
Paper Effective Design of the Simulated

Annealing Algorithm

for the Flowshop Problem

with Minimum Makespan Criterion
Jarosław Hurkała and Adam Hurkała

Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland

Abstract—In this paper we address the n-job, m-machine

flowshop scheduling problem with minimum completion time

(makespan) as the performance criterion. We describe an effi-

cient design of the Simulated Annealing algorithm for solving

approximately this NP-hard problem. The main difficulty in

implementing the algorithm is no apparent analogy for the

temperature as a parameter in the flowshop combinatorial

problem. Moreover, the quality of solutions is dependent on

the choice of cooling scheme, initial temperature, number of

iterations, and the temperature decrease rate at each step as

the annealing proceeds. We propose how to choose the values

of all the aforementioned parameters, as well as the Boltz-

mann factor for the Metropolis scheme. Three perturbation

techniques are tested and their impact on the solutions qual-

ity is analyzed. We also compare a heuristic and randomly

generated solutions as initial seeds to the annealing optimiza-

tion process. Computational experiments indicate that the

proposed design provides very good results – the quality of

solutions of the Simulated Annealing algorithm is favorably

compared with two different heuristics.

Keywords—flowshop, heuristics, makespan, simulated anneal-

ing.

1. Introduction

The flowshop problem has been studied by many researches

because of the educational character and many real-life ap-

plications. Various optimization techniques with different

assumptions have been used to solve this problem. The reg-

ular flowshop problem consists of a group of m machines

and a set of n jobs to be processed on these machines.

Each job is processed one at a time and only once on each

machine (preemption is not allowed). A job cannot be

processed simultaneously on more than one machine. The

same processing order of jobs applies to each of the m

machines.

In this paper, we consider the classical flowshop-sequencing

problem with minimum completion time (makespan) and

assume infinite buffer at any machine in the processing se-

quence, so that jobs may form queues and wait between

the machines without blocking them. The makespan crite-

rion can be defined as a completion time, at which all jobs

complete processing or equivalently as a maximum com-

pletion time of jobs. The flowshop scheduling problem

with the makespan criterion is indicated by n/m/F/Cmax

and the aim is to find the order of jobs that minimizes the

makespan.

The n-job m-machine flowshop problem belongs to the

class of NP-hard problems [1]. Because the search space

grows exponentially as the number of jobs increases, ob-

taining the optimal solutions for large-size problems with

exact methods in reasonable time is impossible. As a con-

sequence, many researchers have been developing vari-

ous heuristics for this problem. These include constructive

heuristics [2], [3], metaheuristics like Simulated Anneal-

ing [4]–[6] and Tabu Search [7]–[10], evolutionary algo-

rithms, such as Genetic Algorithm [11], [12], and other

neighbor search approaches [13].

In this paper, we comprehensively describe the design

of the Simulated Annealing algorithm for the purpose of

effectively solving the flowshop problem. In Section 2,

we present the objective function and propose an alterna-

tive approach for calculating the makespan. In Sections 3

and 4, we explain in details the design of the Simulated

Annealing algorithm for the flowshop problem and briefly

describe two constructive heuristics that we compare the

outcomes with. The results of the experiments are shown

in Section 5. In Section 6 some concluding remarks are

presented.

2. Problem Definition

The classical flowshop problem, we focus on in this pa-

per, can be defined as follows, using the notation by Now-

icki, Smutnicki [10], Grabowski, Pempera [8] and Wodecki,

Bożejko [6]. We consider a set of n jobs J = {1,2, . . . ,n},
and a set o m machines M = {1,2, . . . ,m}. Job j ∈ J, con-

sists of a sequence of operations O j1,O j2, . . . ,O jm, where

operation O jk corresponds to the processing of job j on

machine k and takes p jk time. The goal is to find the se-

quence of jobs that minimizes the completion time of all

jobs.

Let π = (π (1) ,π (2) , . . . ,π (n)) be a permutation of jobs

and Π be the set of all permutations. Each permu-

92

Effective Design of the Simulated Annealing Algorithm for the Flowshop Problem with Minimum Makespan Criterion

tation π ∈ Π defines a processing order of jobs on each

machine. We want to find a permutation π∗ ∈Π such that:

Cmax (π∗) = min
π

Cmax(π), (1)

where Cmax (π) is the makespan of the processing order

given by π , and can be found by the following recursive

formula:

C jk (π) = max
{

Cπ(j−1)k, Cπ(j)k−1

}

+ pπ(j)k, (2)

Cmax (π) = Cnm(π), (3)

where π (0) = 0, C0k = 0, k = 1,2, . . . ,m, C j0 = 0, j =
1,2, . . . ,n.

It is also well known in the literature that the makespan

associated with permutation π can be found by:

Cmax (π)= max
1≤t1≤···≤tm−1≤n

(

t1

∑
j=1

pπ(j)1 + · · ·+
n

∑
j=tm−1

pπ(j)m

)

.

(4)

This optimization problem can be considered as finding the

longest (critical) path from node (1, 1) to (m, n) in a grid

graph. Each path in such graph is composed of horizontal

and vertical sub-paths.

In this paper, we propose another approach of calculating

the makespan. Instead of using the recursive formula or

Algorithm 1 Flowshop simulation

1: Cmax← 0, δ t← 0, q1← π

2: repeat

3: Cmax←Cmax + δ t

4: δ t← ∞

5: for k from m downto 1 do

6: if rk > 0 then

7: rk← rk− δ t

8: if rk = 0 then

9: if k + 1≤ m then

10: add(qk+1,ck)

11: end if

12: ck← /0, δ t← 0

13: else

14: δ t←min{δ t,rk}

15: end if

16: else if qk 6= /0 then

17: ck← removeFirst(qk)

18: rk← pckk

19: δ t←min{δ t,rk}

20: end if

21: end for

22: until δ t = ∞

23: return Cmax

solving the longest path problem, we have created an algo-

rithm that simulates the flowshop, hence finding the max-

imum completion time of jobs. For the overview of the

algorithm see Algorithm 1.

The design of the algorithm is fairly simple. Let ci
k ∈ J∪

{ /0} be the job processed on machine k in iteration i, ri
k be

the remaining time of processing this job on machine k in

iteration i, and qi
k ⊂ J∪{ /0} be the job queue at machine k

in iteration i. The makespan can be calculated from the

following formula:

Cmax(π) = ∑
i

δ t i, (5)

where δ t i is the time step by which we increase the

makespan in iteration i:

δ t i = min
k=1, 2,...,m

ri
k. (6)

The remaining time of processing on machine k in iteration

i+ 1 is calculated as follows:

ri+1
k =

ri
k− δ t i if ri

k > 0

p
ci+1

k
k

if ri
k = 0∧qi

k 6= { /0}

0 otherwise

, (7)

where δ t0 = 0,r0
k = 0, c0

k = { /0},k = 1,2, . . . ,m.

The job processed on machine k in iteration i+ 1 is found

by:

ci+1
k =

ci
k if ri

k > 0∧ ri
k− δ t i > 0

qi
k (1) if ri

k = 0∧qi
k 6= { /0}

{ /0} otherwise

, (8)

where qi
k (1) is the first element in the job queue, k =

1,2, . . . ,m.

The queue at machine k in iteration i + 1 is calculated as

follows:

qi+1
k =

qi
k∪
{

ci
k−1

}

if ri
k−1 > 0∧ ri

k−1− δ t i = 0

qi
k−{q

i
k (1)} if ri

k = 0∧qi
k 6= { /0}

qi
k otherwise

,

(9)

where q0
1 = π ,q0

k+1 = { /0},k = 1,2, . . . ,m−1.

3. Simulated Annealing

The Simulated Annealing (SA) was first introduced by

Kirkpatrick [14], while Černý [15] pointed out the anal-

ogy between the annealing process of solids and solving

combinatorial problems. Researchers have been studying

the application of the SA algorithm in various fields of

93

Jarosław Hurkała and Adam Hurkała

optimization problems, but more importantly, it was shown

that SA can be applied to sequencing problems [16].

The process of Simulated Annealing can be described as

follows. First, an initial solution must be specified as a start-

ing point. Then, repeatedly, a candidate solution is ran-

domly chosen from the neighborhood of the current solu-

tion. If the newly generated solution is better than the cur-

rent one, it is accepted and becomes the new current so-

lution. Otherwise, it still has a chance to be accepted

with, so called, acceptance probability. This probability

is determined by the difference between objective func-

tion of the current and the candidate solution, and depends

on a control parameter, called temperature, taken from

the thermodynamics. After a number of iterations the tem-

perature is decreased and the process continues as described

above. The annealing process is stopped either after a max-

imum number of iterations or when a minimum temperature

is reached. The best solution that is found during the pro-

cess is considered a final. For the algorithm overview see

Algorithm 2.

Algorithm 2 Simulated Annealing

Require: Initial schedule π0

1: π∗← π0

2: for i from 1 to N do

3: for t from 1 to Ntemp do

4: π ← perturbate(π0)

5: δ ←Cmax(π)−Cmax(π0)

6: if δ < 0 or e−δ/kτ > random(0,1) then

7: π0← π

8: end if

9: if Cmax(π) < Cmax(π
∗) then

10: π∗← π

11: end if

12: end for

13: τ ← τ ∗α

14: end for

15: return π∗

In order to solve the flowshop problem with the SA algo-

rithm, the annealing process needs to be adapted to this

particular problem and values of several parameters must

be determined.

The main step of the SA is the procedure of generating

a candidate solution from the neighborhood of the current

one, which is often called a perturbation scheme or transi-

tion operation. Although there are many ways to accom-

plish this task, we have examined the three most popular

techniques:

• Interchanging two adjacent jobs.

• Interchanging two jobs.

• Moving a single job.

The key element of SA is to define the temperature de-

crease schedule, also called the cooling scheme. The main

issue at this point is to determine values for the following

parameters:

– initial temperature,

– function of temperature decrease in consecutive iter-

ations,

– the number of iterations at each temperature (Metro-

polis equilibrium),

– minimum temperature at which the algorithm termi-

nates or alternatively the maximum number of itera-

tions as the stopping criterion.

The cooling process is usually simulated by decreasing the

temperature by a factor, called the reduce factor. Let τ

be the temperature and α be the reduce factor. Then the

annealing scheme can be represented as the following re-

cursive function:

τ i+1 = α ∗ τ i, (10)

where i is the number of current iteration in which the

cooling schedule takes place.

Another building block of SA that has to be customized

is the acceptance probability function, which determines

whether to accept or reject candidate solution that is

worse than the current one. The most widely used func-

tion is:

p(δ ,τ) = e−δ/kτ , (11)

where δ is the difference between the objective function of

the candidate (π) and the current solution (π0):

δ = Cmax(π)−Cmax(π0), (12)

and k is the Boltzmann constant found by:

k =
δ 0

log
p0

τ0

, (13)

where δ 0 is an estimated minimal difference between ob-

jective function of two solutions, p0 is the initial value

of the acceptance probability and τ0 is the initial temper-

ature. Notice that we use decimal logarithm rather than

natural, which is most widely seen in the literature. More-

over, rather than average, we use estimation of the minimal

difference between solutions.

After thorough analysis of the SA application for the flow-

shop problem, we have arrived at the following initial

values of all the aforementioned parameters that should

be used to achieve the best results and make the most of

the Simulated Annealing algorithm – see Table 1.

94

Effective Design of the Simulated Annealing Algorithm for the Flowshop Problem with Minimum Makespan Criterion

Table 1

Initial values of Simulated Annealing parameters

Param. Description Value

α Reduce factor 1−
7

N

τ0 Initial temperature 0.99

δ 0 Estimated minimal difference
1

between solutions

p0 Initial value of acceptance
1

probability

k Boltzmann constant 1/ log

(

1

0.99

)

Ntemp
Number of iterations

10
at each temperature

N Number of SA iterations 1000000

4. Heuristic Algorithms

4.1. CDS Algorithm

The flowshop problem with two machines and the

makespan criterion (n/2/F/Cmax) can be solved by apply-

ing the famous Johnson’s optimal rule, saying that job i

precedes job j in an optimal sequence if:

min
{

pi1, p j2

}

≤min
{

pi2, p j1

}

. (14)

The Johnson’s algorithm implementing this rule can be de-

scribed in the following four steps:

1. Let U =
{

j : p j1 < p j2

}

and V =
{

j : p j1 ≥ p j2

}

.

2. Sort U in non-descending order by p j1.

3. Sort V in non-ascending order by p j2.

4. Set π∗ = U ∪V is the optimal job sequence.

Many researchers have tried to extend the rule for larger

problems with more machines. An algorithm named CDS

was proposed in [2] for the flowshop problem with

makespan performance criterion, that effectively solves in-

stances with any number of machines.

The algorithm is based on a heuristic application of the

Johnson’s rule to a two-machine sub-problem, obtained by

merging machines to artificial machine centers.

The CDS algorithm creates m − 1 two-machine sub-

problems:

p∗j1 =
i

∑
k=1

p jk, (15)

p∗j2 =
m

∑
k=i+1

p jk, (16)

where i is the number of sub-problem, j = 1,2, . . . ,n.

Each sub-problem is solved with the Johnson’s algorithm

and one of the obtained m− 1 sequences with the low-

est makespan becomes the final solution of the main

m-machine problem.

4.2. NEH Algorithm

Another approach for solving the flowshop problem is to

construct the schedule by adding one job at a time to the

sequence of jobs instead of calculating the makespan for

the entire sequence of jobs at once. An excellent example

of such algorithm is the NEH heuristic proposed in [3],

which is considered the best constructive heuristic for the

makespan flowshop problem.

This heuristic method is based on the assumption that

in the process of constructing the schedule a job with

higher value of total processing time on all machines should

have higher priority and be taken into consideration before

other jobs.

The algorithm consists of the following four steps:

1. Sort jobs in non-ascending order of total processing

time on all machines.

2. Take the first of the remaining (unscheduled) jobs.

3. Find a position of the job in the partial sequence

that minimizes makespan of the extended by this job

partial sequence.

4. If there are more unscheduled jobs, go to Step 2.

At each iteration there are k possible places, at which a job

can be inserted, where k is the iteration number. At the

last iteration, the best partial sequence extended by the re-

maining job is the final schedule and the solution of the

makespan problem.

5. Results

The design of the Simulated Annealing algorithm has been

tested on a subset of the collection of flowshop problems

developed by Taillard [17]. We have selected following dif-

ferent problem sizes: n = {20,50,100}×m = {5,10,20},
and chosen first 4 instances of each of the 9 problem

classes, which gave us a total of 36 instances. Each in-

stance was solved 20 times and the best result was taken

as final.

The difference between the algorithms was calculated by

the following formula:

η(x,y) =
x− y

y
. (17)

For the small-size problems (instances with 20 jobs or

5 machines) the SA algorithm is beyond compare. For

large-size problems (50×10, 50×20, 100×10, 100×20) it

outperforms the CDS algorithm on average by 13% and

95

Jarosław Hurkała and Adam Hurkała

is better than the NEH algorithm by more than 4% (see

Tables 2–4 for more detailed results).

Table 2

Average results of the CDS algorithm

η(CDS,T) m
Avg

[%] 5 10 20

20 7.48 14.96 11.73 11.39

n 50 6.65 14.78 15.92 12.45

100 5.22 10.21 14.44 9.96

Total average: 11.27

Table 3

Average results of the NEH algorithm

η(NEH,T) m
Avg

[%] 5 10 20

20 2.69 4.75 3.19 3.54

n 50 0.62 5.04 6.59 4.09

100 0.76 2.11 5.36 2.74

Total average: 3.46

Table 4

Average results of the SA algorithm

η(SA,T) m
Avg

[%] 5 10 20

20 0.00 0.00 0.00 0.00

n 50 0.00 0.57 0.83 0.47

100 0.02 0.16 0.99 0.39

Total average: 0.29

While the SA algorithm is superior in terms of solution

quality, it requires more time to compute the results than

heuristic algorithms like CDS or NEH. Nevertheless, on

a 3.1 GHz CPU it has found all the solutions in a reasonable

time – ranging from less than 30 s for 20×5 instances to

about 6 minutes for 100×20 instances (see Table 5).

Table 5

Average solution times of the SA algorithm

SATime[s]
m

5 10 20

20 28 65 128

n 50 43 105 208

100 72 178 356

In order of brevity, we present the results obtained only

with ‘move a single job’ permutation scheme, since it gen-

erally finds better solutions than the other two presented

techniques. This can be explained by the fact that this

particular scheme generates the largest neighborhood of

the current solution and it requires only O(n) operations

to move from the current to any permutation (transition

path length). The main reason this technique outperforms

the other two, is that, it changes position not only of a pair

jobs, but can also change position of every job in the entire

sequence in just one execution. See Table 6 for comparison

of permutation schemes.

Table 6

Comparison of the perturbation schemes

Permutation
Neighbor- Transition Number

scheme
hood path of positions

size length changed

Interchanging n−1 O(n2) 2

two adjacent

jobs

Interchanging n(n−1)

2
O(n) 2

two jobs

Moving
(n−1)2 O(n) O(n)

a single job

The Simulated Annealing algorithm has found 21 optimal

solutions: 11 for 5-machine instances, 6 for 10-machine

instances and 4 for 20-machine instances. The best result

of the NEH algorithm is the solution of instance #12 – only

0.18% worse than optimal, while for the CDS algorithm it

is 0.66% (instance #2). On the other hand, in the worst

case of the SA algorithm, the makespan of instance #17

is only 1.14% higher than optimal, while for NEH it is

7.88% (instance #31) and for CDS it is 19.59% (instance

#14). See Table 7 for detailed results of all the flowshop

problem instances.

We have tested three types of starting conditions of the SA

optimization process:

• Initial permutation is chosen at random.

• Solution generated by the CDS algorithm is taken as

the initial permutation.

• Solution generated by the NEH algorithm is taken as

the initial permutation.

As the SA algorithm finds solutions equal or better than

both the CDS and the NEH algorithms approximately af-

ter half of the cycle or earlier, the initial permutation has

little impact on the final solution. This property, how-

ever, makes the proposed design of SA algorithm self-

sufficient.

6. Conclusions

We have presented an effective design of the Simulated

Annealing algorithm for the flowshop problem with min-

imum makespan criterion and have shown that it outper-

forms both the CDS and NEH heuristics in terms of so-

lution quality. Even though SA is not the fastest heuristic

96

Effective Design of the Simulated Annealing Algorithm for the Flowshop Problem with Minimum Makespan Criterion

Table 7

Detailed results of the Taillard flowshop problem instances

n×m
Results η(SA,ET) η(NEH,ET) η(CDS,ET) η(NEH,SA) η(CDS,SA)

Taillard SA NEH CDS [%] [%] [%] [%] [%]

1 20×5 1278 1278 1286 1334 0.00 0.63 4.38 0.63 4.38

2 20×5 1359 1359 1365 1368 0.00 0.44 0.66 0.44 0.66

3 20×5 1081 1081 1159 1253 0.00 7.22 15.91 7.22 15.91

4 20×5 1293 1293 1325 1409 0.00 2.47 8.97 2.47 8.97

5 50×5 2724 2724 2733 2934 0.00 0.33 7.71 0.33 7.71

6 50×5 2834 2834 2843 3020 0.00 0.32 6.56 0.32 6.56

7 50×5 2621 2621 2640 2856 0.00 0.72 8.97 0.72 8.97

8 50×5 2751 2751 2782 2843 0.00 1.13 3.34 1.13 3.34

9 100×5 5493 5493 5519 5901 0.00 0.47 7.43 0.47 7.43

10 100×5 5268 5268 5348 5466 0.00 1.52 3.76 1.52 3.76

11 100×5 5175 5175 5219 5378 0.00 0.85 3.92 0.85 3.92

12 100×5 5014 5018 5023 5303 0.08 0.18 5.76 0.10 5.68

13 20×10 1582 1582 1680 1771 0.00 6.19 11.95 6.19 11.95

14 20×10 1659 1659 1729 1984 0.00 4.22 19.59 4.22 19.59

15 20×10 1496 1496 1557 1735 0.00 4.08 15.98 4.08 15.98

16 20×10 1377 1377 1439 1547 0.00 4.50 12.35 4.50 12.35

17 50×10 2991 3025 3135 3386 1.14 4.81 13.21 3.64 11.93

18 50×10 2867 2887 3032 3306 0.70 5.76 15.31 5.02 14.51

19 50×10 2839 2852 2986 3243 0.46 5.18 14.23 4.70 13.71

20 50×10 3063 3063 3198 3565 0.00 4.41 16.39 4.41 16.39

21 100×10 5770 5770 5846 6255 0.00 1.32 8.41 1.32 8.41

22 100×10 5349 5352 5453 6004 0.06 1.94 12.25 1.89 12.18

23 100×10 5676 5679 5824 6155 0.05 2.61 8.44 2.55 8.38

24 100×10 5781 5812 5929 6461 0.54 2.56 11.76 2.01 11.17

25 20×20 2297 2297 2410 2587 0.00 4.92 12.63 4.92 12.63

26 20×20 2099 2099 2150 2351 0.00 2.43 12.01 2.43 12.01

27 20×20 2326 2326 2411 2565 0.00 3.65 10.28 3.65 10.28

28 20×20 2223 2223 2262 2490 0.00 1.75 12.01 1.75 12.01

29 50×20 3850 3893 4082 4424 1.12 6.03 14.91 4.85 13.64

30 50×20 3704 3722 3921 4260 0.49 5.86 15.01 5.35 14.45

31 50×20 3640 3666 3927 4204 0.71 7.88 15.49 7.12 14.68

32 50×20 3723 3760 3969 4403 0.99 6.61 18.26 5.56 17.10

33 100×20 6202 6271 6541 7263 1.11 5.47 17.11 4.31 15.82

34 100×20 6183 6239 6523 7064 0.91 5.50 14.25 4.55 13.22

35 100×20 6271 6338 6639 7193 1.07 5.87 14.70 4.75 13.49

36 100×20 6269 6323 6557 7002 0.86 4.59 11.69 3.70 10.74

algorithm, the computation time on modern computers is

acceptable. Furthermore, the design proposed in this paper

is similar to the general design and can be easily adapted

and used to solve other combinatorial problems (by just

changing the value of estimated minimal difference between

solutions).

References

[1] M. R. Garey, “The complexity of flowshop and jobshop scheduling”,

Math. Oper. Res., vol. 1, no. 2, pp. 117–129, 1976.

[2] H. G. Campbell, R. A. Dudek and M. L. Smith, “A heuristic algo-

rithm of the n-job, m-machine sequencing problem”, Manag. Sci.,

vol. 16, pp. 630–637, 1970.

97

Jarosław Hurkała and Adam Hurkała

[3] M. Nawaz, E. Enscore Jr, and I. Ham, “A heuristic algorithm for

the m-machine, n-job flowshop sequencing problem”, OMEGA Int.

J. Manag. Sci., vol. 11, pp. 91–95, 1983.

[4] F. A. Ogbu and D. K. Smith, “The application of the simulated an-

nealing algorithm to the solution of the n/m/Cmax flowshop prob-

lem”, Comput. Oper. Res., vol. 17, no. 3, pp. 243–253, 1990.

[5] J. Hurkała and A. Hurkała, “Effective design of the simulated an-

nealing algorithm for the flowshop problem with minimum makespan

criterion”, in 9th Int. Conf. Decision Support Telecomm. Inform. So-

ciety DSTIS 2011 , Warsaw, Poland, 2011.

[6] M. Wodecki and W. Bożejko, “Solving the flow shop problem by

parallel simulated annealing”, LNCS, vol. 2328, pp. 597–600, 2006.

[7] E. Taillard, “Some efficient heuristic methods for flow shop sequenc-

ing”, Eur. J. Oper. Res., vol. 47, pp. 65–74, 1990.

[8] J. Grabowski and J. Pempera, “New block properties for the per-

mutation flow-shop problem with application in TS”, J. Oper. Res.

Soc., vol. 52, pp. 210–220, 2001.

[9] E. Nowicki, “The permutation flow shop with buffers: a tabu search

approach”, Eur. J. Oper. Res., vol. 116, pp. 205–219, 1999.

[10] E. Nowicki and C. Smutnicki, “A fast tabu search algorithm for

the permutation flowshop problem”, Eur. J. Oper. Res., vol. 91,

pp. 160–175, 1996.

[11] C. R. Reeves, “A genetic algorithm for flowshop sequencing”. Com-

put. Oper. Res., vol. 22, pp. 5–13, 1995.

[12] C. R. Reeves and T. Yamada, “Genetic algorithms, path relink-

ing, and the flowshop sequencing problem”, Evol. Comput., vol. 6,

no. 1, pp. 230–234, 1998.

[13] S. R. Hejazi and S. Saghafian, “Flowshop-scheduling problems with

makespan criterion: a review”, Int. J. Prod. Res., vol. 43, no. 14,

pp. 2895–2929, 2005.

[14] S. Kirkpatrick, C. D. Gellat and M. P. Vecchi, “Optimization by

simulated annealing”, Science, vol. 220, pp. 671–680, 1983.

[15] V. Černý, “Thermodynamical approach to travelling salesman prob-

lem: An efficient simulation algorithm”. J. Optim. Theory Appl.,

vol. 45, pp. 41–51, 1985.

[16] C. Koulamas, S. R. Antony, and R. Jaen, “A survey of simulated

annealing applications to operations research problems”, Omega,

vol. 22, no. 1, pp. 41–56, 1994.

[17] E. Taillard, “Benchmarks for basic scheduling problems”, Eur. J.

Oper. Res., vol. 64, pp. 278–285, 1993.

Jarosław Hurkała received his

M.Sc. degree in Computer Sci-

ence with honors from the War-

saw University of Technology,

Poland, in 2010. Currently, he

is a Ph.D. student in the In-

stitute of Control and Compu-

tation Engineering at the War-

saw University of Technology.

His research area focuses on

scheduling problems, heuristic

algorithms, fairness and multicriteria optimization.

E-mail: j.hurkala@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

Adam Hurkała received his

M.Sc. degree in Computer Sci-

ence with honors from the War-

saw University of Technology,

Poland, in 2010. Currently, he is

a Ph.D. student in the Institute

of Control and Computation

Engineering at the Warsaw Uni-

versity of Technology. His re-

search area focuses on informa-

tion security and cryptography.

E-mail: a.hurkala@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

98

