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Abstract—Among Evolutionary Multiobjective Optimization

Algorithms (EMOA) there are many which find only Pareto-

optimal solutions. These may not be enough in case of multi-

modal problems and non-connected Pareto fronts, where more

information about the shape of the landscape is required.

We propose a Multiobjective Clustered Evolutionary Strat-

egy (MCES) which combines a hierarchic genetic algorithm

consisting of multiple populations with EMOA rank selection.

In the next stage, the genetic sample is clustered to recognize

regions with high density of individuals. These regions are

occupied by solutions from the neighborhood of the Pareto

set. We discuss genetic algorithms with heuristic and the con-

cept of well-tuning which allows for theoretical verification

of the presented strategy. Numerical results begin with one

example of clustering in a single-objective benchmark prob-

lem. Afterwards, we give an illustration of the EMOA rank

selection in a simple two-criteria minimization problem and

provide results of the simulation of MCES for multimodal,

multi-connected example. The strategy copes with multimodal

problems without losing local solutions and gives better in-

sight into the shape of the evolutionary landscape. What is

more, the stability of solutions in MCES may be analyzed

analytically.

Keywords— basin of attraction, clustering, genetic algorithm,

multiobjective optimization.

1. Introduction

The aim of this paper is to present new algorithmic meth-

ods for recognizing sets and separating neighbourhoods

of the Pareto sets in multiobjective problems (Multiobjec-

tive Clustered Evolutionary Strategy, MCES). We propose

theoretical and experimental verification of the presented

strategy.

Presented algorithmics allows to interpret the neighbour-

hoods of the Pareto sets like basins of attraction of the

sought solutions defined for single-objective optimization

problems. It also helps to separate groups of solutions

when the Pareto set is non-connected. What is more, rec-

ognizing sets in multiobjective problems provides better

insight into understanding the properties of the problem

and the shape of the search landscape which can be helpful

when further postprocessing is required (e.g., engineering

problems). Another important advantage of MCES is the

possibility to reduce the number of starting points for local

search methods to the number of sets found. This is crucial

for many-objective functions which often have an infinite

number of optimal solutions. Finally, we mention difficult

multiphysics inverse problems which are extremely costly

and hard to solve (see e.g. [1]).

We will focus on the idea of recognizing sets by cluster-

ing dense regions. Whereas in many papers (see i.e. [2],

[3], [4]) a genetic algorithm is used as a help tool in clus-

tering, we consider a combination of the two methods in

the opposite way. Genetic algorithm here is used to provide

a clustering method with the input data set. The advan-

tages of clustering in single-objective genetic algorithms

were studied by Schaefer, Adamska and Telega (CGS, see

i.e. [5], [6]; well-tuning, see [7]). For other examples of

two-phase global optimization strategies see [8] and [9].

Separation and estimation of the number of basins of at-

traction was performed by Stoean, Preuss, Stoean and Du-

mitrescu in [10] and in [11].

There are multiple algorithms that solve multiobjective op-

timization problems. The class of stochastic algorithms

which approximate the Pareto set is called Evolution-

ary Multiobjective Optimization Algorithms (EMOA or

MOEA). Usually, an EMOA aims at finding a set of Pareto-

optimal solutions which may not give enough informa-

tion in some cases, for example, in problems with non-

connected Pareto fronts. It is difficult to extract knowledge

about stability of solutions and how small perturbations

affect domination among solutions from the existing algo-

rithms. In our approach, solutions from the neighborhood

of the Pareto set are detected and may be analyzed with re-

gard to stability. For an example of analysis of stability of

Pareto-optimal solutions, refer to [12]. Several examples of

EMOA are presented below (for comparison see e.g. [13]).

The first method based on calculating an individual’s fitness

according to Pareto dominance was suggested by Goldberg

in [14]. Nondominated Sorting Genetic Algorithm (NSGA)

was implemented e.g. by Srinivas and Deb [15]. The se-

lection pressure in NSGA was achieved by giving ranks

determining fitness values in an iterative way: nondomi-

nated solutions are assigned rank one and temporarily re-

moved from the population. New nondominated solutions

are given rank two and so forth.

Fonseca and Fleming in [16] proposed a Pareto-based selec-

tion (FFGA), where an individual’s rank equals the number

of solutions by which it is dominated. We will refer to this

type of selection later on.

In the third presented method, called Strength Pareto Evo-

lutionary Algorithm (SPEA, see [17]), selection pressure is

obtained by using an external set (archive) into which all

nondominated solutions are copied in each iteration. Ranks

of solutions are calculated basing on strength values of in-
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dividuals stored externally. SPEA was later improved and

introduced as SPEA2 in [18].

The next EMOA, by using the hypervolume measure (see

e.g. [19]), maintains selection pressure as well as good dis-

tribution on the Pareto front. Hypervolume measure or

S-metric corresponds to the size of dominated space [17].

Individuals are rated according to their contribution to the

dominated hypervolume of the current population, therefore

ranks are not based on relations between pairs of individ-

uals but on relation between an individual and the whole

population.

Pareto sets and fronts in multiobjective problems were in-

vestigated i.e. by Preuss, Naujoks and Rudolph in [20].

1.1. Preliminaries

We focus on global minimization problems with continuous

objective functions of the form Φ : D → R, D ⊂ Rn, 0 ≤
Φ(x) ≤ M < +∞, ∀x ∈ D, where D is the set of admissible

solutions.

In the multiobjective optimization, we are given k ≥ 2 ob-

jective functions

fi : U → [0,M] ⊂R, M < +∞, i ∈ {1, . . . ,k} (1)

defined over some search space U , which might be implic-

itly defined by constraints. We assume the search space U

to be finite #U = r < +∞ and that all objectives shall be

minimized. Therefore we are interested in solving

min
{

f (p) = ( f1(p), . . . , fk(p))T | p ∈U
}

. (2)

Definition 1: (Pareto dominance) For any pair (p,q)∈U ×
U , p is said to dominate q, denoted as p ≻ q, if and only if

f (p) ≤ f (q) and ∃i=1,...,k fi(p) 6= fi(q). (3)

One of the possible ways to solve Eq. (2) is to find or ap-

proximate the Pareto set P being the set of non-dominated

elements from U and its image f (P) ⊂ [0,M]k called the

Pareto front.

2. Strategy

The idea of the proposed strategy MCES of detecting neigh-

borhoods of the Pareto sets consists of combining a genetic

algorithm with a clustering method.

Among many GA we would like to extinguish those which

may provide best samples for clustering. The most impor-

tant property, which is held, e.g., by Simple Genetic Algo-

rithm (SGA, for details refer to Subsection 3.3), is high se-

lection pressure to obtain solutions in the neighborhoods of

extrema. The second property is maintaining global search

during computations. In case of single-population algo-

rithms (like SGA), early convergence may eliminate global

search. Such a behavior may result in losing information

about parts of the Pareto front, as well as not recognizing

local Pareto fronts. Therefore we propose to use an al-

gorithm having both high selection pressure and globality,

called Hierarchic Genetic Strategy (HGS, see [21]).

2.1. Genetic Engine

Hierarchic Genetic Strategy is an algorithm which produces

a tree-structured set of concurrent evolutionary processes

(see Fig. 1). The structure changes dynamically and the

depth of the HGS tree is bounded by m < +∞. In the

simplest form of HGS, each process’ evolution is governed

by SGA.

Fig. 1. HGS tree and corresponding two-dimensional meshes,

m = 3.

HGS starts with a single root deme performing chaotic

search with low accuracy. After a constant number of ge-

netic epochs K called the metaepoch the root deme sprouts

child-demes in the promising regions of the evolutionary

landscape surrounding the best fitted individuals distin-

guished from the parental deme. Child-demes perform more

local search with higher accuracy. The evolution in existing

demes continues in the second metaepoch, after which new

demes are sprouted. Demes of order m (leaves) perform

local and most accurate search. The algorithm continues

until the global stop condition is reached.

HGS implements two mechanisms that prevent redundancy

of the search. The first one, called conditional sprouting,

allows new demes to be sprouted only in regions which are

not explored by sibling-demes (demes sprouted by the same

parent). The second mechanism, called branch reduction,

reduces demes of the same order that perform search in

the common landscape region or in the regions already

explored.

Different search accuracies are obtained by various encod-

ing precisions and by manipulating the length of binary

genotypes in demes at different levels. The root utilizes

the shortest genotypes, while the leaves utilize the longest

ones. To obtain search coherency for demes of different

orders, a special kind of hierarchical nested encoding is

used. Firstly, the densest mesh of phenotypes in D for the

demes of the m-th order is defined. Afterwards, the meshes

for lower order demes are recursively defined by selecting

some nodes from the previous ones. The maximum diame-

ter of the mesh δ j associated with the demes of the order j

determines the search accuracy at this level of the HGS tree

(see Fig. 1). The mesh parameters satisfy δm < .. . < δ1.
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Selection pressure is tightly connected with the probability

of sampling measure in central parts of basins of attraction.

The latter was formally proved for HGS in [21]. The the-

orem follows that, with certain assumptions, the sampling

measures spanned by the sum of leaves in HGS are suffi-

ciently close to the sampling measure associated with the

unique fixed point of the genetic operator. Therefore, HGS

is capable of detecting the same local extrema as SGA.

HGS is also more effective than SGA in finding multiple lo-

cal extrema (see [22]). It consists of multiple populations

which explore different areas of the search space. Even

when considering only highest-order demes, the algorithm

performs global search and, with a small number of indi-

viduals, can cover the whole domain.

2.2. Selection Scheme

In order to solve multiobjective optimization problems, evo-

lution in each deme of HGS tree must be governed by an

EMOA. Among EMOAs there are some selection schemes

that fulfil the high selection pressure condition (several ex-

amples are described in Section 1). We will focus on se-

lection scheme proposed by Fonseca and Fleming in [16].

Fonseca and Fleming proposed a Pareto-based selection

(FFGA), where an individual’s rank equals the number of

solutions by which it is dominated. After sorting popula-

tion according to the rank, fitness values are assigned to

individuals by interpolating from the best (with the low-

est rank) to the worst (with the highest rank) according to

some function. Fitness of individuals with the same rank

should be equal, so that all of them will be sampled at the

same rate. We will refer to this type of selection later on,

presenting a heuristic operator utilizing it.

In FFGA, selection pressure can be manipulated by us-

ing different validating functions g ∈C([0,1]→ [0,1]) (see

Subsection 3.5) which is a decreasing function transforming

normalized ranks into probability distribution of the rank

selection.

By applying a proper selection scheme, an EMOA con-

verges to the Pareto front and solutions group around Pareto

sets. When coupled with a multi-population strategy like

HGS, an algorithm can provide a propitious sample for

clustering.

2.3. Recognizing Sets

We do not restrict clustering to any particular method.

Clustering here is applied to recognize regions with high

density of individuals. In the presented strategy, individu-

als created in leaves concentrate on the neighborhoods of

the Pareto-set which may be interpreted like basins of at-

traction of the sought solutions defined for single-objective

optimization problems (see Subsection 3.1). We are aiming

at finding a full-measure hull of the set of optimal solutions.

Two problems appear while considering a method of rec-

ognizing sets by clustering the regions with high density

of the sampling measure: What genetic algorithms should

be used to provide a sample for clustering? Is it possible

to verify such a strategy theoretically? The first question is

already answered – we should take advantage of algorithms

combining global search with high selection pressure,

e.g., used in MCES. The second question will be addressed

in the following chapter.

3. Theoretical Verification

To verify the strategy theoretically, we present several con-

cepts. Firstly, we show the theorem of clustering to recog-

nize the basins of attraction in single-objective optimiza-

tion problems. Afterwards, we move on to Simple Genetic

Algorithm and the definition of genetic algorithms with

heuristic. Next, a heuristic for a particular class of EMOA

is presented. We finish the theoretical part with algorithms

preserving the property of being well-tuned to the problem.

3.1. Basins of Attraction

We begin with necessary definitions. Let L(y) =
{x ∈ D : Φ(x) ≤ y} and L̂(y) = {x ∈ D : Φ(x) < y} stand for

two types of level sets of function Φ. Lx(y) and L̂x(y) de-

note the connected parts of L(y) and L̂(y) (respectively)

that contain x. For an arbitrary fixed x∗ being a stationary

point of function Φ let y(x∗) ∈R be defined as follows:

y(x∗)=






min

{
y : ∃x∗∗ isolated stationary point of Φ,

x∗∗ 6= x∗,x ∈ Lx∗(y)

}

if x∗∗ exists

minx∈∂D Φ(x) otherwise ,

(4)

where x ∈ ∂D denotes points on the boundary of the do-

main.

Definition 2: [5] The basin of attraction Bx∗ of a local

minimizer x∗ is the connected part of L̂x∗(y(x
∗)) that con-

tains x∗.

The process of set recognition begins with a genetic sample

produced by a selected genetic algorithm. The sample is di-

vided into clusters to discover groups in the data. Formally,

clusters are non-empty, exclusive subsets X1, . . .Xk; k ≤ m

which are the results of constructiong a partition of a dis-

crete data set X = x1, . . .xm. In the presented approach,

a cluster is a discrete data set located in the basin of attrac-

tion of an isolated local minimizer x+ of Φ.

After detecting clusters, we look for a cluster extension for

each local minimizer x+. A cluster extension is a closed

set of positive measure which is included in Bx+ and con-

tains x+ in its interior. In this sense, cluster extensions ap-

proximate the basins of attraction and are located in their

central parts.

Cluster extensions detection has several advantages. It al-

lows detection and approximation of central parts of basins

of attraction thus helps to determine groups of points from

which local search may be started. The desired situation
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is to separate local extrema to reduce the number of lo-

cal searches to one in each basin of attraction of a local

extremum.

What is more, the combination of genetic algorithms with

clustering methods provides the possibility to analyze the

stability of minimizers. Cluster extensions recognition is

also useful in sequential niching strategy, to deteriorate fit-

ness. Basins of attraction can be recognized and sepa-

rated, which prevents repeated search of depressed regions

of the space and repeated convergence to the same solu-

tions. Therefore, computation time can be reduced.

The importance of set detection is even more clear in case

of multiobjective optimization where we seek for a full-

measure hull of Pareto-optimal solutions. This set may be

interpreted as basin of attraction defined for local mini-

mizers.

3.2. Basic Theorem of Genetic Algorithms

In this paper we consider genetic algorithms, from which

the simplest operate on a single population being the

multiset P=(U,η) of the search space members called in-

dividuals, while U is called now genetic universum. A ge-

netic universum is denoted by Ω when it is composed

of all binary strings of the finite, prescribed constant

length l ∈N. In this case Ω={(a0,a1, . . . ,al−1) ; ai ∈{0,1} ,

i=0,1, . . . , l −1}.

The occurrence function η : U → Z+ ∪ {0} returns η(i)
which is the number of individuals with the genotype

i ∈ U . The population cardinality is denoted by µ and

µ = ∑i∈U η(i) < +∞.

The algorithm consists in producing a sequence of popu-

lations {Pt} in the consecutive genetic epochs t = 1,2, . . .

starting from the population P0 uniformly sampled from U .

The mixing and selection operations depend on the algo-

rithm. In particular, in case of MOEA the latter is often

performed with respect to the Pareto–dominance relation

(see e.g. [23]).

Each finite population represented as the multiset P =
(U,η) may be identified with its frequency vector x =
{ 1

µ η(p)}, p ∈ U and all such vectors belong to the finite

subset Xµ of the Vose simplex (see e.g. [9])

Λr =
{

x = {xp}; 0 ≤ xp ≤ 1, p ∈U, ∑
p∈U

xp = 1

}
. (5)

3.3. Simple Genetic Algorithm

Simple Genetic Algorithm (introduced by Vose in [24])

applies to optimization problems with one fitness function

f : Ω → [0,M],M < +∞. It is a method to transform a pop-

ulation Pt to the next epoch population Pt+1. Both popula-

tions are multisets of binary strings from the binary genetic

universum Ω of the final cardinality r < +∞. Selection of

two individuals x,y from population Pt is performed by

multiple sampling in proportional roulette selection. An

individual added to the next epoch population Pt+1 is pro-

duced from x and y with the mixing operation (see below).

Creation of new individuals by selection and mixing is per-

formed until Pt+1 contains µ elements.

The proportional selection operator F : Λr → Λr is a map-

ping

F(x) =
diag( f )x

( f ,x)
, (6)

where the fitness function f is represented by the vector

of its values f ( f1, f2, . . . , fr) ∈ R
r; fp = f (p), p ∈ U and

diag( f ) denotes the r× r diagonal matrix with the diago-

nal f .

The mixing operator M ∈C1(Λr → Λr) introduced by Vose

expresses the binary mutation and positional crossover

M(x)p = (σp x)T
Mσp x, ∀ x ∈ Λr

, p ∈U , (7)

where σp stands for the r× r dimension permutation ma-

trix with the entries (σp)q,k = [q⊕ k = p], p,q,k ∈U . The

entries Mp,q of the symmetric r× r matrix M express the

probability of obtaining the genotype being the string of

zeros from the parents p,q ∈U by crossover and mutation.

3.4. Algorithms with Heuristic

An important group of algorithms which properties can

be theoretically verified are genetic algorithms that admit

a heuristic operator. Such algorithms will be called genetic

algorithms with heuristic.

Definition 3: The mapping H ∈ C(Λr → Λr) will be

called the heuristic of the particular class of genetic algo-

rithms if:

1. H (x) is the expected population in the epoch that

immediately follows the epoch in which the popula-

tion vector x ∈ Λr appeared,

2. H is the evolutionary law of the abstract, deter-

ministic, infinite population algorithm (we assume

that it exists in the considered class). In other

words, the infinite population algorithm is the dy-

namic system that starts from a particular initial pop-

ulation x0 ∈ Λr and then passes consecutively by

H (x0),H 2(x0),H 3(x0), . . . .

3. Each coordinate (H (x))p is equal to the sampling

probability of the individual with the genotype p∈U

in the epoch that immediately follows the epoch in

which the population x ∈ Λr appears.

The heuristic operator (also called the genetic operator) for

SGA is a mapping H : Λr → Λr composed of selection and

mixing

H = M ◦F. (8)

SGA is one of a few instances of genetic algorithms for

which the probability distribution of sampling the next

epoch population can be delivered explicitly (see [24]).
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3.5. EMOA Heuristic

The second example of a genetic algorithm with heuristic

pertains to multiobjective optimization. It was introduced

in [25].

Selection operator in the presented algorithm was inspired

by the Pareto-based ranking procedure FFGA described in

Subsection 2.2.

Let us start with the definition of the binary Pareto domi-

nance matrix

Ξ ∈ {0,1}r×{0,1}r
; Ξp,q =

{
1 if q ≻ p

0 otherwise.
, ∀ p,q ∈U ,

(9)

which characterizes the Pareto dominance relation among

the genotypes from U for the particular multiobjective op-

timization Eq. (2). The p-th entry of the vector (Ξ η)
represents the number of individuals which dominate the

individual with the genotype p belonging to the population

P = (U,η) (e.g. η(p) > 0).

Next, we introduce function ξ : Λr → [0,1]r of the form

ξ (x) = Ξ x . (10)

The function is well defined for both finite and infinite pop-

ulations. Its value ξ (x)p gives the rank of all individuals

with the genotype p ∈ U contained in the population P

represented by its frequency vector x and in case of finite

population of the cardinality µ < +∞ may be interpreted

as the relative number of individuals that dominate the in-

dividual with the genotype p.

It is also required to introduce two following functions.

A decreasing validating function g ∈ C([0,1] → [0,1]) is

necessary to obtain the probability distribution of the rank

selection. As a simple example of a function correlated

with the rank-based fitness assignment method [16] we can

take g(ζ ) = 1−ζ . The second function G : [0,1]r → [0,1]r

such that G(x)p = g(xp), p ∈U is introduced for technical

purposes.

The probability of selecting the individual p ∈U from the

current EMOA population P represented by the vector x ∈
Λr equals to

Pr(p) =
1

xT G(ξ (x))
g((ξ (x))p) xp. (11)

Using previously introduced functions, we define the selec-

tion operator F : Λr → Λr for the EMOA rank selection

F(x) =
1

xT G(Ξ x)
diag(x) G(Ξ x) , (12)

where diag(x) denotes the r × r diagonal matrix with the

diagonal x.

In each EMOA epoch, selection is followed by genetic oper-

ations (e.g., mutation, crossover) which can be represented

by the mixing operator M ∈C1(Λr → Λr). No specific re-

strictions for this mapping are imposed. For an exemplary

mixing operator see Eq. (7).

Finally, similarly like in case of SGA, we compose selection

and mixing to obtain a heuristic operator of the particular

class of EMOA considered in this paper

H = M ◦F. (13)

If the mixing operator is strictly positive, e.g., M(x)p > 0,

∀x ∈ Λr, ∀p ∈U , then the algorithm possesses the asymp-

totic guarantee of success, e.g., it will reach the population

which contain all points lying in the Pareto set after an

infinite number of epochs.

Definition 4: We say that H is focusing if there exists

a nonempty set of fixed points K ⊂ Λr of H that for all

x ∈ Λr the sequence {Ht(x)} converges in Λr to w ∈ K

for t → +∞.

Theorem 1: [25] Assuming that the heuristic H is focus-

ing and the mixing operator is strictly positive, the sam-

pling measure concentrates on the set of fixed points of H

if µ → +∞ and t → +∞.

The theorem (for details, refer to [25]) is an extension

of a similar theory introduced by Vose for SGA and has

great importance in verifying MCES. Applied rank selec-

tion causes the individuals to concentrate on the neighbor-

hood of Pareto-optimal solutions and produces a sample

ready to clustering.

3.6. Well-Tuning

For genetic algorithms with heuristics it is possible to in-

troduce a condition which is connected with the property of

the frequency of solutions included in some central parts of

basins of attraction being significantly higher than in other

parts (see e.g. [7]).

Definition 5: [7]

A particular class of SGA with heuristic H is well-tuned

with respect to a finite set of local minimizers W if:

1. H is focusing and the set of its fixed points K is

finite,

2. ∀x∗ ∈ W ∃C(x∗) closed set in D such that x∗ ∈
C(x∗) ⊂ Bx∗ , meas(C(x∗)) > 0 and

ρw(x) ≥ threshold, x ∈C(x∗) (14)

ρw(x) < threshold, x ∈ D\
⋃

x∗∈W

C(x∗) , (15)

where w ∈ K is a fixed point of H, ρw is a measure den-

sity over D corresponding to a population w ∈ Λr and the

positive constant threshold stands for the definition’s pa-

rameter.
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The parameter introduced by the above definition allows

distinguishing whether the measure density induced by

a limit population can be successfully used to separate

local minimizers and to roughly locate them in the admis-

sible set.

An important feature of algorithms well-tuned to the prob-

lem is that by increasing population size we get a higher

chance of recognizing sets by cluster analysis methods.

Basing on the obtained results, we claim that Evolution-

ary Multiobjective Optimization Algorithm with heuristic

is well-tuned if the fixed points of the heuristic correspond

to densification of sampling measures in the neighborhoods

of the Pareto set. Densification of sampling measure causes

points to group around Pareto-optimal solutions where they

can be recognized by clustering methods.

It was proved in [9] that if a heuristic H is focusing, the

sampling measures of the algorithm converge to the mea-

sure given by the set of fixed points of H. Taking into

consideration the presented EMOA heuristic with rank se-

lection, we conclude that the level set of a particular den-

sity of the sampling measure for this selection will be the

neighborhood of the Pareto set. Besides that, it is possible

to asymptotically approximate that level set.

4. Experiments

We present three experimental examples. The first one

refers to clustering genetic sample in a single-objective

problem. The second shows rank selection in a simple mul-

tiobjective task. Finally, the third example is an application

of the MCES to the benchmark problem.

4.1. Clustered Genetic Search in Single-Objective

Problems

Clustering in single-objective problems was investigated by

Schaefer, Adamska and Telega. The following example was

presented in [5].

A two-dimensional test function

f (x,y) = sin(xy)+ 1, (x,y) ∈ [−3,3]× [−3,3] (16)

was selected to illustrate CGS abilities of coping with mul-

timodal functions.

The objective is shown in Fig. 2. The multiple minima of

the function constitute one-dimensional manifolds, which

provide an additional difficulty. The authors used HGS as

a genetic engine and compared two types of CGS (HC-CGS

and DR-CGS, for details refer to [5]) which can be applied

to solve the problem. In both cases, the algorithms found

several cluster extensions which were recognized only by

means of analysis of the density of individuals. They con-

clude that the recognized sets can be treated as central parts

of basins of attractors; starting from each point of a cluster

extension at least one point of the same manifold may be

reached.

Fig. 2. The objective function f .

4.2. EMOA Rank Selection Example

The next example shows EMOA rank selection (see Eq. 12)

in a two-criteria, two-dimensional minimization problem.

We take two simple objective functions with (x,y)∈ [0,4]×
[0,4]:

f1(x,y) = x + y (17)

f2(x,y) = (x−2)2 +(y−2)2
. (18)

We represent each individual as a binary code of length 12.

The objective space is divided into a mesh of 212 tiles and

each tile has one representing individual corresponding to

the centre of the tile. We consider a whole set of indi-

viduals and begin with computing the values of the binary

Pareto dominance matrix (see Eq. (9)). Next, for each indi-

vidual, we calculate rank (the number of individuals dom-

inating it) and normalize that value. Ranks are presented

as a landscape in Fig. 3. One should notice, that ranks are

calculated in discrete domain but in the plot are linked for

visualization purposes. For the same reasons, we focus on

solutions with rank < 0.5.

Fig. 3. Ranks of solutions in decision space. Dark grey points

represent Pareto-optimal solutions, light grey points represent so-

lutions close to optimal.
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Additionally, Pareto-optimal solutions (with rank = 0) are

marked dark grey and solutions being close to optimal

(rank < 0.01) are marked light grey. Therefore, we may

see a central part of the valley which may be interpreted

analogically as the basin of attraction in single-objective

problems.

Fig. 4. Solutions in objective space. Black points represent the

Pareto front, dark grey points represent solutions close to optimal.

In Fig. 4 we present solutions in the space of objectives.

Pareto-optimal solutions (in this case – the Pareto front)

are marked black and solutions being close to optimal

(rank < 0.01) are marked dark grey. It is clear, that solu-

tions from the level set of Pareto-optimal are located in the

neighbourhood of the Pareto-front. What is more, concen-

trating of individuals on the set surrounding Pareto-optimal

solutions may be used to construct a stop criterion for a par-

ticular class of EMOA.

4.3. Clustering in Multiobjective Case

As a third example we present results of a simulation of

MCES combining HGS engine with EMOA rank selection

and clustering.

For a case study we have chosen a two-criteria, two-

dimensional minimization problem with the following ob-

jective functions:

f1(x,y) = x (19)

f2(x,y) = g(y)(1−

√
x

g(y)
−

x

g(y)
sin(10πx)) , (20)

where g(y) = 1 + 9y, (x,y) ∈ [0,1]× [0,1] (see Fig. 5).

The problem is quite difficult to solve because it is multi-

modal and its Pareto-optimal front consists of several non-

connected parts.

As a genetic engine in the example we use a two-level

HGS with rank selection presented in the paper. Root deme

consists of 50 individuals and the mutation probability

is 0.05. The stop condition is fulfilled when the root pop-

ulation finishes the 20th metaepoch. After each metaepoch

leaves are sprouted in the best places found by root (around

individuals with lowest ranks). Each leaf population con-

sists of 10 individuals and the mutation probability is 0.005.

We have limited leaf evolution to 5 metaepochs.

Fig. 5. Objective function f2 (see Eq. (20)).

Fig. 6. Root individuals in the decision space.

In Fig. 6 we present all individuals created by root. The

individuals are quite well-spread in the entire search space

and group in the regions which contain solutions with low

ranks. The same individuals are presented in Fig. 7 in the

objective space. Recognized parts of the Pareto front are

visible in the lower part of the plot.

Fig. 7. Root individuals in the objective space.

Leaves continue exploration in most interesting parts of the

landscape. Most of these regions are the neighborhoods of

the Pareto-optimal sets (see Fig. 8).

Afterwards, the results of search in leaves are being clus-

tered my k-medoids method (see, i.e., [26]). In the pre-
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Fig. 8. Individuals created in leaves, decision space.

sented example problem, found clusters represent existing

parts of Pareto front very well. Two upper clusters (Fig. 9)

are the results of early sprouting in regions interesting at

the beginning of computation in root whereas the remaining

ones are exactly the solutions we were looking for.

Fig. 9. Individuals created in leaves, objective space.

To conclude, in this chapter we presented examples which

show the strategy in practice. It may be successfully applied

to multimodal problems and gives a better insight into the

shape of problem landscape. Clustering results of genetic

search allows detecting basins of attractions of solutions

in single-objective optimization tasks as well as analogi-

cal sets of individuals in neighborhoods of Pareto-optimal

solutions in multiobjective case.

5. Conclusions and Future Research

• The presented strategy of solving a Pareto optimiza-

tion problem gives additional knowledge about the

shape of the evolutionary landscape. What is more,

it copes with multimodal problems without losing lo-

cal solutions.

• Set recognition allows for detecting central regions

of the basins of attraction and, as a result, starting

points for local search methods can be limited to one

in each basin of attraction.

• MCES can be partially theoretically verified by using

concepts of EMOA heuristic and well-tuning.

• We suppose that presented methods can be applied to

solve multiobjective inverse problems in cooperation

with hp-adaptive direct problem solving methods.

• In future papers, we plan to develop the theorem al-

lowing for verification of the strategy and investigate

the property of well-tuning of EMOA.

Acknowledgements

Author would like to thank EFS of POKL 4.1.1

(POKL.04.01.01-00-367/08-00) European Union pro-

gramme for support.

References

[1] B. Barabasz, S. Migórski, R. Schaefer, and M. Paszyński, “Multi-

deme, twin adaptive strategy hp-hgs”, Inverse Problems in Sci. En-

gin., vol. 19, no. 1, pp. 3–16, 2011.

[2] M. C. Cowgill, R. J. Harvey, and L. T. Watson, “A genetic algo-

rithm approach to cluster analysis”, Comput. Mathem. Appl., vol. 37,

no. 7, pp. 99–108, 1999.

[3] E. Hruschka and N. Ebecken, “A genetic algorithm for cluster anal-

ysis”, Intell. Data Analysis, vol. 7, no. 15, pp. 15–25, 2003.

[4] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based cluster-

ing technique”, Pattern Recognition, vol. 33, no. 9, pp. 1455–1465,

2000.

[5] R. Schaefer, K. Adamska, and H. Telega, “Clustered genetic search

in continuous landscape exploration”, Engin. Appl. Artificial Intell.,

vol. 17, no. 4, pp. 407–416, 2004.

[6] K. Adamska, “Genetic clustering as a parallel algorithm for ap-

proximating basins of attraction”, in Parallel Processing and Ap-

plied Mathematics, R. Wyrzykowski, J. Dongarra, M. Paprzycki,

and J. Wasniewski, Eds., vol. 3019, LNCS. Berlin/Heidelberg:

Springer, 2004, pp. 536–543.

[7] R. Schaefer and K. Adamska, “Well-tuned genetic algorithm and

its advantage in detecting basins of attraction”, in Proc. 7th Conf.

Evol. Algorithms Global Optimiz., Kazimierz Dolny, Poland, 2004,

pp. 149–154.

[8] Handbook of Global Optimization vol. 2. P. M. Pardalos and

H. E. Romeijn, Eds. Kluwer, 1995.

Kluwer, 1995.

[9] R. Schaefer and H. Telega, Foundation of Global Genetic Optimiza-

tion. Springer, 2007.

[10] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Ea-powered

basin number estimation by means of preservation and exploration”,

in Parallel Problem Solving from Nature – PPSN X, G. Rudolph,

T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, Eds., vol. 5199,

LNCS, Berlin: Springer, 2008, pp. 569–578.

[11] C. Stoean R. Stoean, M. Preuss, “Approximating the number of

attraction basins of a function by means of clustering and evo-

lutionary algorithms”, in 8th Int. Conf. Artif. Intelli. Digit. Com-

mun. AIDC 2008, Research Notes in Artificial Intelligence and Dig-

ital Communications, N. Tandareanu, Ed., Reprograph Press, 2008,

pp. 171–180.

[12] V. A. Emelichev and E. E. Gurevsky, “On stability of a pareto-

optimal solution under perturbations of the parameters for a mul-

ticriteria combinatorial partition problem” [Online]. Available:

http://www.math.md/publications/csjm/issues/v16-n2/8827/

[13] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimiza-

tion: Methods and Applications”, Ph.D. thesis, ETH Zurich, Switzer-

land, 1999.

81



Ewa Gajda-Zagórska

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learnings. Reading, Massachusetts: Addison-Wesley, 1989.

[15] N. Srinivas and K. Deb, “Multiobjective optimization using nondom-

inated sorting in genetic algorithms”, Evolutionary Comput., 1994.

[16] C. M. Fonseca and P. J. Fleming, Genetic algorithms for multiobjec-

tive optimization: Formulation, discussion and generalization. Ge-

netic Algorithms: Proceedings of the Fifth International Conference,

pp. 416-423, 1993.

[17] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:

A comparative case study and the strength pareto evolutionary

algorithm”, IEEE Trans. Evolutionary Comput., vol. 3, no. 4,

pp. 257–271, 1999.

[18] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the

strength pareto evolutionary algorithm for multiobjective optimiza-

tion”, in Evolutionary Methods for Design, Optimisation and Control

with Application to Industrial Problems (EUROGEN 2001), Inter-

national Center for Numerical Methods in Engineering (CIMNE),

2002, pp. 95–100.

[19] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm us-

ing the hypervolume measure as selection criterion”, in Evolutionary

Multi-Criterion Optimization: Third International Conference EMO

2005, Springer, 2005, pp. 62–76.

[20] M. Preuss, B. Naujoks, and G. Rudolph, “Pareto set and EMOA

behavior for simple multimodal multiobjective functions”, in Parallel

Problem Solving from Nature – PPSN IX, T. P. Runarsson, H.-G.

Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao,

Eds., vol. 4193, LNCS, Berlin: Springer, 2006, pp. 513–522.

[21] J. Kolodziej, “Modelling hierarchical genetic strategy as a family

of markov chains”, in Proc. Int. Conf. Parallel Proces. Applied

Mathem.-Revised Papers, Springer, 2002, pp. 595–598.

[22] R. Schaefer and J. Kolodziej, “Genetic search reinforced by the pop-

ulation hierarchy”, in Foundations of Genetic Algorithms 7, R. Poli,

K. A. De Jong, and J. E. Rowe, Eds., Morgan Kaufman, 2003,

pp. 383–388.

[23] C. A. Coello Coello and G. B. Lamont, Applications of Multi-

objective Evolutionary Algorithms. World Scientific, 2004.

[24] M. D. Vose, The Simple Genetic Algorithm. MIT Press, 1999.

[25] E. Gajda, R. Schaefer, and M. Smolka, “Evolutionary multiobjective

optimization algorithm as a markov system”, in Parallel Problem

Solving from Nature – PPSN XI, Springer, 2010, pp. 617–626.

[26] H. Park and C. Jun, “A simple and fast algorithm for k-medoids

clustering”, Expert Systems with Applications, vol. 36, no. 2, part 2,

pp. 3336–3341, 2009.

Ewa Gajda-Zagórska received

the M.Sc. degree in Computer

Science at Jagiellonian Univer-

sity, Kraków, Poland, in 2009.

Since then, she has been a Ph.D.

student of Computer Science at

AGH University of Science and

Technology, Kraków, Poland.

Her research interests are evo-

lutionary algorithms and multi-

objective optimization.

E-mail: gajda@agh.edu.pl

AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics,

IT and Electronics

A. Mickiewicza Av. 30

B-1 building

30-059 Krakow, Poland

82


