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Abstract—In this work, three types of vehicle suspensions

were considered and modeled as follows: oil damper mounted

in parallel with a compression helical spring, for which

a Kelvin-Voigt model, consisted of a dashpot and an elas-

tic element connected in parallel is considered; colloidal

damper without attached compression helical spring, for

which a Maxwell model, consisted of a dashpot and an elas-

tic element connected in series is considered; and colloidal

damper mounted in parallel with a compression helical spring,

for which a standard linear model, consisted of a Maxwell

unit connected in parallel with an elastic element is consid-

ered. Firstly, the vibration transmissibility from the rough

road to the vehicle’s body for all these suspensions was de-

termined under the constraint that damping varies versus the

excitation frequency. Then, the optimal damping and stiffness

ratios were decided in order to minimize the transmissibility

of vibration from the rough pavement to the vehicle’s body.

Keywords—Kelvin-Voigt-Maxwell models, optimal damping and

stiffness, ride comfort, transfer function of the human body.

1. Introduction

Major sources of excitation in motor vehicles are the en-

gine, transmission system, air-conditioning system, road

and aerodynamic excitations. Thus, major structural res-

onances and their frequency ranges are [1]: rigid body vi-

brations of bouncing, pitching and rolling on suspension

system and wheels (0.5–2 Hz), forced vibrations of the ve-

hicle body due to the engine shake (11–17 Hz), bending

and torsional vibration of the body as a whole (25–40 Hz),

as well as ring mode vibration of the passenger compart-

ment and bending vibration of the driveline (50–100 Hz).

Although resonances connected to suspension systems and

wheels are in the domain of 0.5–2 Hz, structural reso-

nances of various systems in motor vehicles are going up

to 100 Hz [1]–[3]. Road excitation frequency increases

with the vehicle speed and decreases with the wavelength

of the road roughness; excitation frequencies 0.1–0.5 Hz

are important for evaluation of the motion sickness, and

the domain of 0.5–100 Hz is recommended for evaluation

of the ride comfort [4], [5].

In order to improve the vehicle’s ride comfort, from a tech-

nical standpoint, the suspension designer has a single al-

ternative: to minimize the transfer function of vibration

from the rough road to the vehicle’s body, over the en-

tire concerned range of frequencies (0.1–100 Hz). Usual

vehicle suspensions employ hydro-pneumatic absorbers

(e.g., oil [2]–[7], colloidal [8]–[14] and air dampers [2]–[7])

mounted in parallel with compression helical springs.

Although the damping coefficient of the vehicle suspen-

sion is changing versus the excitation frequency [10], con-

ventional design method is based on simplified models that

assume for constant damping and elastic properties [4]. For

this reason, the optimal damping and stiffness ratio, to max-

imize the vehicle’s ride comfort, cannot be accurately pre-

dicted [15], and also discrepancies between theoretical and

experimental results can be observed [16].

In this work, three types of suspensions are considered

and modeled as follows: oil damper mounted in parallel

with a compression helical spring, for which a Kelvin-

Voigt model, consisted of a dashpot and an elastic ele-

ment connected in parallel is considered; colloidal damper

without attached compression helical spring, for which

a Maxwell model, consisted of a dashpot and an elastic

element connected in series is considered; and colloidal

damper mounted in parallel with a compression helical

spring, for which a standard linear model, consisted of

a Maxwell unit connected in parallel with an elastic ele-

ment is considered. Firstly, the vibration transmissibility

from the rough road to the vehicle’s body for all these sus-

pensions is determined under the constraint that damping

varies versus the excitation frequency. Then, the optimal

damping and stiffness ratios are decided in order to min-

imize the vibration transmissibility, i.e., to maximize the

vehicle’s ride comfort.

2. Methods to Estimate the Ride

Comfort

Perception of the vehicle’s ride comfort is different from

one passenger to another, depending on its taste and physi-

cal constitution. However, the ride comfort of a certain ve-

hicle can be evaluated based on the equivalent acceleration

ac which is proportionally depending on the root-mean-

square of the weighted transfer function of vibration from

the rough road to the vehicle’s body [4], [5]:

ac ∝
√

∑
i

[

|F( fi)‖H( fi)|
]2

. (1)
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Discrete frequency values are taken in the range

0.1–100 Hz, as follows: fi = 0.1, 0.125, 0.16, 0.2, 0.25,

0.315, 0.4, 0.5, 0.63, 0.8, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5,

6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40, 50, 63, 80 and 100 Hz.

The so-called filter or weighting function F( fi) represents

the vibration transfer function of the human body. For vi-

bration transmitted in vertical direction from seat to the

vehicle’s rider, according to the K-factor method, the filter

can be taken as [4]:

F( fi) =











10
(3 fi−15)/20, 0 ≤ fi ≤ 4

10
−3/20, 4 ≤ fi ≤ 8

10
(−0.75 fi+3)/20, f ≥ 8

. (2)

On the other hand, according to ISO 2631 method, the

frequency weighting can be introduced as [5]:

F( fi) = Γ( fi)∆( fi)
7.875 f 2

i
√

0.0256 + f 4
i

10
4

√

108 + f 4
i

, (3)

where the functions Γ( fi) and ∆( fi) can be calculated as:

Γ( fi) =

√

f 2

i + 156.25

0.3969 f 4
i + 32.21875 f 2

i + 9689.94141
, (4)

and:

∆( fi) =

√

0.8281 f 4
i −3.68581 f 2

i + 26.1262

0.8281 f 4
i −7.36421 f 2

i + 104.29465
. (5)

In order to estimate the transfer function of vibration from

the rough road to the vehicle’s body, an adequate model

should be adopted. In general, a vehicle with four wheels

can be modeled as a system with 6 degrees of freedom

(full-vehicle model [4], [17]). However, when the frequency

in vertical direction of the vehicle’s body is below 2 Hz,

it is possible to neglect the rolling and to assume that

the left and right parts of the vehicle are identical (half-

vehicle model [17], [18]). Moreover, experience has proven

that even if the pitching movement is neglected (quarter-

vehicle model [17]), the ride-comfort can be predicted

quite accurately. Accordingly, in this theoretical work,

a quarter-vehicle moving on a rough pavement is consid-

ered as a suitable model to estimate the transmissibility and

comfort.

3. Models of the Considered Vehicle

Suspensions

Three types of suspensions are considered and modeled

as follows: oil damper mounted in parallel with com-

pression helical spring (Fig. 1), colloidal damper without

attached compression helical spring (Fig. 2), and colloidal

damper mounted in parallel with compression helical

spring (Fig. 3). In (a) parts of Figs. 1–3, models with

two-degrees of freedom are considered, based on the fol-

lowing assumptions. Travel speed is constant; there is

no frontal-rear and/or axial rolling of the vehicle’s body;

contact between tire and road is linear; finally, suspension

and tires have linear characteristics.

Fig. 1. Two-degrees of freedom (a) and one-degree of freedom

(b) models for oil damper mounted in parallel with compression

helical spring.

On the Figs. 1–3, Mb is the body (sprung) mass, Mw is

the wheel (unsprung) mass, kt is the tire spring constant,

kCS is the compression spring’s constant, ct is the tire

damping coefficient, cOD is the damping coefficient of the

oil damper and cCD is the damping coefficient of the col-

loidal damper. In the case of usual suspension (Fig. 1),

compression spring provides the necessary restoring force

to bring back the suspension to its initial position after

a cycle of compression-extension.

Fig. 2. Two-degrees of freedom (a) and one-degree of free-

dom (b) models for colloidal damper without compression helical

spring mounted in parallel.

Energy of shock and vibration is mainly stored by the spring

during the compression phase, and then, it is transferred to

and dissipated by the oil damper during extension. On the

other hand, colloidal damper is able to intrinsically provide

the restoring force [15], [16] and the spring can be omitted

(Fig. 2). Thus, colloidal damper is a machine element with

a dual function, of absorber and spring of constant kCD.
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Fig. 3. Two-degrees of freedom (a) and one-degree of freedom

(b) models for colloidal damper mounted in parallel with com-

pression helical spring.

Additionally, colloidal damper is able to dissipate the

energy of shock during its compression, this reducing

the delay between excitation and response; since it has

higher speed of reaction to excitation, one expects that

the ride-comfort of the vehicle can be considerably im-

proved.

For the model shown in Fig. 1, one observes two peaks on

the graph of transmissibility of vibration from the rough

road to the vehicle’s body |H| against the excitation fre-

quency f , as follows: a first resonance peak at lower fre-

quency fn that approximately corresponds to the vehicle’s

body (sprung) mass, and a second resonance peak at higher

frequency ft that approximately corresponds to the wheel

(unsprung) mass [19]:

fn =
ωn

2π
∼= 1

2π

√

kCS

Mb

, ft =
ωt

2π
∼= 1

2π

√

kt

Mw

. (6)

Generally, one observes two opposite requirements in the

design of actual vehicle suspension (oil damper mounted

in parallel with spring): large damping cOD is desirable at

lower frequency fn to reduce the first resonant peak, but

on the other hand, low damping cOD is needed at higher

frequency ft to reduce the second resonant peak [19]. One

observes from Eq. (1) that, in order to improve the vehicle’s

ride comfort, from a technical standpoint, the suspension

designer has a single alternative: to minimize the trans-

fer function of vibration from the rough road to the vehi-

cle’s body, over the entire concerned range of frequencies

(0.1–100 Hz). One way to reduce damping in a pas-

sive manner at higher frequencies is to use a “relaxation

damper”, where the dashpot cOD is replaced by a Maxwell

unit, consisted of a dashpot, e.g., cCD and a spring, e.g.,

kCD mounted in series (Figs. 2 and 3). Since the peak at

lower frequency fn is critical, the model with two-degrees

of freedom can be further simplified to a quarter-vehicle

with one-degree of freedom ((b) parts of Figs. 1–3), by

defining the equivalent mass m of the vehicle, the equiva-

lent spring constant of the parallel kp and serial ks elastic

elements, and the equivalent damping coefficient c of the

dashpots as follows:























m = Mb + Mw

1

kp

=
1

kt

+
1

kCS

Mb

Mw

ks = kCD

c = cOD + ct or c = cCD + ct

. (7)

Thus, the considered suspensions can be modeled as fol-

lows:

• Oil damper placed in parallel with a compression

spring can be described by a Kelvin-Voigt model,

consisted of a dashpot and an elastic element con-

nected in parallel (Fig. 1).

• Colloidal damper without attached compression

spring can be described by a Maxwell model, con-

sisted of a dashpot and an elastic element connected

in series (Fig. 2).

• Colloidal damper mounted in parallel with a com-

pression helical spring, can be described by a stan-

dard linear model, consisted of a Maxwell unit con-

nected in parallel with an elastic element (Fig. 3).

4. Modeling of the Variable Damping

Variation of the damping ratio ξ versus the excitation fre-

quency can be taken as:

ξ = ξn

( ω

ωn

)i

, (8)

where the natural circular frequency ωn and the damping

ratio at resonance ξn can be calculated as:

ωn =

√

k

m
, ξn =

c

2
√

km
. (9)

Subscripts p or s will be added to ωn and ξn in the sections

below, according to the type of spring coefficient used for

their calculus: kp (parallel) or ks (serial), respectively. The

exponent i can be taken:

– as i = 1 for oil dampers at higher piston speeds [4];

– as i = 0 for oil dampers at lower piston speeds (see

the simplified model of constant damping [2]–[4]);

– as i = −1 for colloidal dampers [15], [16], as

well as control active oil dampers at higher piston

speeds [17], [ 18].

5. Transmissibility of Vibration from the

Rough Pavement to the Vehicle Body

Transfer function of vibration |H| from the rough road to

the vehicle’s body is defined as the ratio of the amplitude X
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of the equivalent mass m to the amplitude X0 of the dis-

placement excitation produced by the rough pavement (see

Figs. 1–3):

|H| = X/X0 . (10)

5.1. Kelvin-Voigt (parallel) Model

In the case of Kelvin-Voigt model (Fig. 1), consisted of

a dashpot and an elastic element connected in parallel,

the transfer function of vibration is calculated by using

Eq. (11). Then, variation of vibration transmissibility ver-

Fig. 4. Variation of transmissibility versus dimensionless fre-

quency in the case of Kelvin-Voigt model for i = 0 and various

damping ratios.

sus frequency ω/ωn,p = f/ fn,p is shown in Fig. 4 for i=0

and various damping ratios, and in Fig. 5 for different

exponents i.

|Hp| =

√

√

√

√

√

√

1 +
[

2ξn,p

(

ω
ωn,p

)i+1]2

[

1−
(

ω
ωn,p

)2]2

+
[

2ξn,p

(

ω
ωn,p

)i+1]2
(11)

From Eq. (11) and Fig. 5 one observes that for a given ξn,p

the resonant peak has the same height regardless the type

of absorber:

|Hp| =
( ω

ωn,p
= 1

)

=

√

1 +
1

4ξ 2
n,p

, (∀)i . (12)

Additionally, from Eq. (1) and Fig. 4 one observes that:

|Hp| =
( ω

ωn,p
=
√

2

)

= 1, (∀)ξn,p, (∀)i . (13)

Since all curves |Hp| are above 1 for ω <
√

2ωn,p and be-

low 1 for ω >
√

2ωn,pone concludes that the critical fre-

quency
√

2ωn,p separates regions of amplification and at-

tenuation, regardless the type of absorber and its damping

Fig. 5. Variation of transmissibility versus dimensionless fre-

quency in the case of Kelvin-Voigt model for various exponents i.

ratio. When ξn,p = 0 the highest decay rate of transmissi-

bility is obtained in the frequency domain ω >
√

2ωn,p but

this is accompanied by very large amplitudes near the res-

onance. Consequently, one observes that there are two op-

posite requirements in the design of classical parallel-type

suspension: large damping is desirable at lower frequen-

cies to reduce the resonant peak, but on the other hand,

low damping is needed at higher frequencies to minimize

the transmissibility. Traditional way to reduce damping at

higher frequencies in a passive manner [19] is to replace

the dashpot by a Maxwell unit consisted of a dashpot and

a spring connected in series (Fig. 3). Since the resonant

peak is the same for all values of the exponent i but the

decay rate in the higher frequency domain is the highest

for i = −1 (Fig. 5), one arrives to a different way of re-

ducing damping at higher frequencies in a passive manner.

Concretely, the traditional oil damper (i = 0) can be re-

placed by a colloidal damper (i =−1), which has a dynamic

behavior resembling the well-known case of structural

damping.

5.2. Maxwell (series) Model

In the case of Maxwell model (Fig. 2), consisted of a dash-

pot and an elastic element connected in series, the transfer

function of vibration can be calculated as:

|Hs| =
2ξn,s

(

ω
ωn,s

)i

√

(

ω
ωn,s

)2

+
[

2ξn,s

(

ω
ωn,s

)i]2[

1−
(

ω
ωn,s

)2]2

. (14)

Then, variation of vibration transmissibility versus fre-

quency ω/ωn,s = f/ fn,s is shown in Fig. 6 for i = 0 and

various damping ratios, and in Fig. 7 for different values
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Fig. 6. Variation of transmissibility versus dimensionless fre-

quency in the case of Maxwell model for i = 0 and various damp-

ing ratios.

Fig. 7. Variation of transmissibility versus dimensionless fre-

quency in the case of Maxwell model for various exponents i.

of the exponent i. Note that transmissibility reduces as the

damping ratio ξn,s decreases (Fig. 6); the lowest transfer

of vibration is achieved in the region ω < ωn,s for the

highest exponent i, but in the region ω > ωn,s for the

lowest exponent i (Fig. 7).

From Eq. (14) one observes that for a given damping the

“resonant peak” has the same height regardless the ab-

sorber:

|Hs|
( ω

ωn,s
= 1

)

= 2ξn,s ,
(

∀
)

i . (15)

5.3. Standard Linear (series-parallel) Model

In the case of standard linear model (Fig. 3), consisted

of a Maxwell unit connected in parallel with an elastic

element, the transmissibility can be calculated as:

|Hsp|=

√

√

√

√

√

√

(

ks
kp

)2

+
[

2ξn,p

(

ω
ωn,p

)i+1(

1+ ks
kp

)]2

{

ks

kp

[

1−
(

ω
ωn,p

)2]}2

+
{

2ξn,p

(

ω
ωn,p

)i+1[

1+ ks

kp
−
(

ω
ωn,p

)2]}2
.

(16)

Then, variation of vibration transmissibility versus fre-

quency ω/ωn,p is shown in Fig. 8 for a stiffness ratio

ks/kp = 1, an exponent i = 0, and different damping co-

efficients ξn,p.

Fig. 8. Variation of transmissibility versus dimensionless fre-

quency in the case of standard linear (serial-parallel model) for

i = 0 and various damping ratios.

Figure 8 shows that for ξn,p = 0 (undamped suspension)

a resonant peak occurs at ω = ωn,p and for ξn,p → ∞
(over-damped suspension) a different resonant peak oc-

curs at higher frequency (ω = ωn,p

√

1 + ks/kp). The lowest

curve, that displays the lowest resonant peak at the junc-

tion point of the graphs shown for undamped and over-

damped suspensions, corresponds to the optimal damping

ratio ξn,p,opt = 0.297 which minimizes the vibration trans-

missibility.

6. Optimal Design of Serial-Parallel

Suspension

Analyzing the structure of Eq. (16), one concludes that the

resonant peaks shown by Fig. 8, i.e., the undamped peak

occurring at ω = ωn,p and the over-damped peak occur-

ring at ω = ωn,p

√

1 + ks/kp are not depending on the type
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of damper (value of the exponent i). Based on the theory

of the maximum achievable modal damping [19], in the

same way as found in Fig. 8, for any given stiffness ratio

ks/kp one always finds an optimal damping ratio ξn,p,opt

that minimizes the vibration transmissibility, as follows:

ξn,p,opt =
1

2

ks

kp

(

1 +
ks

kp

)−3/4

,
(

∀
)

i . (17)

Figure 9 illustrates a monotonous variation of the optimal

damping ratio ξn,p,opt versus the stiffness ratio ks/kp.

Fig. 9. Variation of the optimal damping ratio versus the stiffness

ratio to minimize the transmissibility, for all types of dampers

(i = −1, 0, 1).

Next, in order to obtain the optimal stiffness ratio, i.e.,

the optimal ratio of the colloidal spring’s constant to the

compression spring’s constant, one compares the vibra-

tion transmissibility obtained with the parallel, series, and

series-parallel models for values of the stiffness ratio rang-

ing from low to high (e.g., ks/kp = 0.01−100). It can be

shown that at augmentation of the stiffness ratio the reso-

nant peak decreases, but the transmissibility in the higher

frequency domain increases. In order to maximize the ve-

hicle’s ride-comfort in the whole frequency domain, one in-

tegrates the graphs showing the variation of vibration trans-

missibility versus frequency. In this way, as Fig. 10 illus-

trates, one obtains the variation of area below the graph of

transmissibility versus the stiffness ratio, both for the case

without filter and for the cases when filters (see Eq. (2)

for the K-factor method, and Eq. (3) for the ISO 2631

method) are used to account for the effects of vibration

on the human body. All the graphs shown in Fig. 10 are

convex (valley-like) curves. Stiffness ratio corresponding

to the deepest point of the valley represents the optimal

stiffness ratio that minimizes the vibration transmissibility,

i.e., maximizes the ride-comfort over the whole frequency

range. Thus, based on the positions of minima observed

in Fig. 10, the optimal stiffness ratio (ks/kp)opt is decided

Fig. 10. Decision of the optimal stiffness ratio to achieve minimal

transmissibility, i.e., maximal ride comfort for various dampers

and filters.

for various types of absorbers (i = −1, 0, 1), both for the

case without filter and for the cases when filters are used

to account for the effects of vibration on the human body

(see Table 1).

Table 1

Optimal stiffness ratio for various types of dampers

and different methods to estimate the ride comfort

Optimal Type of damper

(ks/kp)opt i = −1 i = 0 i = 1

Without filter 8.0 1.0 0.6

ISO 2631 filter 5.0 0.6 0.5

K-factor filter 4.0 0.5 0.4

7. Conclusion

In this work, three types of suspensions were considered

and modeled as follows: oil damper mounted in parallel

with a compression helical spring, for which a Kelvin-Voigt

model, consisted of a dashpot and an elastic element con-

nected in parallel was considered; colloidal damper without

attached compression helical spring, for which a Maxwell

model, consisted of a dashpot and an elastic element con-

nected in series was considered; and colloidal damper

mounted in parallel with a compression helical spring, for

which a standard linear model, consisted of a Maxwell unit

connected in parallel with an elastic element was consid-

ered. Firstly, the vibration transmissibility from the rough

road to the vehicle’s body for all these suspensions was

determined under the constraint that damping varies ver-

sus the excitation frequency. Then, the optimal damp-

ing and stiffness ratios were decided in order to minimize
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the transmissibility of vibration from the rough pavement

to the vehicle’s body, i.e., to maximize the vehicle’s ride

comfort.
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