approximated function is

too high. In this paper we introduce weighted correlation co-

efficients into the learning process. These coefficients work

as a kind of a local filter and help overcome the problem.

Proof of concept experiments are discussed to show how the

method solves approximation tasks. A brief discussion about

complexity is also conducted.

Keywords—black-box modeling, neural networks, nonlinear ap-

proximation, nonlinear regression, support vector regression,

weighted correlation.

1. Introduction

In this paper the problem of solving nonlinear regres-

sion tasks is considered. The task consists in finding

a function f̂ : R
n → R such that for the approximated

function f : R
n → R the error between f and f̂ function

values is minimal. The f function is unknown, however

sample input data X = {x1, . . . ,xt} and function values

Y = {y1, . . . ,yt : yi = f (xi)} are given.

As regression tasks occur in many areas of research and

industry, various methods of solving such tasks have been

developed. These range from simple linear regression,

through generalized regression to black-box modeling al-

gorithms such as neural networks.

This paper reports on development of a black-box ap-

proximation method called IBHM, which is a shorthand

for Incrementally Built Heterogenous Model, introduced

in [1] and [2]. The method iteratively creates models sim-

ilar in structure to MLP or RBF neural networks [3]. Dur-

ing this process, IBHM determines both parameters and the

model structure, so no a priori assumptions are required,

which makes the method very convenient to use. Although

this is a relatively new approach, it has already achieved

very good results in comparison to other methods [4]. This

paper focuses on presenting the proper background and

ideas connected with IBHM and also formulates the lat-

est version of the algorithm.

There are various other black-box approximation methods,

such as e.g., the already mentioned neural networks, that

process models similar to IBHM. Ideas similar to the con-

cept of iterative correlation based learning can also be

found in other areas of research. In this paper we briefly

refer to these approaches in the context of the presented

method.

The paper is organized as follows. Section 2 introduces

the correlation based learning used by IBHM and describes

the ideas behind it. A detailed algorithm formulation along

with computational complexity discussion and compari-

son to other methods is given in Section 3. Section 4 re-

ports obtained experimental results. Finally a summary and

discussion of future work is given in Section 5.

2. Correlation Based Learning

2.1. Genesis

The basic concepts behind IBHM originate from the well

known method of linear regression. This technique creates

models f̂ : R
n→R having the form

f̂ (x) = w
T

x + w0, (1)

where w,x∈R
n and w0 ∈R. Linear regression fails to lead

to good results if f (x) is nonlinear.

A possible way to overcome such problems is to use a map-

ping function Φ : R
n→ R

m to transform the original vari-

able x before applying linear regression. If the dependency

between Φ(x) and f (x) is linear then the linear regression

can be applied to construct the model which effectively is

nonlinear

f̂ (x) = w
T Φ(x) + w0. (2)

This approach would be a perfect solution to complicated

modeling problems, but finding a proper Φ transformation

is virtually impossible without detailed knowledge about

the approximated function.

65

Paweł Zawistowski and Jarosław Arabas

2.2. Single Nonlinear Component

Here we attempt to formulate a methodology that tries to

guess the most appropriate form of the Φ mapping by se-

lecting one of many possible candidates.

Let h : R
n→R be a scalarization function and g : R→R be

a monotonous activation function. Now assume that m = 1,

that is, a mapping Φ : R
n→R is sufficient to build a linear

model and has the form

Φ(x) = g(a · h(x,d) + b) , (3)

where a,b ∈ R are scalar parameters and d ∈ R
n is a pa-

rameter vector.

The regression model has the form

f̂ (x) = w1 ·Φ(x)+ w0 = w1 ·g(a ·h(x,d)+ b) + w0 . (4)

Observe that the regression model parameters can be esti-

mated by a two-step procedure:

– estimation of parameters a,b and d,

– computing of weights w0,w1 via linear regression.

Prior to defining a method to estimate values of a, b and

d a couple of observations has to be made. First notice

that, as f̂ (x) is to approximate f (x), they must be lin-

early correlated. Inspection of Eq. (4) reveals that a high

level of linear correlation is expected between f (x) and

g(a · h(x,d)+ b). As the output values of the g function

depend on parameters a and b, their proper values can be

found by maximizing the correlation between f and g with

respect to a and b.

A similar approach, which utilizes a rank correlation, can

be used to find the d vector value. Observe that the out-

put of the scalarization function h also has to be correlated

with the output of f . In this case, however, linear corre-

lation cannot be used, because the output values of h are

transformed by the activation function which is nonlinear.

In consequence, linear correlation may be improperly in-

dicating dependencies between h and f , however, as the

g function is monotonous, rank correlation will perform

this task instead.Value of d can therefore be found by max-

imizing the rank correlation between f and h(x,d). The

remaining weights w0,w1 can finally be estimated using

linear regression.

2.3. Multiple Nonlinear Components

Up to this point the case of m = 1 has been considered.

Now we consider a general case where m > 1 and assume

that the Φ mapping has the following form

Φ(x) =





g1 (a1 ·h1(x,d1)+ b1)
. . .

gm (am ·hm(x,dm)+ bm)



 , (5)

where hi : R
n→ R are scalarization functions, gi : R→ R

are monotonous activation functions and ai,bi,di are pa-

rameters, i = 1, . . . ,m.

Thus we consider the following regression model

f̂ (x) =
m

∑
i=1

wi ·gi(ai ·hi(x,di) + bi) + w0 . (6)

All parameters in Eq. (6) can be estimated using the previ-

ously described procedure based on the correlation analysis

iteratively, as presented in Algorithm 1. There the iteration

loop starts in line 2. In iteration k first rank correlation

between the current approximation residual εk−1 and h out-

put values is maximized to estimate dk – line 4. Then ak

and bk are similarly found via linear correlation maximiza-

tion – line 5. Finally the residual εk is calculated – line 7

and linear regression is performed – line 8.

Algorithm 1:

Input: X = {x1, . . . ,xm : xi ∈ Rn} - training sample set

Result: f̂ - approximation function

ε0(x)← f (x), k← 01

while the stop criterion is not satisfied do2

k← k + 13

dk← argmax j |r(hk(X ,d),εk−1(X))|4

(ak,bk)←5

argmax(a,b) |r(gk(a ·hk(X ,dk)+ b),εk−1(X))|

assume f̂k(x) = ∑i=1,...,k wi ·gi(ai ·hi(x,di)+ bi)6

assume εk(x) = f̂k(x)− f (x)7

[w0, . . . ,wk]← argmin[w0,...,wk] ∑x∈X (εk(x))2
8

end9

f̂ (x) = f̂k(x)10

Finding parameters in the described fashion is in some

sense a greedy approach. This is because during each it-

eration the method tries to fit the current scalarization and

activation functions to the entire approximation residual

even if this leads to a more complicated situation in the fu-

ture. To get a better insight into this problem, consider

Fig. 1. An example approximated function.

66

Incrementally Solving Nonlinear Regression Tasks Using IBHM Algorithm

Fig. 2. Approximating function from Fig. 1 using Algorithm 1:

(a) after the first iteration, (b) after the second iteration.

approximating the function given in Fig. 1. Application

of Algorithm 1 would lead in this case to results simi-

lar to Fig. 2 which do not fully reflect the approximated

function. This is because in the first iteration this approach

tries to approximate the whole function instead on focusing

on one of the two clearly distinct components. As a result

it is unable to build a perfect model in two iterations.

2.4. Weighted Correlation

An improvement to the described situation can be made by

using weighted correlation coefficients. Let us define the

weighted linear correlation as

rω (X ,Y) =
Eω(XY)−Eω(X)Eω(Y)

√

(Eω (X2)−E2
ω(X))(Eω (Y 2)−E2

ω(Y))
, (7)

and the weighted rank correlation as

ρω(X ,Y) = rω (rank(X),rank(Y)) , (8)

where

Eω (X) =
∑x∈X ω(x)x

∑x∈X ω(x)
. (9)

Furthermore we consider a Gaussian weighting function of

the form

ω(x) =
1√
2πv

e
−x2

2v2 . (10)

When the algorithm uses the defined weighted coefficients

instead of trying to decrease the approximation residual

as much as possible in each iteration, the method focuses

on identifying and approximating specific components of

the approximated function. This means that IBHM tries to

decompose the approximated function.

Fig. 3. Approximating function from Fig. 1 using Algorithm 1

with weighted correlation coefficients: (a) after the first iteration,

(b) after the second iteration.

Coming back to the example, if we change lines 4 and 5

in Algorithm 1 to use the weighted correlation coefficients,

the obtained approximation results are different as presented

in Fig. 3. A close inspection of these results reveals that

the weights work as a kind of a filter which puts focus

on local features of the approximated function. Therefore

it is possible to approximate a specific component of the

approximated function, different in each iteration and get

a more accurate model in the end.

3. IBHM Algorithm

3.1. Method Definition

Extending the conventions used in Subsection 2.1, let

H = {h̄1, . . . , h̄v : h̄i : R
n→ R} denote the set of candidate

scalarization functions and let G = {ḡ1, . . . , ḡu : ḡi : R→R}
denote the set of candidate monotonous activation func-

tions. The functions present in the final model are to be

chosen from these two sets.

Algorithm 2 presents the proposed method, which builds

the model given by Eq. (6), where ∀i gi ∈G ∧ hi ∈H. The

algorithm has three distinct parts which follow the proce-

dure already described in Subsection 2.1. In the first part,

for each candidate scalarization function, a proper parame-

ter vector is found via the weighted rank correlation maxi-

67

Paweł Zawistowski and Jarosław Arabas

mization – line 5. Then the best candidate is selected and

set as the k-th scalarization function – lines 7–9. In the

second part of the iteration, the parameters for candidate

activation functions are found via the weighted linear cor-

relation maximization – line 11. Then the best candidate

is chosen as the k-th activation function – lines 13–15. In

the third part of the iteration linear regression is used to

estimate the model’s weights – line 18.

Algorithm 2: IBHM

Input: X = {x1, . . . ,xm : xi ∈ Rn} - training sample set

Result: f̂ - approximation function

ε0(x)← f (x), k← 01

while the stop criterion is not satisfied do2

k← k + 13

/* Part 1 - finding scalarization function

and parameter */

for i = 1, . . . , |H| do4

d̂i← argmaxd

∣

∣ρω(h̄ j(X ,d),εk−1(X))
∣

∣5

end6

ik← argmaxi

∣

∣ρω(h̄i(X , d̂i),εk−1(X))
∣

∣7

dk← d̂ik8

hk← h̄ik9

/* Part 2 - finding activation function

and parameters */

for j = 1, . . . , |G| do10

(â j, b̂ j)←11

argmax(a,b)

∣

∣rω (ḡ j(a ·hk(X ,dk)+ b),εk−1(X))
∣

∣

end12

jk← argmax j

∣

∣rω (ḡ j(â j ·hk(X ,dk)+ b̂ j),εk−1(X))
∣

∣13

(ak,bk)← (â jk , b̂ jk)14

gk← ḡ jk15

/* Part 3 - extending the model */

assume f̂k(x) = ∑i=1,...,k wi ·gi(ai ·hi(x,di)+ bi)16

assume εk(x) = f̂k(x)− f (x)17

[w0, . . . ,wk]← argmin[w0,...,wk] ∑x∈X (εk(x))2
18

end19

f̂ (x) = f̂k(x)20

Main loop of the algorithm is controlled by a stop cri-

terion. This criterion should indicate if increase of the

models complexity improves the overall results. A possi-

ble candidate method for that criterion is to stop when an

increase in the Akaike Information Criterion (AIC) [5] is

observed, where AIC is defined as

AIC(X) = 2 · p + |X | · ln(∑
x∈X

(εk(x))2) , (11)

and p is the number of parameters estimated for the model1.

1In case of m iterations of IBHM p = m · (n+3)+1.

Another possibility is to use a separate validation set to esti-

mate the current model error and to stop when it increases.

3.2. Computational Complexity

Dominant operations which influence IBHM’s complexity

are connected with optimization tasks performed in each

iteration. For that reason, a thorough complexity analysis

of IBHM in the general case is impossible, as it would

require precisely stating the complexities of solving un-

known global optimization tasks. What follows however, is

a rough discussion giving some insight into how costly is

the algorithm in comparison with other methods.

In each IBHM iteration, a number of optimization tasks

are solved. For each scalarization function from the H set,

a global optimization of the d ∈ R
n vector is solved. Esti-

mation of parameters a,b is performed for each activation

function from the set G. Each iteration is concluded with

linear regression which is a quadratic problem of a size

dependent on the iteration number.

When compared to methods which assume a fixed model

structure, e.g., MLP neural networks, where only a single

optimization task is solved, IBHM may seem to be over-

whelmingly expensive. This is until dimensionality, a key

factor connected with optimization tasks, is considered. Be-

cause of its iterative nature, the increase in the number of

nonlinear components does not influence the number of

parameters that undergo global optimization in each IBHM

iteration. This means that in the optimization tasks solved

by IBHM are simpler than in case of MLP.

Consider an example in which an approximated function

f : R
n → R is is given. The approximation function is

assumed to have the following structure

f̂ (x) =
m

∑
i=1

wi · tanh(ai ·dT
x + bi) + w0 . (12)

This model corresponds to a MLP neural network with

a single hidden layer of m-neurons and a hyperbolic tan-

gent activation function. For MLP it is sufficient to assume

that ai = 1, therefore estimation of the parameters requires

solving a single m ·(n+2)+1 dimensional global optimiza-

tion task.

The same model can also be constructed within m iterations

of IBHM with H = {dt
x} and G = {tanh(x)}. In this case

we have to solve m global optimization tasks in R
n and R

2

and m quadratic optimization tasks.

Table 1

Time units required to prepare the model from Eq. (12)

(for m = 10, n = 5) in case of IBHM and MLP using

optimization methods of various expected costs.

Alg. exp. cost IBHM MLP

Θ(N) 70 71

Θ(N2) 2 900 5 041

Θ(N3) 133 000 357 911

68

Incrementally Solving Nonlinear Regression Tasks Using IBHM Algorithm

If we have a global optimization method with the expected

cost Θ(Nα) where N is the optimization task dimensional-

ity, we may estimate the computational effort required to

prepare an MLP network as requiring Θ(mn + 2m + 1)α

units. In the IBHM case, the cost is Θ(mnα + 3mα) units

plus the negligible cost of solving m quadratic optimization

tasks. For various values of α the computational effort re-

quired by IBHM turns out to be far smaller then in case

of MLP, as shown in Table 1.

3.3. Similar Methods

Neural networks. Multiple Layer Perceptron (MLP) or

Radial Basis Function (RBF) type neural networks [3] can

be used to create models very similar to those created by

IBHM. The main difference is that IBHM does not require

a priori assumptions about the final model structure, while

constructing MLP or RBF networks requires setting the

number of neurons to be used. Also the correlation based

learning used by IBHM is a completely different from the

techniques utilized by neural networks.

One important fact to notice is that IBHM may be utilized

alongside neural networks as a preprocessing step estimat-

ing the required number of networks. This has been shown

[4] to lead to good results in case of MLP models.

SVR. Support Vector machines for Regression (SVR, [6])

construct models with a similar structure to IBHM mod-

els. Another similarity is that, this method determines the

model structure using the training data. The learning algo-

rithm utilized determines most of the parameters directly

using training data points, which are called support vectors.

This is a different approach from the one IBHM uses.

The main drawback of SVR, not shared by IBHM, is that

it tends to create very large models, which may lead to

generalization problems.

GMDH. The Group Method of Data Handling [7] is

a heuristic method which creates approximators using high

order polynomials. The method works iteratively and puts

focus on pairs of input variables in each iteration. Com-

bination of these pairs form polynomials of higher orders

which are added as new variables. The best from the new

variables is treated as the current model. If the stop cri-

terion is satisfied the algorithm terminates, otherwise the

next iteration works on pairs of the variables introduced in

the previous iteration and so on.

The iterative process uses a validation stop criterion, so the

algorithm terminates when an error increase on the valida-

tion set is observer.

The GMDH learning process shares some similarities with

the approach utilized by IBHM, however this method does

not use correlation analysis during parameter estimation.

Furthermore the estimation is done using a one step pro-

cess, while IBHM splits this into three steps. Also GMDH

works only on polynomials, while IBHM works on many

different scalarization and activation functions.

CLEAN algorithms for signal processing. The incremen-

tal model building realized by IBHM can be viewed from

a different perspective. In each iteration the algorithm tries

to identify parts of the approximated function – its com-

ponents. When such a component is identified, it is sub-

tracted from the remaining residual, so that further com-

ponents can be identified in future iterations. The idea to

try and identify certain components present in a complex

pattern, remove them and find other, previously not visi-

ble, components can be found in other areas of research.

CLEAN radar algorithms ([8], [9]) are one such area.

These algorithms address the problem of identifying mul-

tiple targets by iteratively filtering them out. Although the

problem domain and methods are different from those uti-

lized by IBHM, the core idea is quite similar.

4. Experiments

The focus of this paper is on reporting progress made on

IBHM development therefore the goal of the presented ex-

perimental results is to illustrate the way the method works.

For this purpose some toy problems were prepared and

solved using IBHM.

4.1. Approximated Functions

The experiments were conducted using the following three

functions:

f1(x) = e−
(x−8)2

2 + e−
x2

2 + e−
(x+8)2

2 + εN(0,0.01) , (13)

f2(x) =
1

5
sin(x)+

1

10
x + εN(0,0.01) , (14)

f3(x) = 1− tanh(x+6)+ tanh(x−6)+2 ·e− x.2

2 +εN(0,0.01) ,

(15)

where εN(0,0.01) is a normally distributed random variable

with mean 0 and variance 0.01. These functions were cho-

sen as they represent various types of nonlinearities oc-

curring in approximation tasks. The random component

reflects the unknown factors influencing the approximated

functions, therefore it compensates for the lack of knowl-

edge.

For each of these functions two data sets were prepared:

a training set of 160 examples and a test set of 80 examples.

Test sets were used only to calculate the results reported in

Subsection 4.3.

4.2. Algorithm Setup

IBHM was set up with G = {tanh(x) , x , logsig(x)} and

H = {d · x , (x−d)2}, where

logsig(x) =
1

1 + exp(−x)
. (16)

Both global optimization tasks were solved using the CMA-

ES optimizer [10], while the Nelder-Mead Simplex [11]

was used to perform the linear regression task. A validation

criterion was used to determine when to stop the algorithm.

69

Paweł Zawistowski and Jarosław Arabas

This criterion divided the training set into two parts: 2
3

of

data used to estimate the parameters, while the remaining

part was used to estimate the error. The algorithm was

stopped when an error increase was observed.

4.3. Results

For each approximated function, the algorithm was ran

20 times using the training data sets. Then using the test

sets for each created model the mean squared error defined

as

MSE =
1

n
∑

i=1,...,n

(

f (xi)− f̂ (xi)
)2

(17)

was calculated. Table 2 contains the aggregated results of

the experiments. In this table the second column contains

the standard deviations σ of the random components εN(0,σ)

present in the training data. For each problem the mean val-

ues and standard deviations of MSE values and model sizes

are reported. The model size is the number of nonlinear

components – activation functions used.

Table 2

The aggregated results of the experiments

Problem Mean test MSE Mean model size

f1 0.0317 ±0.0021 3.1 ±0.3

f2 0.0135 ±0.0045 4.0 ±0.3

f3 0.0265 ±0.0121 4.7 ±0.8

When compared with the variance of the random compo-

nents present in the training data the obtained error lev-

els suggest that IBHM was able to capture the general

approximated function structure without overfitting to the

noise. This can be also noticed by inspection of the best

models for each approximated function which are shown

in Figs. 4, 5 and 6. The structures of these models are

given in Appendix A.

Fig. 4. The best (MSE = 0.0320) model created for f1(x) given

in Eq. (19).

These results suggest that the noise present in the data does

not degrade the correlation based learning method utilized

Fig. 5. The best (MSE = 0.0109) model created for f2(x) given

in Eq. (20).

Fig. 6. The best (MSE = 0.0165) model created for f3(x) given

in Eq. (21).

by IBHM. Furthermore, it may be even argued that in some

situations the presence of random components may be ben-

eficial. This is because such components push the learning

method away from focusing on small, insignificant parts of

the approximated function and thus from overparametriza-

tion.

Another important aspect of the models built using IBHM

was shown in [4]. This recent paper compared IBHM with

MLP and SVR methods in the time series forecasting do-

main using 111 benchmark data sets from NN3 forecast-

ing competition [12]. The comparison was based on re-

sults from experiments which put focus on evaluating the

three different learning algorithms utilized by IBHM, MLP

and SVR. The experimental procedure consisted in cre-

ating nonlinear autocorrelation models which defined the

forecasts as

x̂(t) = x(t− τ1)+ f̂
(

x(t− τ1), . . . ,x(t− τ18)
)

, (18)

where τ1, . . . ,τn were lags and f̂ were nonlinear func-

tions approximated using the three compared methods. The

structure of the models where estimated using Akaike’s

Information Criterion. The built models’ errors were es-

timated on test data sets and the whole training and

70

Incrementally Solving Nonlinear Regression Tasks Using IBHM Algorithm

testing cycle was performed 25 times for each time se-

ries. The gathered data was used to estimate average MSE

values and to perform pairwise comparison of models. In

the comparison it was assumed that model A is better

than B only when the median MSE for A was smaller

than for B and the difference was statistically signifi-

cant. Rank of a model for a time series was equal to

one plus the number of models whose results were better

for that time series. The results obtained are presented in

Table 3.

Table 3

Summary of results aggregated over 111 time series

from NN3 benchmark

Method MSE mean Model size∗ Rank

IBHM 0.091 ±0.212 1.09 1.76

MLP 0.093 ±0.219 1.11 2.07

SVR 0.093 ±0.209 4.80 2.46

∗ Number of nonlinear components averaged over all

the models built by the given method.

These results show that IBHM performs well in comparison

to MLP and SVR methods and that the models it creates

tend to be rather small. This is an important virtue, as

constructing large models may easily lead to overparame-

terization and generalization problems.

5. Summary and Future Work

IBHM is a promising approximation algorithm and the ex-

perimental results prove that the concepts behind it work.

The method can be used in various fields ranging from time

series forecasting to modeling complex physical processes.

The models it constructs are similar in structure to those

created using other well known and respected methods as

MLP or SVR. Due to its iterative nature and decomposi-

tional properties, it does not require a priori assumptions

about the final model structure, which makes it a convenient

tool.

The future work on IBHM will focus on a couple of as-

pects. Theoretical analysis of the correlation based learn-

ing is to be conducted to provide a strong background for

the algorithm. Furthermore, questions regarding optimal

stop criteria and weighting functions need to be answered.

There are also possibilities to extend the algorithm and to

enable it to build more complex models with a structure

similar to cascade correlation neural networks [13].

Another important aspect of further development is prepar-

ing an efficient implementation of the algorithm. The ma-

jor amount of computation in IBHM is devoted to solving

multiple optimization tasks. Fortunately these can be paral-

lelized which opens up the possibility of utilizing General

Purpose Graphical Processing Units (GPGPUs) to create

a highly efficient implementation.

Appendix A

Sample Models

f̂1(x) = 0.47tanh
(

−6.98 · (x−8.25)2+ 4.57
)

+1.06logsig
(

−2.70 · (x + 7.95)2+ 2.58
)

−1.33logsig
(

1.62 · (x−0.02)2−1.01
)

+ 1.85

(19)

f̂2(x) = 43.06logsig
(

0.01 · (x + 12.42)2+ 2.98
)

+0.54logsig
(

0.64 · (x−4.15)2−0.68
)

−0.27logsig
(

−389.18 · (x + 7.85)2+ 390.57
)

−51.14tanh
(

−0.34 · (x + 1.30)2−2.88
)

−93.57

(20)

f̂3(x) = 2.93logsig
(

0.40 · (x−3.30)2−0.93
)

−3.03logsig
(

−0.38 · (x + 2.70)2+ 0.53
)

+0.46logsig
(

−2.25 · (x + 0.67)2+ 2.11
)

−1.35logsig
(

−1.02 · (x−5.74)2+ 0.12
)

+1.90tanh
(

0.31 · (x + 5.25)2 + 0.40
)

−3.84

(21)

References

[1] J. Arabas and A. Dydyński, “An algorithm of incremental construc-

tion of nonlinear parametric approximators”, in Evolutionary Com-

putation and Global Optimization 2006, J. Arabas, Ed. Warsaw:

WUT Press, Poland 2006, pp. 31–38.

[2] J. Arabas and A. Dydyński, “Nonlinear time-series modeling and

prediction using correlation analysis”, in Proc. Appl. Math. Mech.

PAMM 2007, vol. 7, pp. 2030013–2030014, 2007.

[3] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice

Hall, 1999.

[4] P. Zawistowski and J. Arabas, “Benchmarking IBHM method using

NN3 competition dataset”, in Proc. Hybrid Artif. Intel. Syst. Conf.

HAIS 2011, Wrocław, Poland, 2011. LNCS, Springer, vol. 6678,

pp. 263–270, 2011.

[5] H. Akaike, “A new look at the statistical model identification”, IEEE

Trans. Autom. Contr., vol. 19, no.6, pp 716–723, 1974.

[6] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press,

2002.

[7] J. Farlow Stanley, “The GMDH algorithm of Ivakhnenko”, The

American Statistician, vol. 35, no. 4, pp. 210–215, 1981.

[8] D. Hai, “Effective CLEAN algorithms for performance-enhanced de-

tection of binary coding radar signals”, IEEE Trans. Signal Process.,

vol. 50, no. 1, pp. 72–78, 2004.

[9] T. L. Foreman, “Reinterpreting the CLEAN algorithm as an optimum

detector”, in Proc. IEEE Radar Conf., Verona, NY, USA, 2006,

pp. 24–27.

[10] A. Auger and N. Hansen, “A restart CMA evolution strategy

with increasing population size”, IEEE Congr. Evol. Comput.,

pp. 1769–1776. 2005.

[11] J. A. Nelder and R. Mead, “A simplex method for function mini-

mization”, Comput. J., vol. 7, pp. 308–313, 1965.

[12] “Artificial Neural Network and Computational Intelligence Forecast-

ing Competition” [Online]. Available:

http://www.neural-forecasting-competition.com/NN3/index.htm

[13] S. Fahlman and C. Lebiere, “The cascade-correlation learning ar-

chitecture”, Adv. Neural Inform. Process. Sys., no. 2, pp. 524–532,

1990.

71

Paweł Zawistowski and Jarosław Arabas

Paweł Zawistowski was born

in Poland in 1984. He received

the M.Sc. degree from War-

saw University of Technology

(WUT), Poland, in 2008. Since

2008 he has been a Ph.D. stu-

dent at the Faculty of Electron-

ics and Computer Engineering,

WUT. His scientific interests

include neural modeling, black-

box learning methods and meta-

heuristics. He has taken part in various projects in which

he constructed black-box models of industrial systems and

natural phenomena.

E-mail: p.zawistowski.2@elka.pw.edu.pl

Institute of Electronic Systems

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

Jarosław Arabas – for biography, see this issue, p. 10.

72

