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Abstract—A cross-layer network optimization problem is con-

sidered. It involves network and transport layers, treating

both routing and flows as decision variables. Due to the non-

convexity of the capacity constraints, when using Lagrangian

relaxation method a duality gap causes numerical instabil-

ity. It is shown that the rescue preserving separability of the

problem may be the application of the augmented Lagrangian

method, together with Cohen’s Auxiliary Problem Principle.
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1. Introduction

In the standard approach TCP congestion control together

with active queue management (AQM) algorithms at-

tempted to maximize aggregated utility over source rates,

assuming that routing is given and fixed at the timescale of

interest. However, it seems that it would be more profitable,

when we will treat TCP and IP layers together and max-

imize cross-layer utility at the timescale of route changes.

The integrated routing and network flow control problem

was first addressed by Wang, Li, Low and Doyle [1] and

independently by Jaskóła and Malinowski [2]. Unfortu-

nately, due to the nonconvexity of the constraints’ func-

tions, the algorithm based on the price method (Lagrangian

relaxation) is numerically unstable. Duality gap is the rea-

son of problems [1]. The paper shows how this gap can be

overcome, while not losing separability of the problem.

2. Problem Formulation

Our goal is to maximize the sum of utilities of all con-

nections with respect to routing and flows over the whole

network, taking into account the capacities of links.

Formally, the optimization problem can be described as

follows:

max
x∈X ,R∈R

∑
s∈S

Us(xs) , (1)

Rx ≤ c, R = [ri j]L×S
, (2)

where:

xs – flow from the source s to a (single) destination

node;

x ∈ X ⊂ R
S – vector of all flows;

S – the set of all sources;

X – the set of admissible flows; it is a Cartesian

product of intervals Xs belonging to nonnega-

tive half lines;

Us – the sources’ (connections’) utility functions; it

is assumed, that they are strictly concave and

continuous;

L – the set of all links;

R – the matrix of binary elements with the num-

ber of rows equal the number of links L and

the number of columns equal the number of

sources (active connections at a given time);

the element rls equals 1 when the link l be-

longs to a path from the source s to a given

destination node;

Rs – s-th column of the matrix R;

Rs – the set of all possible vectors representing

paths from s to a given destination node;

R – the set of all possible matrices, that is all pos-

sible combinations of vectors from the sets Rs;

c ∈ R
L
+ – links capacity vector.

3. The Standard Price Decomposition

Method

The Lagrangian for the problem (1)–(2) is as follows:

L(x,R,λ ) = ∑
s∈S

Us(xs)−∑
l∈L

λl

(

∑
s∈S

rlsxs − cl

)

= ∑
s∈S

(

Us(xs)− xs ∑
l∈L

λlrls

)

+ ∑
l∈L

λlcl , (3)

where λl are nonnegative Lagrange multipliers. Due to the

duality theory, this Lagrangian will be further maximized
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with respect to x and R and minimized with respect to λ [3].

The iteration in the standard price method consists of two-

steps [1]:

1. Solve the primal problem

(x(t),R(t)) = arg max
x∈X ,R∈R

∑
s∈S

(

Us(xs)−xs ∑
l∈L

λl(t)rls

)

.

(4)

Let us notice that owing to the specific structure and

the nonnegativity of xs for all s the overall optimiza-

tion problem (4) can be decomposed in the following

way:

max
x∈X

max
R∈R

∑
s∈S

(

Us(xs)− xs ∑
l∈L

λl(t)rls

)

=

= ∑
s∈S

max
xs∈Xs

[

Us(xs)+ max
Rs∈Rs

(

− xs ∑
l∈L

λl(t)rls

)]

= ∑
s∈S

max
xs∈Xs

[

Us(xs)− xs min
Rs∈Rs

(

∑
l∈L

λl(t)rls

)]

. (5)

From the final form of Eq. (5) it is seen, that [1]:

– the primal problem (4) can be decomposed into

a family of problems assigned to subsequent

sources s with local variables xs,r1s,r2s, . . .

which can be solved independently,

– the inner optimization minRs∈Rs ∑l∈L λl(t)rls for

the given source index s (and its connection to

a destination node) is simply the shortest path

problem with metrics defined by Lagrange mul-

tipliers λl(t), l = 1,2, ... .

Summing up, the problem (4) may be solved by solv-

ing for every source s ∈ S:

• The shortest path problem:

Rs(t) = arg min
Rs∈Rs

∑
l∈L

λl(t)rls . (6)

Let us denote the optimal value of the perfor-

mance index in Eq. (6) as ds(t), that is:

ds(t) = ∑
l∈L

λl(t)rls(t) . (7)

• The flow optimization problem:

max
xs∈Xs

(Us(xs)− xsds(t)) . (8)

2. Modify Lagrange multipliers so as to get a better

approximation of the solution of the dual problem

minλ≥0[LD(λ ) = maxx∈X ,R∈R L(x,R,λ )]

λl(t+1)=max

(

0,λl(t)+ρ
(

∑
s∈S

rls(t)xs(t)−cl

)

)

, l∈L,

(9)

where ρ > 0 is a properly chosen step coefficient.

Unfortunately, this algorithm is unstable [1]. The reason

is a duality gap caused by the nonconvexity of capacity

constraint (2) and the discrete character of variables rls.

4. Augmented Lagrangian Approach

and Auxiliary Problem Principle

in Cross-Layer Optimization

In optimization problems where the duality gap is

present, we use augmented Lagrangian or, in other words,

shifted penalty function method [3], [4], [5]. For the prob-

lem (1)–(2) it will have the form:

La(x,R,λ)=∑
s∈S

Us(xs)−
1

2
∑
l∈L

ρl

{[

max

(

0,

(

∑
s∈S

rlsxs−cl

)

+

+
λl

ρl

)]2

−

(

λl

ρl

)2}

= ∑
s∈S

Us(xs)+

−
1

2
∑
l∈L

ρl

ρ2
l

{[

ρl max

(

0,

(

∑
s∈S

rlsxs − cl

)

+

+
λl

ρl

)]2

−ρ2
l

(

λl

ρl

)2}

= ∑
s∈S

Us(xs)+

−
1

2
∑
l∈L

1

ρl

{[

max

(

0,λl + ρl

(

∑
s∈S

rlsxs+

−cl

)

)]2

−λ 2
l

}

, (10)

where ρl, l ∈ L are penalty coefficients.

The solution of the problem (1)-(2) is sought, as before, by

solving the minimax problem:

min
λ≥0

max
x∈X ,R∈R

La(x,R,λ ) . (11)

Augmented Lagrangians have one serious drawback – due

to the quadratic terms (in our case – squares of the sums

of products of variables) they are not separable, that is the

optimization problem is not decomposable.

The easiest way to transform the augmented Lagrangian to

a separable form consists in the application of so-called

Auxiliary Problem Principle proposed by Cohen [6], [7].

This principle says, that if we want to solve the problem:

max
u∈U

J1(u)+ J2(u) , (12)

where J1 is an additive (that is separable), strictly concave

functional, while J2 is a differentiable, nonadditive, not nec-

essarily strictly concave, functional, we may instead solve

a sequence of auxiliary problems:

u(t + 1) = argmax
u∈U

[

G
u(t)
ε (u) =

εJ1(u)+ε < J′2(u(t)),u >−K(u)+<K′(u(t)),u>

]

. (13)

In the above expression, < ., . > denotes the scalar product,

ε > 0 – a constant parameter, t is the index of iteration and

K(u) = ||u||22 . (14)

In short, the idea of this transformation lies in the lin-

earization of the nonseparable component and addition of
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a regularizing, strictly concave, proximal component (more

precisely, the subtraction of a strictly convex proximal com-

ponent ||u−u(t)||22, with accuracy to the constant ||u(t)||22,

which does not influence the optimization).

In the case of our problem (1)–(2) with the augmented

Lagrangian Eq. (10):

u =

[

x

R

]

, (15)

J1(u) = ∑
s∈S

Us(xs) , (16)

J2(u)=−
1

2
∑
l∈L

1

ρl

{[

max

(

0,λl +ρl

(

∑
s∈S

rlsxs−cl

)

)]2

−λ 2
l

}

(17)

and

G
u(t)
ε (u) = ε ∑

s∈S

Us(xs)− ε ∑
s∈S

{

∑
l∈L

[

max

(

0,λl+

+ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

rls(t)xs+

+max

(

0,λl + ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

xs(t)rls

]}

+

−∑
s∈S

(

x2
s + ∑

l∈L

r2
ls

)

+ 2 ∑
s∈S

xs(t)xs + 2 ∑
s∈S

∑
l∈L

rls(t)rls . (18)

5. Decomposition Scheme

and the Algorithm

Grouping together and rearranging terms dependent on the

same variables in (18), we will get:

G
u(t)
ε (u) = ∑

s∈S

[

εUs(xs)− x2
s + 2xs(t)xs+

−ε ∑
l∈L

max

(

0,λl + ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

rls(t)xs

]

+

−∑
s∈S

∑
l∈L

[

r2
ls −2rls(t)rls + ε max

(

0,λl+

+ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

xs(t)rls

]

. (19)

Let us notice that for rls ∈ {0,1}, r2
ls = rls, so we will finally

get:

G
u(t)
ε (u) = ∑

s∈S

{

εUs(xs)− x2
s +

[

2xs(t)+

−ε ∑
l∈L

max

(

0,λl + ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

rls(t)

]

xs

}

+

−∑
s∈S

∑
l∈L

{[

1−2rls(t)+ ε max

(

0,λl+

+ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

xs(t)

]

rls

}

. (20)

Let us denote now:

V
u(t)
s (xs,λ ,ε,ρ) = εUs(xs)−x2

s +

+

[

2xs(t)−ε∑
l∈L

max

(

0,λl +ρl

(

∑
v

rlv(t)xv(t)−cl

)

)

rls(t)

]

xs ,

(21)

ϕ
u(t)
ls (λl,ε,ρl) = 1−2rls(t)+

+ε max

(

0,λl + ρl

(

∑
v

rlv(t)xv(t)− cl

)

)

xs(t) . (22)

With this notation the function G
u(t)
ε (u) can be written as:

G
u(t)
ε (u) = ∑

s∈S

V
u(t)
s (xs,λ ,ε,ρ)−∑

s∈S
∑
l∈L

ϕ
u(t)
ls (λl,ε,ρl)rls ,

(23)

and the primal optimization problem max
x∈X ,R∈R

La(x,R,λ )

with the augmented Lagrangian (10) is equivalent to the

following auxiliary problem:

max
x∈X ,R∈R

[

G
u(t)
ε (u)=∑

s∈S

V
u(t)
s (xs,λ ,ε,ρ)−∑

s∈S
∑
l∈L

ϕ
u(t)
ls (λl,ε,ρl)rls

]

=

= max
x∈X

∑
s∈S

V
u(t)
s (xs,λ ,ε,ρ)−min

R∈R
∑
s∈S

∑
l∈L

ϕ
u(t)
ls

(λl,ε,ρl)rls =

= ∑
s∈S

[

max
xs∈Xs

V
u(t)
s (xs,λ ,ε,ρ)− min

Rs∈Rs
∑
l∈L

ϕ
u(t)
ls (λl,ε,ρl)rls

]

.

(24)

Let us notice that the structure of the problem (24) is

very similar to the problem (4), but the decomposition

scheme goes further, because actually for a given λ we

got a complete separation of the shortest path problems

(variables rls), from the flow optimization problems (vari-

ables xs).

The simplest gradient steepest descent algorithm of modi-

fication of the Lagrange multipliers due to Eq. (10) will be

the following:

λl(t + 1) = λl(t)

(

1−
β

ρl

)

+

+
β

ρl

max

(

0,λl(t)+ ρl

(

∑
s∈S

rls(t)xs(t)− cl

)

)

. (25)

The values of parameters should be chosen from the inter-

vals [7]:

0 < β ≤ min
l∈L

ρl, 0 < ε <
b

τ2 max
l∈L

ρl

, (26)

where b,τ are, respectively, Lipschitz constants of the func-

tion K (14) and the constraint function (2).

Summing up, the iteration of the modified, based on aug-

mented Lagrangian approach, algorithm will be as follows:

1. Solve the primal problem, decomposed into the fam-

ily of independent problems for every source s ∈ S:

xs(t) = arg max
xs∈Xs

V
u(t)
s (xs,λ (t),ε,ρ) , (27)

rls(t) = arg min
Rs∈Rs

∑
l∈L

ϕ
u(t)
ls (λl(t),ε,ρl)rls . (28)
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Functions V
u(t)
s and ϕ

u(t)
ls

are defined by Eqs. (21)

and (22).

2. Modify Lagrange multipliers for all links l ∈ L

λl(t + 1) = λl(t)

(

1−
β

ρl

)

+

+
β

ρl

max

(

0,λl(t)+ ρl

(

∑
s∈S

rls(t)xs(t)− cl

)

)

. (29)

The presented approach was implemented and thoroughly

tested on many big networks generated by Netgen [8]. The

results proved its high effectiveness [9], [10].
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