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Abstract—The problem of aggregating multiple outcomes to

form overall objective functions is of considerable importance

in many applications. The ordered weighted averaging (OWA)

aggregation uses the weights assigned to the ordered values

(i.e., to the largest value, the second largest and so on) rather

than to the specific coordinates. It allows to evaluate solu-

tions impartially, when distribution of outcomes is more im-

portant than assignments these outcomes to the specific crite-

ria. This applies to systems with multiple independent users

or agents, whose objectives correspond to the criteria. The

ordering operator causes that the OWA optimization problem

is nonlinear. Several MILP models have been developed for

the OWA optimization. They are built with different numbers

of binary variables and auxiliary constraints. In this paper

we analyze and compare computational performances of the

different MILP model formulations.

Keywords—location problem, mixed integer (linear) program-

ming, multiple criteria, ordered weighted averaging (OWA).

1. Introduction

Yager [1] introduced the so-called ordered weighted aver-
aging (OWA) operator providing a parameterized family of
aggregations that include the maximum, the minimum and
the average criteria as special cases. Since its introduction,
the OWA aggregation has been applied to many fields [2],
including telecommunications [3], [4] and location analy-
sis [5] among others.
In the OWA aggregation the weights are assigned to the
ordered values (i.e., to the largest value, the second largest
and so on) rather than to the specific coordinates. For
a given weights vector w = (w1,w2, . . . ,wm), wi ≥ 0 for
i = 1,2, . . . ,m, the OWA aggregation of an m-dimensional
vector x = (x1,x2, . . . ,xm) can be mathematically defined
as follows. We introduce the ordering map Θ : Rm → Rm

such that Θ(x) = (θ1(x),θ2(x), . . . ,θm(x)), where θ1(x) ≥
θ2(x)≥ . . .≥ θm(x) and there exists a permutation τ of set
I = {1,2, . . . ,m} such that θi(x) = xτ(i) for i = 1,2, . . . ,m.
Further, we apply the weighted sum aggregation to ordered
vectors Θ(x), i.e., the OWA aggregation function has the
form:

aw(x) =
m

∑
i=1

wiθi(x). (1)

Note that formula (1) differs from that originally introduced
by Yager [1], due to not necessarily normalized weights
(∑m

i=1
wi = 1 in [1]).

When applying the OWA aggregation as an optimization
criterion we get

min

{
m

∑
i=1

wiθi(x) : x ∈ Q

}

. (2)

In this paper we analyze mathematical programming mod-
els for problem (2) with nonnegative weights (wi ≥ 0).
The ordering operator Θ causes that the OWA optimization
problem (2) is nonlinear even for the case of linear pro-
gramming (LP) form of the original constraints. Yager [6]
has shown that the nature of the nonlinearity introduced
by the ordering operations allows us to convert the opti-
mization (2) into a mixed integer programming problem.
Ogryczak and Śliwiński [7] have shown that the OWA op-
timization with the monotonic weights can be formed as
a standard linear program of higher dimension. Several
models have been proposed for locations problems with
the OWA criterion (the so-called ordered median prob-
lems) [8], [9], but their computational performance have
never been compared. We have carried out such compar-
ison and additionally compared it with linear formulation
for specific cases.
The paper is organized as follows. In the next section var-
ious models with the OWA criterion are presented. Within
these models different formulations are considered regard-
ing the number of constraints. In Section 3 the experiment
procedure is presented and obtained results with computa-
tional models efficiency are discussed.

2. Model Formulations

As usually the whole model can be divided into two parts:
physical and preference model. The physical model is based
on the discrete facility location problem. This problem can
be formulated as mixed integer linear programming. The
OWA operator constitutes the preference model. In general,
it can also be formulated as mixed integer linear program-
ming. However, as mentioned earlier, in specific cases it
is possible to form it as linear programming. Certainly,
the whole model will remain mixed integer due to underly-
ing location problem. In the article we are focusing on the
OWA optimization so we are referring to mixed integer and
linear programming meaning the preference model only.

2.1. Location Problem

A standard formulation of facility location problem with-
out the capacity limits was used. There is given a set
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of m sites (e.g., clients). We have to place n facilities to
satisfy demands from the clients. Without loss of generality
it can be assumed that the number of candidate sites is iden-
tical to the number of clients and additionally that n ≤ m.
Then each client is assigned to the facility that meets its
demand. The assignment is done in such a way to optimize
a given objective function. The objective function is usu-
ally based on distances (costs) between the clients and the
facilities. Because we consider unlimited capacities each
client is assigned the closest facility. Formally the model
can be expressed in the following form:

m

∑
j=1

u j = n, (3)

m

∑
j=1

vi j = 1 for i = 1, . . . ,m, (4)

vi j ≤ u j for i, j = 1, . . . ,m, (5)

xi =
m

∑
j=1

ci jvi j for i = 1, . . . ,m, (6)

u j ∈ {0,1} for j = 1, . . . ,m, (7)

vi j ≥ 0 for i, j = 1, . . . ,m, (8)

where ci j denotes the cost of satisfying the total demand of
client i by facility j. There are used two groups of binary
variables representing, respectively, the location and the
allocation decisions:

– u j – equal 1 if a facility is built at site j and 0
otherwise,

– vi j – equal 1 if the demand of client i is satisfied by
facility j and 0 otherwise.

The auxiliary variable xi (6) expresses the cost of satisfy-
ing the demand of client i. The constraint (3) enforces that
exactly n facilities are placed. The fact that each client is
assigned to only one facility is modeled with constraint (4).
Constraint (5) ensures that the clients are assigned to the
existing facilities. Thus, above formulation defines a set of
attainable values Q and the corresponding cost (outcome)
vectors x. On this basis preference models with OWA cri-
terion can be defined.

2.2. The First MILP Model (M1)

The ordering operator Θ causes that the OWA optimization
problem (2) is nonlinear, however, the nonlinearity can be
transformed into discrete problem. Note that the quantity
θ1(x) representing the worst outcome can be easily com-
puted directly by the LP minimization:

θ1(x) = miny1 (9)

subject to
y1 ≥ xi for i = 1, . . . ,m. (10)

Following Yager [6], similar formula can be given for
any θk(x), although requiring the use of integer variables.

Namely, for any k = 1,2, . . . ,m the following formula is
valid [7]:

θk(x) = minyk (11)

s.t. yk + Mzki ≥ xi for i = 1, . . . ,m, (12)
m

∑
i=1

zki ≤ k−1, (13)

zki ∈ {0,1} for i = 1, . . . ,m, (14)

where M is a sufficiently large constant (larger than any
possible difference between various individual outcomes
yi). Note that for k = 1 all the binary variables z1i are
enforced to 0 thus reducing the optimization to the stan-
dard LP model for that case.
The entire OWA optimization model (2) can be formulated
as the following mixed integer linear programming prob-
lem (MILP) [7]:

min

m

∑
k=1

wkyk , (15)

yk + Mzki ≥ xi for i,k = 1, . . . ,m, (16)
m

∑
i=1

zki ≤ k−1 for k = 1, . . . ,m, (17)

zki ∈ {0,1} for i,k = 1, . . . ,m, (18)

x ∈ Q. (19)

This MILP model introduces O(m2) binary variables zki

organized in m multiple choice constraints (special ordered
sets) and m continuous variables yk defined by the cor-
responding m inequalities. Actually, the original model
introduced in [6] contains additional constraints

yk ≥ yk+1 for k = 1, . . . ,m−1, (20)

representing ordering inequalities on variables yk. Due to
minimization with nonnegative weights wk, these inequali-
ties are redundant in the sense that they do not affect the op-
timal solution. However, we will examine if they influence
the computational performance of the model. Additionally,
we will also consider another redundant constraint,

m

∑
k=1

yk =
m

∑
i=1

xi, (21)

which balances the total sum of coordinates of basic cost
vector x against sorted vector y.
Eventually, we take into consideration three different for-
mulations of model M1:

– M1 1 – formulation (15)–(19) without the redundant
constraints,

– M1 2 – formulation (15)–(19) with one redundant
constraint (20),

– M1 3 – formulation (15)–(19) with two redundant
constraints (20) and (21).
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2.3. The Second MILP Model (M2)

Several MILP models have been developed for the OWA op-
timization within the ordered median location problems [5].
Starting from quadratic MIP, through MILP models with
O(m3) binary variables and finally setting the MILP model
with O(m2) binary variables and constraints [8]. Adapting
the model to our notation, it can be equivalently written as
follows:

min

m

∑
k=1

wkyk , (22)

yk ≥ yk+1 for k = 1, . . . ,m−1, (23)

yk + M (1− ski) ≥ xi for i,k = 1, . . . ,m, (24)
m

∑
i=1

ski = 1 for k = 1, . . . ,m, (25)

m

∑
k=1

ski = 1 for i = 1, . . . ,m, (26)

ski ∈ {0,1} for i,k = 1, . . . ,m, (27)
m

∑
k=1

yk =
m

∑
i=1

xi, (28)

x ∈ Q, (29)

where m2 binary variables ski represent assignment of ac-
tual values xi to the ordered ones yk. That means, ski = 1

if the value of xi is the k-th largest and zero otherwise.
This model is based on a combination of assignment and
sorting problems. The sorting part is realized by con-
straints (23), (25) and (26). For such a modeling approach
the m− 1 inequalities ordering variables yk are necessary.
On the other hand, due to minimization with the nonneg-
ative weights wk, the equation balancing vector x and y is
redundant. Thus the model can be then considered with-
out this (single) equation (28). Although, the full model
containing the balance equation is applicable both for min-
imization and maximization cases. For these reasons we
have analyzed two formulations of this model:

– M2 1 – formulation (22)–(29) with the redundant
constraint (28),

– M2 2 – formulation (22)–(27), (29) without the re-
dundant constraint.

2.4. LP Model

The ordering operator Θ used in the OWA aggregation is
nonlinear and, in general, it is hard to implement. However,
with decreasing weights the OWA aggregation is a piece-
wise linear convex function and its minimization can be ex-
pressed in the linear programming form [7]. This so-called
deviational model is based on the linear programming rep-
resentation of the cumulated ordered outcomes:

θ k(x) =
k

∑
i=1

θi(x) for k = 1, . . . ,m. (30)

The quantities θ k(x) for k = 1, . . . ,m express, respectively:
the worst (largest) outcome, the total of the two worst out-

comes, the total of the three worst outcomes, etc. As it
was shown in [7] each of these values can be found as the
optimal value of the following LP problem:

θ k(x) = min

(

ktk +
m

∑
i=1

dik

)

(31)

subject to

dik ≥ xi − tk,dik ≥ 0 for i = 1, . . . ,m. (32)

The ordered outcomes can be expressed as differences
θk(x)= θ k(x)−θ k−1(x) for k = 2, . . . ,m and θ1(x)= θ 1(x).
Hence, the OWA problem with weights wk can be expressed
in the form:

min

m

∑
k=1

(wk −wk+1)

(

ktk +
m

∑
i=1

dik

)

(33)

dik ≥ xi − tk for i,k = 1, . . . ,m, (34)

dik ≥ 0 for i,k = 1, . . . ,m, (35)

x ∈ Q. (36)

For this model we also consider some redundant con-
straints. One of them represents ordering inequalities on
variables tk, thus taking the form:

tk ≥ tk+1 for k = 1, . . . ,m−1. (37)

The second constraint concerns ordering of deviations dik

but in reverse order:

dik ≤ dik+1 for i = 1, . . . ,m, k = 1, . . . ,m−1. (38)

The last redundant constraint is a relaxed form of the pre-
vious one:

m

∑
i=1

dik ≤
m

∑
i=1

dik+1 for k = 1, . . . ,m−1. (39)

We carry out computational analyzes of four following for-
mulations:

– MLP1 – formulation (33)–(36) without the redundant
constraints,

– MLP2 – formulation (33)–(36) with the redundant
constraint (37),

– MLP3 – formulation (33)–(36) with the redundant
constraint (38),

– MLP4 – formulation (33)–(36) with the redundant
constraint (39).

3. Computational Tests

In order to analyze the computational efficiency of the pre-
sented models and their different formulations, we have
applied them to various location problems and compared
time needed to solve these tasks for specific formulations.
The experiment procedure, including problem generation,
is explained below. Next, results are presented and models
comparison are discussed.
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3.1. Experiments Design

The general scheme of experiments is analogous to that pre-
sented in [10]. To evaluate the models on different cases,
basic parameters characterizing the location problem have
been chosen and their sets of considered value were deter-
mined. Then, based on combinations of these parameters
various instances of problem location have been defined.
The parameters that have been considered are: the num-
ber of sites (locations), the number of service points to be
placed and type of problem defined by the vector of weights
in the OWA aggregation.
The number of sites is very important parameter because,
in fact, it determines the size of the problem. We have
considered smaller sizes for the mixed integer formulations,
and bigger for the linear model:

– for the MILP models – SC1: m = 8, SC2: m = 10,
SC3∗: m = 12, SC4∗: m = 15,

– additionally for the LP model – SC5: m = 20, SC6:
m = 25, SC7: m = 30.

In cases SC3 and SC4 (marked by an asterisk) only one
MILP formulation has been tested (for problems with
monotonic weights) in order to compare it with the linear
formulation.
The second parameter, the number of facilities, has been de-
fined as proportional to the problem size (m value). Follow-
ing cases have been assumed: n =

⌈
m
4

⌉
, n =

⌈
m
3

⌉
, n =

⌈
m
2

⌉
,

n =
⌈

m
2

+ 1
⌉
, where ⌈a⌉ is the smallest integer value not

smaller than a.
Type of problem defined by the vector of weights w plays
an important role. It allows to represent a wide range of
problems (strictly speaking the preferences), which is di-
rectly connected with a problem structure and thus with
problem complexity. We have examined 12 problem types:

– TC1: N-median, i.e. w = (1, . . . ,1
︸ ︷︷ ︸

m

),

– TC2: N-center problem, i.e. w = (1,0, . . . ,0
︸ ︷︷ ︸

m−1

),

– TC3: k-centra problem, i.e. w = (1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0),

where k =
⌊

m
3

⌋
,

– TC4: k1 + k2-trimmed mean problem, i.e.,
w = (0, . . . ,0

︸ ︷︷ ︸

k1

,1, . . . ,1,0, . . . ,0
︸ ︷︷ ︸

k2

),

where k1 =
⌈

m
10

⌉
, and k2 =

⌈
n + m

10

⌉
,

– TC5: w with binary entries alternating 0 and 1, and
beginning with 1, i.e. w = (1,0,1,0,1,0, . . .),

– TC6: Such as TC5, but beginning with 0, i.e. w =
(0,1,0,1,0,1, . . .),

– TC7: The repetition of the sequence (1,1,0), i.e.
w = (1,1,0,1,1,0, . . .),

– TC8: The repetition of the sequence (1,0,0), i.e.
w = (1,0,0,1,0,0, . . .),

– TC9: Beginning with m (size of the problem) and
decreasing by 1, i.e., w = (m,m−1, . . . ,2,1),

– TC10: Such as TC9, but in reverse order (increasing),
i.e., w = (1,2, . . . ,m−1,m),

– TC11: Beginning with 3m and decreasing in a piece-
wise linear manner, k weights by 3, next k weights
by 2 and rest by 1, i.e.,

w = (3m,3(m−1), . . . ,3(m− k)
︸ ︷︷ ︸

k

,

3(m− k)−2, . . . ,3(m− k)−2k
︸ ︷︷ ︸

k

,

3m−5k−1,3m−5k−2, . . .),

where k =
⌊

m
3

⌋
,

– TC12: Such as TC11, but in reverse order (increas-
ing), i.e.,

w = ( . . . ,3m−5k−2,3m−5k−1,

3(m− k)−2k, . . . ,3(m− k)−2
︸ ︷︷ ︸

k

,

3(m− k), . . . ,3(m−1)
︸ ︷︷ ︸

k

,3m),

where k =
⌊

m
3

⌋
.

The first two of the eight problems (TC1–TC8) are basic
problems in the location theory [10]. The next two are not
so popular but also used in this field. Problems TC5–TC8
are in some sense artificial and have been used particularly
to test the computational efficiency. The last four prob-
lems have monotonic weights. Depending on the type of
monotonicity, they are simpler (TC9, TC11 with decreasing
weights) or harder (TC10, TC12 with increasing weights)
problems. These types of the problems can be treated as
extended versions of maxmin (TC9, TC11) and maxmax

(TC10, TC12) objective functions, respectively.
For each size case we have generated 15 cost matrices,
which have zero on the main diagonal and the remaining
entries randomly generated from a discrete uniform distri-
bution in the interval [1,100]. These matrices have been
assigned to each combination of the parameters with cor-
responding problem size. Thus, we have received a set of
test problem instances.

3.2. Results

The efficiency comparison has been carried out based on
the average computational time needed to solve a problem.
We have compared computational time for specific sizes
and problem types averaging over instances of cost matrices
and cases of facilities number to be placed. The complete
results for each model are presented in Tables 1–3.
First, we have examined the influence of redundant con-
straint on the computational efficiency of MILP models. In
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order to check the change of the performance we have com-
pared different formulations within the individual models,
which were presented in Subsections 2.2 and 2.3.

Table 1
Average solution time for MILP model M1

Formulation M1 1 M1 2 M1 3
SC1 TC1 0.291 0.222 0.025

TC2 0.011 0.014 0.034
TC3 0.033 0.055 0.055
TC4 0.115 0.152 0.186
TC5 0.081 0.107 0.051
TC6 0.094 0.126 0.163
TC7 0.129 0.148 0.055
TC8 0.049 0.073 0.056
TC9 0.216 0.204 0.068
TC10 0.500 0.411 0.145
TC11 0.241 0.221 0.053
TC12 0.302 0.241 0.052

SC2 TC1 1.728 1.378 0.047
TC2 0.020 0.022 0.045
TC3 0.126 0.225 0.141
TC4 1.311 1.315 1.537
TC5 0.289 0.456 0.173
TC6 0.483 0.665 0.923
TC7 0.512 0.699 0.135
TC8 0.150 0.258 0.140
TC9 1.143 0.969 0.185
TC10 12.721 2.820 1.379
TC11 1.217 1.002 0.153
TC12 2.909 1.784 0.149

SC3 TC9 – – 0.708
TC11 – – 0.543

SC4 TC9 – – 2.515
TC11 – – 1.760

The results for the first model are given in Table 1. For
better illustration of the differences we present it graphi-
cally for SC1: m = 8 in Fig. 1 (for SC2 the results are
similar). One may notice that adding the redundant con-

Fig. 1. Model M1 formulations comparison (m = 8).

straints leads to significant time reduction for the problems
with all non-zero weights (TC1, TC9–TC12). The situa-
tion is different in the case of problems that are focused
on minimizing larger values of the outcome vector compo-
nents (TC2–TC4), where the time slightly increases. For
the other problems (TC5–TC8) it is hard to define a clear
trend of change. In particular, comparing the results for
TC5 and TC6, for which weight vectors are alternating se-
quences of 0 and 1 (where in TC5 sequence begins with 1,
and in TC6 with 0), one may notice a significant difference
in the time change due to adding the redundant constraints.
The same situation is for the second model, which can be

Table 2
Average solution time for MILP model M2

Formulation M2 1 M2 2
SC1 TC1 0.120 6.553

TC2 1.697 0.089
TC3 2.317 0.176
TC4 4.848 0.697
TC5 0.742 1.806
TC6 5.207 2.025
TC7 0.561 3.478
TC8 0.978 0.808
TC9 1.045 4.988
TC10 1.843 6.820
TC11 0.574 5.481
TC12 0.279 7.038

SC2 TC1 0.478 177.263
TC2 14.421 0.426
TC3 89.987 2.397
TC4 225.014 6.421
TC5 8.289 17.388
TC6 192.945 31.407
TC7 5.987 37.549
TC8 16.010 6.949
TC9 13.095 117.014
TC10 63.474 197.318
TC11 6.506 133.892
TC12 1.993 222.029

Fig. 2. Model M2 formulations comparison (m = 8).
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seen in Table 2 and Fig. 2. The relationships discussed
above are even more apparent here. In particular, there
is a greater time increase after adding the redundant con-
straints in the case of problems TC2–TC4.
Next we have juxtaposed the results of model M1 with the
results of model M2. For this purpose the corresponding
formulations of these models have been confronted, namely
the formulation with and without redundant constraints. In
the former case the formulation M1 3 is compared with
the formulation M2 1 (Fig. 3). As seen for all types of

Fig. 3. The comparison of formulations with the redundant con-
straints (m = 8).

problems, the first model shows much better performance
than the second one. There is a similar situation for the
formulations without the redundant constraints, where the
formulation M1 1 has been compared with the formula-
tion M2 2 (Fig. 4). Here, also the solution time for the
first model turns out to be much shorter than that for its
counterpart for all types of problems. The scale of the dif-
ferences are especially noteworthy and reaches one or even
two (three for SC2) orders of magnitude. On this basis,
model M1 seems to be more efficient than model M2.

Fig. 4. The comparison of formulations without the redundant
constraints (m = 8).

As mentioned earlier, the specific problems with appropri-
ately monotonic (decreasing in the case of minimization)
OWA weights can be formulated as the standard linear pro-

gramming models. We have examined whether MILP mod-
els could also take advantage of this special structure. For
this purpose we have compared their computational time for
the problems with decreasing weights (easier problems –
TC9, TC11) and increasing weights (harder problems –
TC10, TC12).

Fig. 5. Model M1 comparison with monotonic weights (m = 8).

The analysis shows that model M1 (Fig. 5), in the case
of problems TC9 and TC10, demonstrates actually much
better solution time for decreasing weights (TC9). In the
case of problems TC11 and TC12, the differences are not
so significant, and for the formulation M1 3 the solution
times can be considered equal.

Fig. 6. Model M2 comparison with monotonic weights (m = 8).

Considering model M2 (Fig. 6) it can be seen that the for-
mulation without the redundant constraints (M2 2) has also
slightly shorter computational time for decreasing weights.
The same is true for the formulation M2 1, when compar-
ing TC9 with TC10 problem. However, the situation looks
differently for the formulation M2 1 for TC11 and TC12
problem. Here, the problem with increasing weights has
a shorter solution time. This suggests that the MILP mod-
els do not guarantee better performance for the problems
with decreasing weights.
Because of the above results obtained for MILP models
for monotonic weights we have carried out the direct com-
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parison between the mixed integer and the linear (Subsec-
tion 2.4) OWA formulations. The results for the linear
OWA formulations are given in Table 3. We have compared

Table 3
Average solution time for LP model

Formulation MLP1 MLP2 MLP3 MLP4
SC3 TC1 0.008 0.007 0.008 0.008

TC2 0.033 0.032 0.033 0.031
TC3 0.042 0.041 0.042 0.042
TC9 0.047 0.048 0.054 0.054
TC11 0.036 0.036 0.042 0.041

SC4 TC1 0.012 0.012 0.013 0.012
TC2 0.058 0.056 0.057 0.057
TC3 0.067 0.064 0.065 0.067
TC9 0.076 0.075 0.090 0.089
TC11 0.059 0.057 0.071 0.071

SC5 TC1 0.018 0.019 0.019 0.018
TC2 0.179 0.181 0.182 0.185
TC3 0.199 0.199 0.203 0.205
TC9 0.207 0.210 0.261 0.270
TC11 0.139 0.138 0.182 0.183

SC6 TC1 0.024 0.024 0.029 0.024
TC2 0.400 0.396 0.405 0.403
TC3 0.528 0.529 0.531 0.534
TC9 0.485 0.482 0.613 0.648
TC11 0.305 0.285 0.390 0.395

SC7 TC1 0.032 0.030 0.035 0.032
TC2 1.383 1.376 1.383 1.399
TC3 1.163 1.157 1.170 1.164
TC9 1.271 1.302 1.709 1.733
TC11 0.750 0.727 0.979 1.017

the most efficient (in the sense of considered problem
types) MILP formulation (M1 3) and basic formulation
of linear model (MLP1) for the problems with decreas-
ing weights (TC9, TC11). As shown in the graphical com-
parison (Figs. 7 and 8), even the best considered mixed
integer programming model has much worse performance
than the linear formulation of OWA. The differences reach

Fig. 7. MILP and LP models comparison with decreasing weights
(m = 12).

Fig. 8. MILP and LP models comparison with decreasing weights
(m = 15).

two orders of magnitude. Therefore, even if sometimes
MILP models solve the OWA optimization with appropri-
ate monotonic weights (simpler problems) more effectively
than the general case OWA, they are still much less efficient
than the linear OWA formulation for these specific cases.

Knowing that the linear programming formulation of the
OWA has better computational performances than the
mixed integer linear programming formulation and that the
redundant constraints can significantly improve efficiency
of the latter one, we have tested the influence of the re-
dundant constraints on the linear programming model. We
have considered four formulations from Subsection 2.4 for
the problems with decreasing weights (TC9, TC11) and
additionally TC1–TC3 as non-increasing. The results are
presented in Table 3. In Fig. 9 the case for m = 30 is

Fig. 9. Model LP formulations comparison (m = 30).

shown. One may notice no difference in the case of prob-
lems TC1–TC3. For formulation MLP1 and MLP2 there
is also no difference in case of the other problems. How-
ever, for MLP3 and MLP4 formulations there is about 30%
performance deterioration in the case of problems TC9
and TC11. Similar situation occurs for other size cases.
Thus, it seems that the redundant constraints do not im-
prove the performance of the linear programming model of
the OWA optimization.
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4. Conclusions

The paper analyzes two models of mixed integer program-
ming and one linear programming model for optimization
of the OWA criterion. Experiments were conducted to
compare the computational efficiency of different formu-
lations of these models. Based on the obtained results it
can be concluded that the redundant constraints added to
MILP models of OWA can significantly shorten the compu-
tational time for certain types of localization problems (cer-
tain classes of OWA weights vectors). Secondly, the model
M1 appears to be much more efficient than the model M2.
Besides, if the problem has special structure, which allows
one to formulate OWA criterion as standard linear formu-
lation, this should be exploited, as it greatly increases its
computational efficiency. However, adding the redundant
constraints to the linear programming OWA formulation
does not help and may increase the computational time.
Because the results presented here are based on an average
solution time, it seems desirable to conduct a more de-
tailed statistical analysis (e.g., minimum, maximum, vari-
ance) of the results. Perhaps it will allow to find new depen-
dencies and determine more detailed model characteristics.
Better efficiency of the model M1 suggests also an oppor-
tunity to apply it to quadratic assignment problem (QAP),
from which some transformations for the model M2 have
been exploited [8].
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