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Abstract—The second is currently defined by the microwave

transition in cesium atoms. Optical clocks offer the prospects

of stabilities and reproducibilities that exceed those of cesium.

This paper reviews the progress in frequency standards based

on optical transitions, recommended by International Com-

mittee for Weights and Measures, as a secondary representa-

tion of the second. The operation of these standards is briefly

described and factors affecting stability and accuracy of these

and some new optical clocks are discussed.
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1. Introduction

The best realization of the SI second today is served by

cesium fountain primary frequency standards. The fre-

quency accuracy of atomic time scale TAI realized by these

standards is less than 10
−15 [1]–[3].

Commercial cesium clocks installed in time laboratories

realize the second with accuracy and long term stability

of 10
−14. In laboratories, the active hydrogen masers are

also installed, with short term instability better then 10
−15.

Commercial cesium and hydrogen masers standards con-

tribute to the reliability and frequency stability of the

atomic time scale, but they do not contribute to the re-

alization of the second.

Over the past decade metrologists at various time and fre-

quency standards laboratories have investigate the so-called

forbidden optical transitions in cold trapped atoms and sin-

gle ions. As clock transitions they have two major advan-

tages: their frequencies are five orders of magnitude higher

than the cesium frequency and natural linewidths are in

the region of 1 Hz. This leads to high quality factors of

these lines. However, the observed linewidths are larger,

in the range up to few hundred Hz. Because the instabil-

ity of optical clock is inversely proportional to the quality

factor of the observed spectral line, it could be possible to

achieve the short term stability of a few orders of magni-

tude better, assuming the number of atoms and transition

interrogation time is the same.

Optical frequencies can be measured precisely by the fem-

tosecond comb [4] and compared to cesium frequency with

high accuracy.

Optical clocks offer the prospects of stabilities and repro-

ducibilities that exceeds those of cesium. Today some opti-

cal clocks, based on 88Sr+, 199Hg+, 171Yb+, may be used

as a secondary representation of the second [5], [6]. Re-

cently, two optical clocks, based on 27Al+ ions and neutral
87Sr atoms, demonstrated systematic uncertainties which

significantly exceed the current best evaluations of cesium

primary standards. The progress in optical clocks is so

rapid that in the near future the redefinition of the second

will be most probably required.

2. Requirements for Optical Clock

Transition

The main requirements for optical clock transition are a nar-

row natural line (linewidth less than 1 Hz) and the ability

of their observation with the highest possible resolution.

Transition frequency should also be unaffected by external

electric and magnetic fields.

The clock transitions observed in number of laboratories

worldwide are the weak, forbidden optical transitions in

a single cold ion or cold atoms cloud.

In 2006 the International Committee for Weights and Mea-

sures (CIPM) recommended four optical transitions, which

may be used as secondary representation of the second

(Table 1) [5].

Table 1

Recommended optical clock transitions (2006)

Atom/
ion

Transition
Frequency of transition/

uncertainty

87Sr 5s2 1S0 −5s5p 3P0 429 228 004 229 877 Hz/

1.5 ·10
−14

88Sr+ 5s 2S1/2 −4d 2D5/2 444 779 044 095 484 Hz/

7 ·10
−15

171Yb+
6s 2S1/2(F = 0)− 688 358 979 309 308 Hz/

5d 2D3/2(F = 2) 9 ·10
−15

191Hg+
5d10

6s 2S1/2(F = 0)− 1 064 721 609 899 145 Hz/

5d9
6s2 2D5/2(F = 2) 3 ·10

−15

The CIPM has established the Working Group to review

and discuss the uncertainty budget for possible optical can-

didates. It is required, that the selected frequency must

have evaluated and documented uncertainty to the same

level as it is required for primary standards contributing to

international atomic time. In addition it is required, that

111



Karol Radecki

this uncertainty should be not worse than 10 times value

that is for the best primary frequency standard.

Table 1 gives the values of recommended by CPIM 2006

unperturbed ground-state hyperfine the frequency tran-

sitions and estimated relative standard uncertainties. At

present, due to progress in the optical clocks and the mea-

surements systems, these parameters are evaluated more

accurately.

The instability of the frequency standard that is operated

in the interrogation cycles of duration T can be written

as [7], [8]:

σy(τ) ≈
C

SNR ·Q

√

T

Nτ
, (1)

where: C is the constant that depends on the interrogation

scheme, Q is the resonance quality factor Q = f0/∆ f , ∆ f is

the linewidth of resonance line centered at frequency f0,

SNR is signal to noise ratio (SNR≈ 1 if limited by quantum

projection noise), T is the interrogation time (it should not

be significantly larger than 1/∆ f because of the stability

degradation), N is the total number of atoms/ions.

If we assume quantum limited operation of the 199Hg+

clock, ∆ f = 10 Hz, N = 1 ion and Rabi excitation pulse

of T = 100 ms, then the expected instability is σy(τ) ≈

3 · 10
−15τ−1/2. Similarly for the 87Sr optical lattice clock

and N = 10
4 atoms, the instability is about σy(τ) ≈

7 ·10
−17τ−1/2. For comparison the instability of 133Cs

fountain clock with ∆ f = 1 Hz, T = 1 s and N = 10
6 atoms

is expected to be σy(τ) ≈ 5 ·10
−14τ−1/2.

3. Look into Possible Optical Time and

Frequency Standards

The main requirement for optical frequency standard is the

need for highly stable laser which is disciplined by the clock

transition in the trapped cold ion or neutral atoms. This

is the so-called forbidden transition with natural linewidth

of 1 Hz or less. The wideband femtosecond comb [4] is

applied for precise comparison of optical frequency of the

resonance line with cesium microwave frequency.

Ion or atomic trap works in cycles. The measurement cycle

comprises laser cooling, state preparation, excitation of the

clock transition and detection. Clock transitions are excited

in a weak external magnetic field using Rabi or Ramsey

pulse technique.

3.1. Optical Clocks Based on Single Ions

Recommended by CIPM 2006 clock transitions are: the

5s 2S1/2 ↔ 4d 2D5/2 in 88Sr+, the 5d10
6s 2S1/2(F = 0,

mF = 0) ↔ 5d9
6s2 2D5/2(F = 2,mF = 0) in 199Hg+ and

the 6s 2S1/2(F = 0, mF = 0) ↔ 5d 2D3/2(F = 2, mF = 0)

in 171Yb+. There are quadrupole transitions with natural

linewidths of 0.4 Hz, 1.1 Hz and 3.1 Hz, respectively.

Ions are confined in RF traps and laser cooled to the so-

called Lamb-Dicke limit. This greatly reduces the Doppler

broadening and frequency shift associated with ions motion

relative to the excitation clock radiation.

Partial energy levels schemes of 199Hg+ and 171Yb+, are

very similar (Figs. 1 and 2). Clock transitions are excited in

a small external magnetic field (∼ 1 µT) between mF = 0

sublevels with no first order Zeeman shift.

Fig. 1. Partial energy levels scheme of 199Hg+.

Fig. 2. Partial energy levels scheme of 171Yb+.

A single trapped 199Hg+ ion is laser cooling using λ =
194 nm. After cooling, ion is prepared in 2S1/2(F = 0,
mF = 0). To probe the transition, the λ = 282 nm laser

radiation is used. The clock transition is observed on

λ = 194 nm using quantum jumps technique. The line

shape is measured from the statistics of many quantum

jumps during discrete laser frequency sweeping across

the clock transition. The measured linewidth of 6.5 Hz

has been demonstrated with Rabi excitation pulse 120 ms

long [9], [10].

Frequency instability of 5 ·10
−15 at τ = 1 s was measured.

In comparison with the 27Al+ standard, the systematic frac-

tional uncertainty of Hg+ standard was estimated to be less

than 3 · 10
−17 [11]. The systematic uncertainty through

comparison with Cs NIST-F1 frequency standard is esti-

mated at 7 · 10
−16 [12]. Optical cryogenic clock based
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on 199Hg+ are now investigated at National Institute of

Standard and Technology (NIST), USA.

In the 171Yb+ clock, the λ = 369 nm laser radiation with

repumper sideband is used for cooling ion (Fig. 2). Af-

ter cooling, the ion is prepared in 2S1/2(F = 0, mF = 0).

To probe the transition, the λ = 436 nm laser radiation is

used. The clock transition is observed on λ = 369 nm using

quantum jumps technique.

The measured linewidth of 30 Hz has been demonstrated

with Rabi excitation pulse 30 ms long. The system-

atic uncertainty through comparison with PTB Cs stan-

dards is 1.5 · 10
−15 [13]. Optical clocks based on 171Yb+

are investigated at Physikalisch Technische Bundesanstalt,

Germany (PTB) and British National Physics Labora-

tory (NPL).

The partial energy levels scheme for the 88Sr+ ion is shown

in Fig. 3. The ion is laser cooled using radiations at both

λ = 422 nm and λ = 1092 nm.

Fig. 3. Partial energy levels scheme of 88Sr+.

In contrast to 199Hg+ and 171Yb+ ions the 88Sr+ ion has the

linear Zeeman sensitivity to magnetic external field. This

field split the clock transition into five pairs of Zeeman

components, symmetrically located about the line centre.

By probing one pair of components, cancellation of linear

shift is achieved. The clock operates by stabilizing the

interrogation laser to the mean transition frequency of the

pair mJ = ±1/2, ∆mJ = 0 clock transitions.

The resonance linewidth is 9 Hz with Rabi excitation pulse

100 ms long [14]. The fractional systematic uncertainty

through comparison with NPL primary Cs standard is es-

timated at 3 ·10
−15 [15].

Optical standards with 88Sr+ are investigated at the NPL

and National Research Council (NRC), Canada.

Recently, the optical clock transition 1S0 −
3 P0 (with natu-

ral linewidth of 8 mHz) has been observed in 27Al+ ion,

which cannot be directly laser cooled (λ = 167 nm). The

group at NIST [16] solved that problem by using sympa-

thetic laser cooling of 27Al+ through the 9Be+ ion medium.

Both ions are coupled together in the ion trap (by Coulomb

interaction) and can be cooled using λ = 313 nm radiation

in 9Be+. The 27Al+ ion is probed at λ = 267.4 nm clock

transition.

Fig. 4. Transfer of the 27Al+ clock state to detectable states in
9Be+ [16].

Clock transition information is sent to 9Be+ using quantum

logic technique (Fig. 4). Pulse sequence maps the 27Al+

clock state 1S0 to detectable states (2S1/2 F = 1) in logic
9Be+ ion through the ions motional state, using 1S0 −

3 P1

vibrational excitation λ = 267 nm and Raman transition

λ = 313 nm. Fluorescence photons on λ = 313 nm are

counted if 27Al+ ion is in 3P0 state. The clock operates by

stabilizing the interrogation laser to the mean transition fre-

quency of the pair mF = ±5/2, ∆mF = 0 clock transitions.

The systematic uncertainty through the comparison with
199Hg+ frequency standard is estimated at 2.3 ·10

−17 [11].

3.2. Optical Clocks Based on Neutral Atoms

Recommended clock transition 5s2 1S0 − 5s5p 3P0 (λ =
698 nm) in neutral 87Sr atoms has the natural linewidth

of 1 mHz. Partial energy levels scheme for 87Sr atom are

shown in Fig. 5.

Fig. 5. Partial energy levels scheme of 87Sr.

Neutral atoms are trapped and cooled in magneto optical

trap (MOT) operated on λ = 461 nm transition. Two re-

pumping lasers (λ = 707 nm and λ = 679 nm) are used to

prevent atom loss into the 3P2 state. In a second stage of

MOT, the atoms are cooled on λ = 689 nm transition to

a final temperature of 2.5 µK. After cooling the atoms are

loaded into optical lattice trap. Optical lattice greatly re-

duce the motional effects of atoms and allow for extension

interrogation times of probing laser [17].

The clock operates at two transitions 1S0(F = 9/2, mF =
±9/2) ↔

3P0(F = 9/2, mF = ±9/2) excited on λ =
698 nm and observed by measuring fluorescence on

113



Karol Radecki

λ = 461 nm. The clock centre frequency is found by taking

the average frequency of both transition peaks. The reso-

nance linewidth of 10 Hz with Rabi excitation pulse 80 ms

long was observed [18].

The fractional systematic uncertainty of 87Sr clock through

comparison with 40Ca NIST clock and NIST H-maser was

evaluated at 1.5 ·10
−16 [19], [20].

Optical standards with 87Sr are investigated at National In-

stitute of Standard and Technology (NIST) USA, Labora-

toire National de Métrologie et d’Essais (LNE-SYRTE),

Physikalisch Technische Bundesanstalt Germany (PTB),

National Metrology Institute of Japan (NMIJ) and Univer-

sity of Tokyo.

Optical clocks based on neutral 40Ca, 199Hg and 171Yb

atoms are also developed [21]–[24]. In contrast to 87Sr and
171Yb neutral mercury has low sensitivity to black body

radiation and has the potential to achieve uncertainty at

10
−18 level [25].

3.3. Stability and Accuracy

Recently evaluated (2007/2008) systematic uncertainties

and short term stabilities (τ = 100 s) for the optical clocks

recommended by CIPM are summarized in Table 2. In

the single ion frequency standards a significant uncertainty

can arise from uncancelled electric quadrupole shift and

quadratic Zeeman effect.

Table 2

Systematic uncertainties and stabilities

for various optical clocks

Optical 87Sr/ 88Sr+/ 171Yb+/ 191Hg+/ 27Al+/

clocks 40Ca 133Cs 171Yb+ 27Al+ 191Hg+

σy(τ) 6 ·10
−15

3 ·10
−15

10
−15

4 ·10
−16

4 ·10
−16

100 s

uB 1.5 ·10
−16

3 ·10
−15

1.5 ·10
−15

1.9 ·10
−17

2.3 ·10
−17

The 199Hg+ and 27Al+ clock frequencies were measured

relatively each other, and to the NIST-F1 cesium foun-

tain [11], [16]. In both ion standards inaccuracies at

2− 3 · 10
−17 were evaluated. The dominant uncertainties

in the 199Hg+ standard are due to the AC quadratic Zee-

man effect and the magnetic field orientation, but in the
27Al+ the dominant components are due to the micromo-

tion and secular 2nd order Doppler shifts. The black-body

radiation shift for the 199Hg+ standard is negligible because

the ion trap is operated at liquid helium temperature (4.2K).

However, the black-body radiation shift for the 27Al+ stan-

dard is unusually small at the normal operating temperature

(∼ 10
−17 at 300K).

Similarly low level uncertainty at 10
−16 level was eval-

uated for the 87Sr clock compared with 40Ca optical

clock [18], [20]. The dominant systematic uncertainty arose

from lattice laser field, the room temperature black body

radiation and interatomic collisions.

The 88Sr+ and 171Yb+ optical clocks have been evaluated

in comparison with Cs primary atomic clock. Experiments

which allow for the tests of frequency stability and eval-

uation of systematic frequency shifts by comparing two

identical clocks are currently underway.

Fig. 6. Short term stability diagrams for optical clocks.

Figure 6 shows short term stability graphs for cesium foun-

tains (FOM/FO2) and presently investigated optical clocks

as a function of averaging time. The combined short

term instability between FO2 and FOM (LNE-SYRTE) is

8.4 · 10
−14τ−1/2. Recently measured fractional frequency

instability of the 27Al+/199Hg+ optical frequency compar-

ison is σy(τ) ≈ 4 · 10
−15τ−1/2 for measurement duration

τ > 10 s. Under assumption that both clocks contribute

the same uncorrelated noise to the statistical measurement

uncertainty, the short term stability of 2.8 ·10
−15τ−1/2 for

each clock is derived [11].

4. Summary

Narrow optical transitions observed in many atoms and ions

are now promising candidates for next generation of high

performance frequency standards. Recent advances in op-

tical frequency measurements technique allow to achieve

very high accuracy of remote optical clocks comparison

over kilometer distances. Through this comparison, the un-

certainty of optical clocks placed in different laboratories

can be evaluated at the 10
−16 or at better level.

Optical clocks based on recommended by CIPM 2006 tran-

sitions are still in progress. To date optical standards based

on 199Hg+ ion, neutral 87Sr atoms and new one based

on 27Al+ ion, have demonstrated systematic uncertainties

which significantly exceed (10 times) the current best eval-

uations of cesium primary standards.

Presently it is not clear what kind of clocks will be the best:

single trapped ion or neutral atoms lattice clock [26]. Lat-

tice clocks combine the advantages of trapped single ions

and the large number of neutral atoms: long storage times

and the good signal-to-noise ratio. These clocks require
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precise and long term compensation of the large frequency

shift associated with the lattice laser field. Promising can-

didate for reaching the ultimate performance of lattice clock

is neutral mercury because of a low sensitivity to blackbody

radiation (20 times smaller than Sr).

It seems that the optical clocks with instabilities and inaccu-

racies at 10
−18 level are expected in the time and frequency

laboratories over the next several years. The progress in op-

tical clocks is so rapid that in the near future the redefinition

of the second will be most probably required.
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