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Abstract—In this paper a concept of method and its appli-

cation examining a dynamic of diffusion processes in net-

works is considered. Presented method was used as a core

framework for system CARE (Creative Application to Remedy

Epidemics).
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1. Introduction

Diffusion is a process, by which information, viruses, gos-

sips and any other behaviors spread over networks [1]–[5],

in particular, over social networks.

The standard approach is a simplified assumption that be-

haviors (information, viruses, gossips) spread in the envi-

ronment, which is modeled, using very simple construction

of Regular Graphs like GRID-based graph or similar, very

rarely Random Graphs. Standard approaches do not explain

the real dynamic of diffusion in real-world networks, in

particular:

– why even slightly infectious behavior (e.g., conta-

gious diseases) can spread over a network for a long

time;

– how to choose nodes to maximize or minimize dif-

fusion range (e.g., how to choose individuals to vac-

cinate, in order to minimize the epidemic’s range);

– what is the mechanism of arising secondary behav-

iors centres.

The drawbacks of the standards diffusion models is that

they do not take into account an underling real-world net-

works topology. Who (or what) is connected to whom

(what), seems to be a fundament question. Apparently, net-

works derived from data on real life cases (most often: net-

works growing spontaneously) are neither Regular Graphs

nor Random ones. As it turned out, real networks, which

have been intensively studied recently have some interest-

ing features. These features, which origins are nowadays

discovered, modeled [6]–[11] and examined [12]–[15] sig-

nificantly affect dynamics of the diffusion processes within

real-world networks. Three very interesting models of real-

world networks which have been introduced recently, e.g.,

Random Graphs, Small World and Scale Free, will be de-

scribed later in this paper.

We have to also remember that all kinds of behavior spread-

ing over the network have their unique properties, and we

should be able to model them. The notion of a state ma-

chine seems to be useful in this modeling situation. Us-

ing probabilistic finite-state machines [16], [17] we can

model a spreading of vast variety of behaviors. For ex-

ample, we are able to build models of diseases with any

states (e.g., susceptible, infected, carrier, immunized, dead,

etc.), and probabilities of transitions from one state to an-

other, resulting from social interactions (contacts). Again,

the underling contacts (social network topology) seem to

have a huge impact on the dynamic of diffusion processes,

what has been already mentioned.

2. Definitions and Notations

Let’s define network as follows:

Net(t)=
〈

G(t)=〈V (t),E(t)〉,{ fi(v,t)} i∈{1,...,NF}
v∈V (t)

,

{h j(e,t)} j∈{1,...,NH}
e∈E(t)

〉

,

where:

G(t) = 〈V (t),E(t)〉 – simple dynamic graph, V (t),E(t) –

sets of graph’s vertices and edges, E(t)⊂
{

{v,v′}:v,v′∈V(t)
}

(the dynamic [18] means that V (t) and E(t) can change over

time);

fi : V (t) →Vali – the i-th function describe on the graph’s

vertices, i = 1, . . .NF , (NF – number of vertex’s functions),

Vali – is a set of fi values;

f j : E(t)→Val j – the j-th function describe on the graph’s

edges, j = 1, . . .NH, (NH – number of edge’s functions),

Val j – is a set of h j values.

We assume that values of function’s ( fi(·) and h j(·) can

also change over time.

In this paper we were particularly interested in relation-

ship between the structure of real-world networks and the

dynamic of any behaviors on them. Due to this fact, we

focused on the characteristics of the graph G(t), while func-

tions on the graph’s vertices (nodes) and edges (links) were

omitted.

Simple dynamic graphs are very often represented by a ma-

trix A(t), called adjacency matrix, which is a V (t)×V (t)
symmetric matrix. The element ai j(t) of adjacency matrix

equals 1 if there is an edge between vertices i and j, and 0

otherwise.

The first-neighborhood of a vertex vi denote as Γ1
i (t) is

defined as set of vertices immediately connected with vi,

i.e.,

Γ1

i (t) =
{

v j ∈V (t) : {vi,v j} ∈ E(t)
}

.

The degree ki(t) of a vertex vi is the number of vertices in

the first-neighborhood of a vertex vi, i.e.,

ki(t) =
∣

∣Γ1

i (t)
∣

∣ .
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The path starting in vertex vi and ending in vertex v j is a se-

quence of 〈v0,v1, . . . ,vk−1,vk〉, where {vi−1,vi} ∈ E(t)∀ i=
1, . . . ,k. The length of a path is defined as the number of

links in it. The shortest path length starting in vertex vi

and ending in vertex v j is denoted as di j(t).
Now we can define diameter D as the longest shortest

path, i.e.,

D(t) = max
vi,v j∈V (t)

{

di j(t)
}

.

Let’s denote the number of existing edges between the first-

neighborhood of a vertex vi as Ni(t), i.e.,

Ni(t) =
∣

∣{vl,vk} : vl,vk ∈ Γ1

i (t)∧{vl,vk} ∈ E(t)
∣

∣ .

Now, we can define a very important concept, called as

the local clustering coefficient Ci for a vertex vi, which

is then be given by the proportion of Ni(t) and divided

by the number of edges that could possible exist between

first-neighborhood of a vertex vi (every neighbor of vi is

connected to every other neighbor of vi). Formally:

Ci(t) =







2Ni(t)

ki(t)
(

ki(t)−1
) ,

∣

∣Γ1
i (t)

∣

∣ > 1

0 ,
∣

∣Γ1

i (t)
∣

∣ ≤ 1 .

The clustering coefficient C for the whole network is define

as the average of Ci overall vi ∈V , i.e.,

C(t) =
1

|V (t)| ∑
vi∈V (t)

Ci(t) .

The degree distribution P(k,t) of a network is defined as the

fraction of nodes in the network with degree k. Formally:

P(k,t) =
|Vk(t)|

|V (t)|
,

where: |Vk(t)| is the number of nodes with degree k; |V(t)| is

the total number of nodes.

2.1. Models of Real-World Networks

Most of the real-world networks are found to have: small

average path length, relatively small diameter, high cluster-

ing coefficient, and degree distributions that approximately

follow a power law, i.e., P(k,t)∼ k−γ , where γ is a constant.

These features, which origins are nowadays discovered in-

deed affect dynamic of the diffusion processes within net-

works. Understanding the balance of order and chaos in

real-world networks is one of the goals of the current re-

search on so called complex networks.

Identifying and measuring properties of a real-world net-

works is a first step towards understanding their topology.

The next step is to develop a mathematical model, which

typically takes a form of an algorithm for generating net-

works with the same statistical properties.

For a long time real networks without visible or known

rule of organization were described using Erdös and Rényi

model of Random Graphs [8], [9]. Assuming equal proba-

bility and independent random connections made between

any pair of vertices in initially not connected graph, they

proposed a model suffering rather unrealistic topology.

Their model has now only a limited usage for modeling

real-world network.

Not long ago Watts and Strogatz proposed Small World

model [11] of real-world networks as a result of simple

observation that real networks have topology somewhere

between regular and random one. They began with Regular

Graph, such as a Ring, and then “rewire” some of the edges

to introduce randomness. If all edges are rewired a Random

Graph appears. The idea of this method was depicted in

Fig. 1.

Fig. 1. The idea of Small World network model.

The process of rewiring affects not only the average path

length but also clustering coefficient. Both of them de-

crease as probability of rewiring increases. The interest-

ing property of this procedure is that for a wide range of

rewiring probabilities the average path length is already low,

while clustering coefficient remains high. This correlation

is typical for real-world networks.

Barabási and Albert introduced yet another model [6] of

real-world networks so called Scala Free network as a result

of two main assumptions: constant growth and preferential

attachment. They showed why the distribution of nodes

degree is described by a power law. The process of network

generation is quite simple. The network grows gradually,

and when a new node is added, it creates links (edges)

to the existing nodes with probability proportional to their

connectivity. In consequence nodes with very high degree

appears (so called hubs or super-spreaders), which are very

important for communication in networks.

Fig. 2. The role of hubs in Scale Free network.

There are many modification of this basic procedure for

generating networks. Now it is considered that Scale Free

models of real-world networks are the best ones (Fig. 2).
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2.2. Measures of Nodes Importance

In Fig. 3, there is an example of real social network. Nodes

represent individuals and link social interactions.

Fig. 3. An example of real social network.

The most basic and frequently asked question is how to

identify the most important nodes. The answer can help

maximize or, on the other hand, minimize diffusion dy-

namic of any behaviors within networks. We decided to

use the so called centrality measures to assess nodes im-

portance. No single measure of centre is suited for the

application. Sever noteworthy measures are: degree cen-

trality, radius centrality, closeness centrality, betweenness

centrality, eigenvector centrality. Thanks to these measures

we can show, for example, how to disintegrate the net-

work with minimum number of steps and in consequence

minimize diffusion area, in particular how to optimize

vaccination strategies [19].

Degree centrality. The degree centrality (Fig. 4) gives the

highest score of influence to the vertex with the largest num-

Fig. 4. Importance of nodes according degree centrality.

ber of first-neighbors. It is traditionally defined analogous

to the degree of a vertex, normalized over the maximum

number of neighbors this vertex could have:

dci(t) =
ki(t)

|V (t)|−1
.

Radius centrality. It chooses the vertex with the smallest

value of the longest shortest path starting in each vertex

(Fig. 5). So, if we need to find the most influential node

Fig. 5. Importance of nodes according radius centrality.

for the most remote nodes, it is quite natural and easy to

use this measure:

rci(t) =
1

max
v j∈V (t)

di j(t)
.

Closeness centrality. The closeness centrality (Fig. 6)

focuses on the idea of communications between different

Fig. 6. Importance of nodes according closeness centrality.

vertices and the vertex, which is “closer” to all vertices

and gets the highest score:

cci(t) =
|v(t)|−1

∑
v j∈V (t)

di j(t)
.

Betweenness centrality. It can be defined as the percent of

the shortest paths connecting two vertices that pass through

the considered vertex (Fig. 7). If pl,i,k(t) is the set of all

Fig. 7. Importance of nodes according betweeness centrality.

shortest paths between vertices vl and vk passing through

vertex vi and pl,k(t) is the set of all shortest paths between

vertices vl and vk then:

bci(t) =

∑
l<k

pl,i,k(t)

pl,k(t)
(

|V (t)|−2
)(

|V (t)|−1
) .
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Eigenvector centrality. While degree centrality gives

a simple count of the number of connection, a vertex has

eigenvector centrality acknowledges that not all connections

Fig. 8. Importance of nodes according eigenvector centrality.

are equal (Fig. 8). If we denote the centrality of vertex vi

by eci(t) then we can allow for this effect by making eci(t)
proportional to the centralities of the vi’s first-neighbors,

eci(t) =
1

λ

|V (t)|

∑
j=1

ai j(t)ec j(t) .

Using matrix notation, we have as follows:

−−→
ec(t) =

1

λ
A(t)

−−→
ec(t) .

So we have A(t)
−−→
ec(t)− λ I

−−→
ec(t) = 0 and the λ value we

can calculate using det
(

A(t)−λ I
)

= 0. Hence,
−−→
ec(t) is an

eigenvector of adjacency matrix with the largest value of

eigenvalue λ .

2.3. Model of Diffusion

All in all, who is connected to whom seems to be cru-

cial for diffusion in networks, but all kinds of behaviors

have their unique properties. In consequence, we defined

the model of diffusion in network as a vector, with three

elements:

Diff (t) = 〈Net(t),PSMx=1,2,...,N ,Gen(v,t)〉 ,

where:

Net(t) – network model of system constitutes diffusion en-

vironment;

PSMx – probabilistic finite-state machine model of consid-

ered behavior (information, virus, gossip and so on);

Gen : V (t) → SIG – specific function for simulation

needs (generator of signals), which assigns for each ver-

tex in each simulation step a set of signals as a result of

vertices’ first-neighborhood and theirs states. These signals

are received and processed by PSM on each vertex.

Thus, both concepts, i.e., probabilistic state machine mod-

els and real-world networks topology are highly pertaining

to the presented idea subject and objectives. The aim is to

uncover the diffusion mechanisms hidden in the structure

of networks.

3. Simulation Environment

Our simulation environment is based on well known Gephi

platform [20] for interactive visualization and networks

exploration. The simulation environment has been imple-

mented as a set of plugins. This kind of extensions is

feasible thanks to the Gephi architecture based on MVC

(Model-View-Controller) and Service Locator patterns.

MVC pattern isolates algorithms and data from GUI

(Fig. 9), permitting independent development, testing and

maintenance of each one. Service Locator is an implemen-

tation of the IoC (Inversion of Control) pattern. It is a tech-

nique that allows removing dependencies from the code.

Fig. 9. GUI of simulation environment.

We added to Gephi new functionalities, such as: complex

networks generators, scenarios for centrality measures uti-

lization in simulation of diffusion, and finally the ability to

simulate diffusion of any behaviors in any networks.

Gephi architecture allows us to develop the code according

to SOLID principles (Single responsibility, Open-closed,

Liskov substitution, Interface segregation, Dependency in-

version) that is five basic principles of object-oriented pro-

gramming and design. It makes the code very extensible

and scalable.

4. Simple Case Study

Let us now analyze a very simple case study of the diffusion

process from the field of epidemiology. One of the most

extensively studied epidemic models is SIS (Susceptible-

Infected-Susceptible). In each time step, the susceptible

individuals are infected by each infected neighbors with

probability beta and the recovering rate of infected indi-

viduals to susceptible ones is alfa. Parameter lambda is

known in literature as speed of spreading or virulence of

the disease and is define as:

lambda = beta�alfa .

Figure 10 representing PSM1 diagram of SIS model of

a disease prepared in our simulation environment with

lambda = 0.5�0.1 = 5.
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Fig. 10. SIS model of a disease.

The central question then becomes: how network topology

may affect diffusion process. We focus on the SIS model

of a disease spreading in networks with different topology.

We use three networks: Scale Free (SF), Random Graphs

(RG) and Regular Graphs that is exactly GRID-base one

(very popular graph used in cellular automata). All net-

Fig. 11. SIS model of a disease with lambda = 5 in networks

with different topology.

works consist of 10 000 nodes and about 20 000 edges.

Average degree of nodes are similar and close to 4.

At time 0 small number of nodes (1%) is chosen randomly

and infected. Then, the simulation of diffusion process is

started. Each simulation was repeated 1000 times. Dy-

namic of disease diffusion in different networks as a func-

tion of lambda is presented in Figs. 11–15.

We can see that if lambda is high (e.g., lambda = 5),

topology of networks have small impact on diffusion dy-

namic. According to Fig. 11, the number of infected indi-

viduals rose sharply and flattened out at a very high level

(about 90%).

When lambda parameter decreases diffusion dynamic are

more and more dependent on network topology. For

lambda = 0.5 (Fig. 12) diffusion dynamic in GRID-based

graph is significantly different from diffusion in Scale Free

and Random Graphs. First of all, the number of infected

Fig. 12. SIS model of a disease with lambda = 0.5 in networks

with different topology.
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individuals rose slower, secondly flattened out at a lower

level (about 30% by contrast with 40% for Scale Free and

Random Graphs).

Fig. 13. SIS model of a disease with lambda = 0.25 in networks

with different topology.

It turn out that for lambda = 0.25 (Fig. 13) the virus of

infection disease disappear from population modeled as

GRID-base graph (even though 10% individuals were in-

fected at start time).

For lambda = 0.2 (Fig. 14) the virus of infection dis-

eases also disappear from population modeled as Ran-

dom Graphs (even though 10% individuals were infected

at start time).

For lambda = 0.15 (Fig. 15) the virus is able to spread

only in Scale Free network. It is an answer to the ques-

tion: Why even slightly contagious diseases can plague

Fig. 14. SIS model of a disease with lambda = 0.2 in networks

with different topology.

Fig. 15. SIS model of a disease with lambda = 0.15 in network

with different topology.

human population over a long time without being epidemic.

Not long ago it was also analytically proved that in Scale

Free network there is no epidemic threshold for lambda

value [5].

5. System CARE

As practical utilization of our research system called CARE

(Creative Application to Remedy Epidemics) was devel-

oped [21]–[23]. CARE is Decision Support System, which

help decision makers to fight with epidemic. CARE con-
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tains five modules: Disease Modeling, Social Network Mod-

eling, Simulation, Vaccination and Questionnaires.

In the Disease Modeling module, using probabilistic finite-

state machine approach, we can model any kind of disease

based on knowledge from the field of epidemiology. We

allow to build the models of diseases with any states and

transitions in the editor we have proposed.

Fig. 16. CARE user interface.

In Social Network Modeling module we can model and

generate social networks using complex network theory.

Using proposed generators we obtain synthetic networks

but with the same statistical properties as real-world social

networks. The algorithms generate networks that are Regu-

lar Graphs, Random Graphs, Small World networks, Scale

Free networks or modifications thereof.

Using Simulation module we can visualize and simulate

how the epidemic will spread in a given population. The

system proposes two ways of information visualization.

The first way is called “Layout” and helps user to manipu-

late networks and to set up some parameters of simulation.

The alternative way is “Geo-contextual” one which allows

to visualize networks on the world map. The system es-

timates the expected outcomes of different simulation sce-

narios and generate detailed reports. The user can assess

the results and the effectiveness of the chosen vaccination

strategy.

Based on the centrality measures Vaccination module helps

the user to identify so called “super-spreaders” and to come

up with the most efficient vaccination strategy [19]. The

identification and then vaccination or isolation of the most

important individuals of a given network helps decision

makers to reduce the consequence of epidemics, or even

stop them early in the game.

The crucial step in fighting against a disease is to get in-

formation about the social network subject to that disease.

Questionnaires module helps building special polls based

on sociological knowledge to help discover network topol-

ogy. Polls designed in this way are deployed on mobile

devices to gather data about social interaction.

6. Conclusion

In this paper we presented the model of diffusion in net-

works and the simulation environment based on Gephi

platform. We would like to admit that we are a little bit

closer to understand diffusion in networks. The solutions

presented in the paper have practical implementation as

a system to fight with infection diseases called CARE. Now

CARE is a subsystem of monitoring, early warning and

forecasting system SARNA, which was build at MUT and

was put into practice in the Government Safety Centre in

Poland [24]. It is worth to mentioned that CARE has its

counterpart to fight with malwares in the Internet called

VIRUS [25].
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