
Paper Benchmarking Procedures

for Continuous Optimization Algorithms

Karol Oparaa and Jarosław Arabasb

a Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
b Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland

Abstract—Reliable comparison of optimization algorithms re-

quires the use of specialized benchmarking procedures. This

paper highlights motivations which influence their structure,

discusses evaluation criteria of algorithms, typical ways of pre-

senting and interpreting results as well as related statistical

procedures. Discussions are based on examples from CEC

and BBOB benchmarks. Moreover, attention is drawn to these

features of comparison procedures, which make them suscep-

tible to manipulation. In particular, novel application of the

weak axiom of revealed preferences to the field of benchmark-

ing shows why it may be misleading to assess algorithms on

basis of their ranks for each of test problems. Additionally,

an idea is presented of developing massively parallel imple-

mentation of benchmarks. Not only would this provide faster

computation but also open the door to improving reliability of

benchmarking procedures and promoting research into par-

allel implementations of optimization algorithms.

Keywords—black-box optimization, comparing optimization al-

gorithms, evaluation criteria, parallel computing.

1. Introduction

The question, which optimization algorithm performs

“best”, seems to be of both practical and scientific impor-

tance. However, the notion of the ”best” algorithm is not

well defined and, more importantly, there are little theoret-

ical clues for its choice. For these reasons, in practice opti-

mization algorithms are compared using specialized sets of

test problems under appropriate evaluation criteria. Before

going into details it may beneficial to briefly remind some

of the crucial notions in the field of benchmarking.

Continuous optimization problem involve finding an argu-

ment xopt minimizing a certain objective function f : D→R,

where D ∈ Rn.

xopt = arg minx∈D f (x) . (1)

Domain of the objective function D is called feasible set and

it is often a hypercube D = [l1,u1]× [l2,u2]× ...× [ln,un].
The minimal function value is denoted by fopt = f (xopt).
Optimization algorithm is a method of producing a series

of points x1,x2, ...,xm ∈ D. The best function value reached

by an optimizer is denoted by fbest = mini∈{1,2,...,m} f (xi),
while difference fbest − fopt is called optimization error.

The “best” optimization algorithm solves a problem accu-

rately (effectively) and fast (efficiently). A combination

of these two characteristics is referred to as performance,

however formal definition of this notion is not clear. More-

over, all optimization methods yield nondeterministic re-

sults. This is due to two factors: random initialization of

an algorithm, e.g., choice of start point (or start population)

and stochastic nature of many of the state of the art op-

timization methods, most notably evolutionary and similar

nature-inspired algorithms. Therefore, empirical estimation

of any measure of performance requires many independent

restarts of an algorithm.

Comparison between optimization methods is usually per-

formed by means of running simulations for specially de-

signed sets of optimization problems. Such process, called

benchmarking, is not a trivial task and requires both spe-

cialized skills and knowledge. This paper provides an

overview of benchmarking procedures discussing the ma-

jor issues in this field: theoretical grounds of algorithm

comparison, available benchmarks, evaluation criteria, in-

terpretation of results and testing their statistical signifi-

cance. The aim of this contribution is to promote the use

of systematic procedures for comparison of algorithms and

to highlight some of the most important aspects of bench-

marking. Furthermore, two novel concepts are presented:

criticism of rank-based comparison methods and an idea of

parallel implementation of test problems, which may be-

come a qualitative improvement to the benchmarking pro-

cedures.

1.1. Fair Comparison of Algorithms

Benchmarking emerges from the need of fair comparison

of optimization algorithms. Choosing an algorithm which

would perform “best” on a new function whose characteris-

tic is unknown can be done through measuring performance

over a wide range of test problems and aggregating the ob-

tained results. A test problem consists of a test function

accompanied by some additional criteria such as the feasi-

ble set, initialization area, stopping conditions etc. Bench-

marking yields meaningful results only when competing

algorithms are compared on the same test problems with

the same performance criteria.

Comparing algorithms can be performed quite easily with

the use of some readily available benchmarks. This ap-

proach has some major advantages:

• There is no need to develop testbeds and performance

criteria, which saves work and protects from possible

methodological mistakes.

73



Karol Opara and Jarosław Arabas

• Using benchmarks does not require special effort,

since their implementations are usually available in

a few programming languages. It is enough to link

one of them to an optimizer and assign processor

time.

• Comparison with other algorithms, which were pre-

viously tested on a benchmark, is possible without

repeating those experiments.

• Results may be postprocessed and their presentation

can be standardized.

1.2. Benchmarking and Free Lunches

Although benchmarking is generally approved among sci-

entists and practitioners, its sense is sometimes criticized on

the basis of the no free lunch theorem introduced and for-

malized in papers [1], [2]. The theorem states that for any

algorithm, any performance gain over one class of problems

is offset by performance loss over another class. Therefore,

no algorithm can be be considered consistently “best” for

all possible problems. This statement highlights limitations

to benchmarking, as there is no “best” general purpose op-

timizer. However, for a fixed class of problems, there are

methods which yield better results than others.

Performance of optimization algorithms depends on ex-

ploiting problem regularities [3] such as symmetry or

convexity of objective function. There is a large vari-

ety of “typical” optimization problems, which have ran-

dom character with no structure [4]. On the other hand,

typically solved problems usually reveal some regularities

and therefore constitute only a narrow subset of all prob-

lems. For instance, the power of the set of all functions

f : R → R equals 2c, while the power of continuous func-

tions f : R → R is strictly lower and equals continuum c.

The latter follows from the fact that a continuous function

is uniquely defined by its restriction to rational numbers

f : Q → R [5]. Thus, benchmarking can be used to find

algorithms outperforming others on a narrow but quite im-

portant class of continuous functions. The resulting low

performance for a wide class of discontinuous functions

often bears little practical significance.

1.3. What do Benchmarks Measure?

Benchmarking is a way of evaluating an algorithm’s abil-

ity to exploit regularities of certain class of problems. It

is therefore important to remember that test problems and

evaluation criteria were developed in order to address issues

such as [6]:

– high cost of single function evaluation,

– high dimensionality of search space,

– linear and nonlinear constraints,

– high conditioning of a function,

– noisiness of a function,

– large number of local optima (thousands),

– linearly non-separable functions,

– global optimum located on a boundary of feasible

set.

Some of these issues can be observed when looking at plots

of two-dimensional variants of test problems from CEC’05

benchmark [7], Fig. 1. Most of the test functions in CEC

and BBOB families of benchmarks are typical optimization

problems known in the literature. They become, however,

Fig. 1. Two-dimensional variants of CEC’05 benchmark prob-

lems: (a) sphere, (b) noisy ellipsoid, (c) Rastrigin, (d) hybrid.

Each function is plotted within its feasible set, asterisks denote

the location of global minimum.

74



Benchmarking Procedures for Continuous Optimization Algorithms

subject to transformations such as shifting f ′(x) = f (x+c),
adding a constant f ′(x) = f (x) + c and rotating. This is

done in order to promote algorithms which are invariant

to such changes of a coordinate system of the objective

function. By this means, results obtained for a single test

problem can be extended to whole class of problems.

Evaluation of algorithms is a two-step procedure. First, the

algorithm’s performance is measured for each test problem

independently. Then, results obtained for each problem are

aggregated to form a more general picture. Discussion of

either of these steps is provided in Sections 2 and 3.

Benchmarking procedures for continuous domain optimiz-

ers are developed along CEC and GECCO conferences for

special sessions devoted to comparing performance of opti-

mization algorithms. Availability of these results facilitates

comparing new optimization methods to the state of the

art ones. CEC benchmarks cover a wide range of spe-

cialized optimization problems, Table 1. GECCO bench-

Table 1

Scope of real-parameter benchmarks

Problem kind Benchmarks

Single-objective CEC’05, BBOB’09, BBOB’10

Constrained CEC’06, CEC’10

Multi-objective CEC’07, CEC’09

Large scale CEC’08, CEC’10

Dynamic CEC’09

Noisy BBOB’09, BBOB’10

Real world CEC’11

marks are called BBOB (Benchmarking Black-Box Opti-

mizers) and specialize in single-objective and noisy prob-

lems. BBOB is a carefully-developed platform providing

motivated test problems, experimental setup and postpro-

cessing of results [8].

2. Measuring Performance for a Single

Problem

There are two main ways for measuring the algorithm’s

performance for a single problem. The fixed cost approach

consists of checking the final optimization error fbest − fopt

after running the algorithm for a certain period of time.

The fixed target approach consists in measuring time nec-

essary to find a solution at an accuracy target ∆ ft . In order

to compare algorithms rather than their implementations

and hardware used to run benchmark, computing time is

expressed as the number of objective function evaluations

(FEs), which is a standard approach in the literature on

optimization.

2.1. Fixed Cost

Figure 2 shows convergence curves, i.e., the optimization

error as a function of computing time, for four indepen-

dent runs of an algorithm. Fixed cost approach can be

illustrated with a vertical cut [8]. A set of error values

Fig. 2. Fixed cost and fixed target stopping criteria [8].

at a fixed cost can thus serve for comparisons. An algo-

rithm A is better than algorithm B if it yields lower error

values. Comparison is done on ordinal scale, which gives

qualitative information (which algorithm is better?). How-

ever, no quantitative information (how much better it is?)

is provided, as it is not clear how much more difficult is to

reach a smaller error value [8].

2.2. Fixed target

Instead of fixing computing cost and comparing final op-

timization errors one can fix the desired error value ∆ ft
and compare the average runtime of algorithms required

to reach it. Due to nondeterministic performance of algo-

rithms, comparisons are reliable after aggregating the run-

time values from multiple runs, for instance, by estimating

their expected value. Again, computing time is measured

as the number of function evaluations. The fixed target

approach can be more precisely stated as comparing the

estimates of the expected runtime needed for each algo-

rithm to reach optimization error not greater than required,

i.e., to satisfy condition fbest − fopt ≤ ∆ ft . This criterion is

illustrated in Fig. 2 with a horizontal line. Expected run-

time values for different algorithms can be compared on

the interval scale: it is possible to quantitatively state how

much faster is one algorithm than another. This facilitates

interpretation of results and it is the reason for choosing

the fixed target approach for BBOB benchmarks [8].

There are, however, two problems with calculating the ex-

pected runtime. First, the required accuracy ∆ ft must be

somewhat arbitrarily chosen. This can be partially over-

come by setting several accuracy targets. Second, expected

runtime estimation is somewhat problematic. Some algo-

rithm runs may fail to solve optimization problem at all.

This may happen, for instance, due to premature conver-

gence to a local optimum [9]. Consequently, the stopping

criterion can not be solely dependent on the accuracy but

it must also involve some “safety breaks”, e.g., the max-

imum cost of simulation. Then, a single run of an al-

gorithm is called successful if it reaches accuracy target

within a given time limit. Without such limit, the number

of successful runs in Fig. 2 would equal three. The pres-

ence of additional stopping criterion fixing maximal cost

75



Karol Opara and Jarosław Arabas

reduces this number to one, as three runs stop due to ex-

ceeding time limit rather than reaching solution accurate

enough.

Expected runtime Ê(RT (∆ ft )) for a given accuracy target

∆ ft is estimated as the sum of the expected number of func-

tion evaluations for one successful run Ê(Ns
eval) and the

maximum cost Ê(Nu
eval) multiplied by odds against a suc-

cessful run (1− p̂)/ p̂. Value p̂ is an estimate for probability

of solving a problem within a single run, in other words

the fraction of successful algorithm runs [8].

Ê (RT (∆ ft )) = Ê(Ns
eval)+

1− p̂s

p̂s

Ê(Nu
eval) (2)

Denoting the number of successful runs by #s and unsuc-

cessful by #u, one can note that p̂ = #s/(#s + #u). If a

successful run is terminated right after meeting accuracy

target then the above formula can be transformed to:

Ê (RT (∆ ft)) =
#s · Ê(Ns

eval)+ #u · Ê(Nu
eval)

#s
=

Nt

#s
, (3)

where Nt denotes the total number of FEs within all al-

gorithm runs. This estimator is however strongly depen-

dent on the choice of maximal advisable cost in case of

not meeting the target accuracy [8]. If the vertical line

if Fig. 2 was shifted to the right, the number of successful

runs #s would increase to two and then to three changing

the value of the expected runtime estimate Eq. (3).

2.3. Statistical Analyses of Results

To check whether differences between algorithm perfor-

mance are significant rather than observed purely by co-

incidence results should be subject to statistical testing.

In papers comparing continuous optimization algorithms

Student’s t-test seems to be a common choice. This is

a parametric test, as it relies on an assumption that sample

(here final error values from several runs) is normally dis-

tributed. Alternatively, one can use non-parametric tests,

which do not assume any distribution of a sample. An ex-

tensive study [10] conducted on CEC’05 results showed

that conditions for safe use of parametric tests are usually

not fulfilled, nevertheless results of parametric and non-

parametric analysis are quite similar.

The use of non-parametric tests is encouraged in a multiple-

problem analysis. In paper [10] the following non-para-

metric tests are suggested for analysis of optimization

algorithms: Friedman, Iman-Davenport, Bonferroni-Dunn,

Holm, Hochberg, and Wilcoxon. In case of performing pair-

wise comparisons of many algorithms the power of sta-

tistical tests decreases, as control of Family Wise Error

Rate (FWER) is lost [10]. To compensate for that one

should decrease the statistical significance α below typical

value of 0.05 by using test variants designed for multiple

comparisons.

Finally, it is worthwhile to examine results not only with

statistics but also in a wider context. Superiority of final

error rate of 10−40 ±10−41 over 10−15 ±10−16 has neither

theoretical nor practical value in case of spherical func-

tion and double precision numbers. An old proverb says

that difference is a difference only when it makes a dif-

ference.

3. Aggregation of Performance

Measures

3.1. Ranking of Algorithms

Comparison of optimization algorithms A and B is a mul-

tiobjective task, as it is based on certain performance mea-

sure PFi
for each of several test problems F1, F2, . . . , Fk.

The algorithms can be naturally partially ordered with

Pareto improvement relation

A � B ≡ (∀i ∈ {1,2, ...,k}) PA
Fi
≥ PB

Fi
. (4)

Algorithm A is here considered better than algorithm B pro-

viding it yields better results for each test problem. This is,

however, only partial ordering, as some pairs of algorithms

are not comparable, e.g., when one of them performs bet-

ter for some problems but worse for others. Hence, the

question “which algorithm performs best?” is not always

answered. For this reason, performance over the whole test

set is often aggregated into a single number, which allows

creating a linear ordering (ranking) among competing algo-

rithms. Such aggregation method must be carefully chosen

to ensure fairness of the comparison.

Issues such as designing decision rules to choose the best

alternative out of a certain set have been widely investigated

by economists and mathematicians in such fields as theory

of the public sector. Some of these results can be applied to

analyze ranking methods of optimization algorithms. The

Weak Axiom of Revealed Preferences (WARP) [11], plays

an important role among them. Its definition is equiva-

lent to simultaneous satisfaction of the following conditions

known as α rule and β rule:

α if an algorithm performs best in a certain set of algo-

rithms then it is also the best in its subset (of course

if it is available in the subset),

β if two algorithms are equally good, best algorithms,

then in every superset either both are the best or none.

If WARP is not met, the results of comparison can be in-

fluenced by such means as shortlisting, pairwise compar-

isons or introducing other algorithms to increase relative

advantages.

Multi-problem aggregation methods are based on results

achieved by algorithms for sets of single problems. Some

of them do not satisfy the β rule, which makes them suscep-

tible to manipulation. This can be illustrated with the fol-

lowing example. Suppose that two algorithms, A and B,

were tested on a set of four problems Fi, i ∈ {1,2,3,4}
and aggregated by comparing the mean rank achieved for

all test problems. The ranks of final optimization errors

76



Benchmarking Procedures for Continuous Optimization Algorithms

are shown in the upper part of Table 2. The mean rank

for both algorithms equals 1.5, therefore one may conclude

that A and B are equally good. Suppose now that another

algorithm C had been added to this comparison. The per-

formance of C is slightly worse than of A, therefore for

each test problem C is ranked one notch lower than A, Ta-

ble 2. The mean rank of algorithm A remains 1.5 while

Table 2

If mean rank is used as performance criterion,

introduction of irrelevant alternative C changes preference

between A and B

{A, B}
Test problem

Mean rank
F1 F2 F3 F4

R
an

k 1 A A B B A = 1.5

2 B B A A B = 1.5

{A, B, C}
Test problem

Mean rank
F1 F2 F3 F4

R
an

k 1 A A B B A = 1.5

2 C C A A B = 2.0

3 B B C C C = 2.5

algorithm B now performs poorer, since its mean rank

equals 2. This shows that introduction of an irrelevant

alternative C changed the preference between algorithms

A and B in favor of A. Therefore, competitions, for which

mean (median, etc.) rank is used as multi-problem aggre-

gation criterion are susceptible to manipulations. On the

other hand, WARP is satisfied whenever the performance

measure of an algorithm is independent from other, com-

peting algorithms.

3.2. Empirical Runtime Distribution

Empirical runtime distribution is a way of aggregating

and comparing performance of different algorithms mea-

sured for many runs over a set of test problems. It can be

visualized by plotting the proportion of solved problems

against the expected runtime of an algorithm. The general

idea behind this plot can be illustrated with a following

example. Consider benchmarking an algorithm on three

test functions. Expected runtime values, over many inde-

pendent runs, are given in Table 3 for fixed targets ∆ f1

and ∆ f2. Dotted graph in Fig. 3 presents runtime distri-

bution for required accuracy ∆ f1. Its shape represents an

Table 3

Estimated runtime values for three test problems

and two accuracy targets

Test function

F1 F2 F3

Target
∆ f1 3 ·102 1 ·103 4 ·104

∆ f2 2 ·103 5 ·103 7 ·104

Fig. 3. Construction of empirical runtime distribution plots.

answer to question how many problems can one expect to

solve for a given FEs budget? Below 300 FEs no problems

can be solved, between 300 and 1000 only one (which is

33% of all problems), from 1000 to 40000 two (66%) and

over 40000 three (100%). Dashed graph represents anal-

ogous data for more strict accuracy criterion ∆ f2. Both

lines can be aggregated by treating each of the six pairs

(F,∆ f )∈{F1,F2,F3}×{∆ f1,∆ f2} as independent problems

and using analogous manner to draw a new graph plotted

in Fig. 3 with solid black line. Such aggregation among

required accuracy targets is a way to overcome arbitrarily

in choosing their levels ∆ f .

4. CEC and BBOB Benchmarks

Various versions of rank-based aggregation are used in

practice. During CEC’06 competition ranking was based

on three statistics of performance on test problems: feasi-

ble rate, success rate and expected runtime (also known as

success performance) [12]. During CEC’07, ranks were as-

signed using two different multiobjective performance mea-

sures: R indicator and hypervolume difference to a refer-

ence set which resulted in two, quite similar rankings [13].

During CEC’08 and ’09 each team was ranking others and

the positions were averaged [14], [15]. In CEC’10 the

Formula 1 point system was applied to 300 optimization

problems and the algorithm with the highest score sum

won [16].

In BBOB benchmarks [17] no ranking is created, as ag-

gregation of results is based on empirical runtime distribu-

tion. Figure 4 presents the results of the BBOB’09 compe-

tition [17]. The horizontal axis shows runtime measured in

function evaluations divided by dimension of search space

n, which in this case equals 10. The vertical axis depicts

the proportion of problems solved on all functions with

accuracy targets ∆ ft ∈ {101.8,101.6,101.4, . . . ,10−8}. Fig-

ure 4 was created in a slightly more complicated fashion

than Fig. 3. Instead of estimating expected runtime values,

for each pair (F, ∆ f ), 100 instances of simulated runtime

were created by drawing algorithm runs at random with re-

placement until a successful run is found. Runtime instance

is then computed as a sum of function evaluations from all

runs drawn [17].

77



Karol Opara and Jarosław Arabas

Fig. 4. Empirical runtime plots for ten-dimensional BBOB’09

benchmark for 31 algorithms [17].

Each algorithm was restarted many times and the cross

indicates the maximum number of function evaluations. It

is suggested [17] that a decline in steepness right after the

cross (e.g., for IPOP-SEP-CMA-ES) may indicate that the

maximum number of function evaluations should have been

chosen larger, while a steep increase right after the cross

(e.g., for simple GA) could be a sign that a restart should

have been invoked earlier.

Fig. 5. Comparison of two algorithms VNS and ALPS-GA in

terms of effectiveness (vertical distance between curves) and effi-

ciency (horizontal distance).

Expected runtime plots provide significant interpretation

possibilities, which are illustrated in Fig. 5 with an

example of comparison of two algorithms, VNS and

ALPS-GA. Within the budget of 105 · n FEs, where n

denotes search space dimension, ALPS-GA solves 60%

of problems, while VNS over 70%, which is indicated

by vertical arrows. Difference and ratio between these

values show how much more efficient is one algorithm

than another. On the other hand, horizontal arrows indi-

cate how much computing time is required by each algo-

rithm to solve a given ratio of test problems (here 40%).

For VNS it is approximately 400 · n, while for ALPS-GA

this time equals 10000 · n. One can therefore conclude

that VNS is 25 times faster than ALPS-GA in solving

40% of problems. The area under a graph of an algorithm

is, according to authors of the benchmark [17], arguably

the most useful aggregated performance measure (averaged

on a log scale). It might be therefore a good criterion

for parameter tuning, for example, by means of metaop-

timization.

5. Benchmarking and Parallel

Computing

5.1. Parallel Implementation of Benchmarks

Both CEC and BBOB benchmarks are recognized and ma-

ture tools for measuring performance of optimization al-

gorithms. Moreover, they can be easily parallelized. We

believe that it would be beneficial to develop an imple-

mentation of these benchmarks exploiting massively par-

allel general purpose graphical processing units (GPUs).

Availability of fast and scalable benchmark implementation

would have significant consequences:

• GPU-based metaoptimizer could be developed for

each benchmark. Fair comparison of algorithms re-

quires choice of an “optimal” parameter set for each

of them according to evaluation criteria. Currently,

some optimization methods may not be tuned ad-

equately, which decreases their performance. This

might prove unjustified conclusions about superior-

ity of some algorithms over others. To solve this

problem, one can encourage all participating teams

to perform metaoptimization, whose huge comput-

ing cost could be balanced by massive parallelism

of GPUs.

• Additional evaluation criteria promoting research into

the choice of the best parallelization methods of op-

timization algorithms could be introduced.

• The number of test functions could be increased.

This would decrease statistical uncertainty, which is

especially important in case of multiple comparison

analysis, where significance α must be decreased to

control FWER.

• Algorithms could be tested for larger FEs budgets.

5.2. Evaluation criteria for parallel algorithms

Evaluation criteria of optimization algorithms are based on

the number of the objective function evaluations. This fa-

cilitates implementation independent comparisons and is

practical, since evaluating the objective function is often the

most time-consuming. On the other hand, many optimiza-

tion algorithms can be easily parallelized by such means as

simultaneous evaluation of the objective function in case

of population-based methods. Therefore, the real execution

78



Benchmarking Procedures for Continuous Optimization Algorithms

time can arguably be better described by the number of it-

erations rather than function evaluations required to solve

a given problem.

Fig. 6. Illustration of tradeoff between number of iterations and

number of function evaluations in parallel computing.

Figure 6 illustrates a possible tradeoff between the num-

ber of function evaluations and the number of iterations.

In this example, a population-based algorithm running with

single individual requires 5 FEs and 5 iterations to solve

a problem. A three-individual variant requires 6 FEs but

only 2 iterations, hence it is slower for the sequential com-

putation but faster for the parallel one. This feature would

not be noticed with a traditional approach based on function

evaluations. Direct adaptation of iteration counting might

be, however, confusing, since for an infinite population any

problem can be solved in the first iteration. For this reason,

a number of iterations for some (arbitrarily chosen) max-

imal number of parallel processing units #proc seems to

be a better criterion. It is worth noting that in case of full

use of all processing units the number of iterations #iter

is a product of number of function evaluations #FEs and

processing units

#iter = #FEs ·#proc . (5)

Such criterion could additionally encourage researchers to

look for the most appropriate parallelization models for

their algorithms. This issue is illustrated in Fig. 7. In

this simple example a test problem was solved using four

processing units. For a four-individual population it took

4 iterations, for two two-individual populations it took 3

and 4 iterations and for four single-individual populations

it took from 4 up to over 7 iterations. In case of many paral-

lel instances one can stop computation after the problem is

solved by any of them. Consequently, only these iterations

(and function evaluations) should be taken for comparison,

which are shaded in Fig. 7. In this example, problem was

solved fastest when there were two populations each using

two processing units. Many other parallelism models are

possible and their choice is an interesting and algorithm-

specific question.

Fig. 7. Performance of three parallel optimization models for

four processing units.

The proposed evaluation criteria are simplified, as they dis-

regard some limitations of parallelism such as the Am-

dahl’s law or memory transfer bottlenecks. For instance,

selection operators in evolutionary algorithms require syn-

chronization within population (or subpopulations in case

of tournament selection). Nevertheless, popularization and

further development of appropriate benchmarks seem to be

an important issue for the whole community developing

and using optimization algorithms.

6. Summary

This paper provides an outlook on procedures of measur-

ing performance of optimization algorithms, emphasizing

a need for standard and systematic approach in this field.

Attention is paid to motivations and intuitive premises

behind benchmarking as well as evaluation and com-

parison criteria for both single- and multiple-problem

analyses. A brief summary of state of the art benchmarks

and interpretation of their results is provided. Fairness of

comparisons is discussed with respect to rank-based aggre-

gation in multiple-problem analysis and testing of statis-

tical significance of benchmarking results. Finally, a dis-

cussion of parallel implementation of test sets is provided.

Not only can this make benchmarking more effective but

also promote further research into parallelization schemes.

Moreover, reliability of comparisons of algorithms can be

improved by implementing a parallel and thus fast metaop-

timizer.

References

[1] M. Köppen, D. H. Wolpert, and W. G. Macready, “Remarks on

a recent paper on the “no free lunch” theorems”, IEEE Trans. Evol.

Comput., vol. 5, no. 3, pp. 295–296, 2001.

[2] D. Wolpert and W. Macready, “No free lunch theorems for opti-

mization”, IEEE Trans. Evolution. Comput., vol. 1, no. 1, pp. 67–82,

1997.

[3] T. Weise, M. Zapf, R. Chiongand, and A. Nebro, “Why is opti-

mization difficult?”, in Nature-Inspired Algorithms for Optimisation,

R. Chiong, Ed., vol. 193 of Studies in Computational Intelligence.

Springer, 2009, pp. 1–50.

79



Karol Opara and Jarosław Arabas

[4] T. English, “Optimization is easy and learning is hard in the typi-

cal function”, in Proc. 2000 Congr. Evol. Comput. CEC 2000, San

Diego, CA, USA 2000, pp. 924–931.

[5] J. Kraszewski, Wstęp do matematyki. Warszawa: WNT, 2007 (in

Polish).

[6] P. Suganthan, “Special session on real-parameter optimization at

CEC 2005. Summary of feedbacks received from potential partici-

pants”, 2005, access: May 2010 [Online]. Available:

http://www.ntu.edu.sg/home/epnsugan/

[7] P. Suganthan et al., “Problem definitions and evaluation criteria for

the CEC 2005 special session on real-parameter optimization”, Tech.

Rep., Nanyang Technological University, Singapore and KanGAL

Report Number 2005005, 2005, access June 2010 [Online]. Avail-

able: http://www.ntu.edu.sg/home/epnsugan/

[8] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-

box optimization benchmarking 2009: Experimental setup”, Tech.

Rep., INRIA, 2009, access: July 2010 [Online]. Available:

http://coco.gforge.inria.fr/

[9] J. Arabas, Wykłady z Algorytmów Ewolucyjnych. Warszawa: WNT,

2004 (in Polish).

[10] S. Garcı́a, D. Molina, M. Lozano, and F. Herrera, “A study on

the use of non-parametric tests for analyzing the evolutionary al-

gorithms’ behaviour: a case study on the CEC 2005 special ses-

sion on real parameter optimization”, J. Heuristics, vol. 15, no. 6,

pp. 617–644, 2009.

[11] A. K. Sen, “Choice functions and revealed preference”, Rev. Eco-

nomic Studies, vol. 38, no. 3, pp. 307–317, 1971.

[12] J. J. Liang and P. N. Suganthan, “Comparison of results on the 2006

CEC benchmark function set”, 2006, access: Sept. 2011 [Online].

Available: http://www.ntu.edu.sg/home/epnsugan/

[13] P. N. Suganthan, “Performance assessment on multi-objective opti-

mization algorithms”, 2007, access: Oct. 2011 [Online]. Available:

http://www.ntu.edu.sg/home/epnsugan/

[14] K. Tang, “Summary of results on CEC’08 competition on large scale

global optimization”, 2008, access: Sept. 2011 [Online]. Available:

http://www.ntu.edu.sg/home/epnsugan/

[15] Q. Zhang and P. N. Suganthan. “Final report on CEC’09 MOEA

Competition”, 2009, access: Sept. 2011 [Online]. Available:

http://www.ntu.edu.sg/home/epnsugan/

[16] K. Tang, T. Weise, Z. Yang, X. Li, and P. N. Suganthan, “Re-

sults of the competition on high-dimensional global optimization

at WCCI 2010”, 2010, access: Sept. 2011 [Online]. Available:

http://www.ntu.edu.sg/home/epnsugan/

[17] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik, “Comparing

results of 31 algorithms from the black-box optimization benchmark-

ing bbob-2009”, in Proc. Genetic Evol. Computat. Conf. GECCO

2010, Portland, Oregon, USA, 2010. New York: ACM, 2010,

pp. 1689–1696.

Karol Opara received M.Sc.

degree in Computer Science

from Warsaw University of

Technology in 2010 and M.Sc.

degree in Quantitative Methods

in Economics and Information

Systems from Warsaw School

of Economics in 2011. Cur-

rently, he works as an assistant

in the Systems Research Insti-

tute, Polish Academy of Sci-

ences. His research interests focus on stochastic optimiza-

tion algorithms, applied statistics and economic aspects of

road management.

E-mail: karol.opara@ibspan.waw.pl

Systems Research Institute

Polish Academy of Sciences

Newelska st 6

01-447 Warszawa, Poland

Jarosław Arabas – for biography, see this issue, p. 10.

80


