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Abstract—Although simple wireless communication involving

nodes built of microcontrollers and radio devices from the

low end of the price spectrum is quite popular these days,

one seldom hears about serious wireless networks built from

such devices. Most of the commercially available nodes for

ad hoc networking (somewhat inappropriately called “motes”)

are in fact quite serious computers with megabytes of RAM

and rather extravagant resource demands. We show how

one can build practical ad hoc networks using the small-

est and cheapest devices available today. In our networks,

such devices are capable of sustaining swarm-intelligent so-

phisticated routing while offering enough processing power to

cater to complex applications involving distributed sensing and

monitoring.

Keywords— ad hoc wireless networks, sensor networks, operat-

ing systems, reactive systems, specification, simulation.

1. Introduction

The vast number of academic contributions to ad hoc wire-

less networking have left a surprisingly tiny footprint in

the practical world. For once, the industry is not much

smarter, although for a different reason. While the primary

problem with academic research, not only in this particular

area, is its excessive separation from mundane and academ-

ically uninteresting aspects of reality, the industry appears

to suffer from its inherent inability to think small and holis-

tic. The net outcome is in fact the same in both cases:

the popular and acknowledged routing schemes, as well as

programmer-friendly application development systems, re-

quire a significant amount of computing power and are not

suitable for small and inexpensive devices. As an example

of the latter, consider a key-chain car opener. A networking

“node” of this kind is typically built around a low-power

microcontroller with ∼ 1 KB of RAM driving a simple

transceiver. The combined cost of the two components is

usually below $5. While it is not a big challenge to imple-

ment within this framework a functionally simple broad-

caster of short packets, it is quite another issue to turn this

device into a collaborating node of a serious ad hoc wire-

less system.

The plethora of popular ad hoc routing schemes proposed

and analyzed in the literature [6, 22, 25, 27, 31, 32, 33, 38],

addresses devices with a somewhat larger resource base.

This is because those schemes require the nodes to store

and analyze a non-trivial amount of information to carry out

their duties. Moreover, none of them provides for “graceful

downscaling,” whereby a node with a smaller than “rec-

ommended” amount of RAM can still fulfill its obligation

to the network, perhaps at a reduced level. With such sys-

tems, hardware resources must be overdesigned (i.e., wasted

in typical scenarios), as an overrun leads to a functional

breakdown.

The most popular commercial scheme originally intended

for building ad hoc networks is Bluetooth. Its two funda-

mental problems are:

– a large footprint and, consequently, non-trivial cost

and power requirements;

– arcane connection discovery and maintenance op-

tions, which render true ad hoc networking cumber-

some.

Even though some attempts are still being made to build

actual ad hoc networks based on Bluetooth [18], it is com-

monly agreed that the role of this technology is reduced

to creating small personal-area hubs. ZigBeer (based on

ad hoc on-demand distance vector (AODV) [34]) comes

closer; however, despite the tremendous industrial push, it

fails to catch on. The reason, we believe, is its isolation

from the wider context of application development issues

combined with the limited flexibility of AODV as a routing

scheme.

If there is a place in the realm of low-end microcontrollers

where the adjective “ad hoc” is well applicable, it is to

software development. Typically, the software (firmware)

designed for one particular project is viewed as a “one-

night stand”, and its re-usability, modularity, and exchange-

ability are not deemed interesting. This is because conve-

nient, modular, and self-documentable programming tech-

niques based on concepts like multi-threading, event han-

dling, synchronization, object-orientedness are considered

too costly in terms of resource requirements (mostly RAM)

to be of merit in programming the smallest microcon-

trollers. Even TinyOS [26], which is the most popu-

lar operating system for networked microcontrollers, has

many shortcomings in these areas. Moreover, its evolu-

tion (as it usually happens with systems driven by large

communities and consortia), leans towards larger and larger

devices.

Serious efforts to introduce an order and methodology into

programming small devices often meet with skepticism and

shrugs. The common misconception is that one will not

have to wait for long before those devices disappear and be-

come superseded by larger ones, capable of running Linux

or Windowsr. This is not true. Despite the ever decreasing

cost of microcontrollers, we see absolutely no reduction in

the demand for the ones from the lowest end of the spec-

trum. On the contrary: their low cost and low power re-
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quirements enable new applications and trigger even more

demand.

One of our claims is that the only way to harness triv-

ially small microcontrolled devices to performing complex

communal tasks, amounting to effective and efficient ad

hoc networking, is to follow a holistic approach to orga-

nizing their software. This is in fact the primary problem

with the industry: their approach to solutions is layered,

in the sense that separable components of the traget prod-

uct are viewed by them as isolated subproblems to be at-

tacked by different teams equipped with different tools and

driven by different objectives. Consider a node of a wire-

less ad hoc network with the components listed in Fig. 1.

In a typical production cycle, each of those components

is viewed as an end in itself. From our perspective as

academics, we tend to focus on the protocols component,

forgetting that it is merely a fragment of something that

may ever be useful. As it happens, the most mundane frag-

ment of the whole picture, i.e., the hardware, directly de-

termines the viability of the entire project as a commercial

idea.

Fig. 1. Product “layers” of a wireless node.

A natural industrial reflex when it comes to protocols is

standardization. While some of its benefits are unques-

tionable, e.g., the interoperability of diverse equipment, the

main thrust of the standardization efforts that we in fact

see in the area of low-cost wireless networking is aimed at

the “soft” parts of the protocols (above the physical layer).

Note that this has brought us ZigBee, which tries to im-

pose on us ready network-layer paradigms for implementing

operations as delicate as forwarding within unknown net-

works catering to unknown applications. Notably, in the

very area where the standardization would be truly and in-

disputably useful, i.e., in the physical layer, we saw a com-

plete lack of interest from the manufacturers, at least in the

pre-ZigBee era. A stress on interoperability at that stage

would have been considerably more beneficial to the com-

munity of users and developers of ad hoc wireless com-

munication solutions. These days, it only happens in the

context of ZigBee, which many of the manufacturers come

to perceive as a curse of their membership in the consor-

tium. Thus, they usually provide ways to bypass the ZigBee

stack and enable various clumsy (but at least partially fea-

sible) ad hoc networking scenarios, e.g., hubs or limited

multi-hopping.

By their very nature, standards devised in isolation from

the view of applications are bound to result in oversized

footprints. This is because:

• They have to anticipate many circumstances that will

occur marginally, if ever, in any particular applica-

tion.

• They are devised by committees consisting of people

with conflicting ideas and agendas, and tend to ac-

commodate a little bit of everything – to satisfy all

members.

• Their designers focus on functionality rather than fea-

sibility: the lack of a reference point (application,

hardware) makes it difficult to see the complexity of

implementation.

In this paper, we outline our comprehensive platform for

rapidly building wireless praxes, i.e., low-cost applications

based on ad hoc networking. This platform comprises an

operating system, a flexible, layer-less, and auto-scalable

ad hoc forwarding scheme, and an emulator for testing the

praxes in a high-fidelity virtual environment. We show how

one can build well structured multithreaded programs oper-

ating within a trivially small amount of RAM and organize

them into authentic ad hoc wireless applications.

2. The operating system

The foundation of our development platform is PicOS:

a tiny operating system for small-footprint microcontrolled

devices executing reactive applications [1, 39].

2.1. A historical perspective

The ideas that have found their way into PicOS originated

as early as 1986. About that time, many published per-

formance studies of carrier sense multiple access/collision

detection (CSMA/CD)-based networks (like Ethernet) had

been subjected to heavy criticism from the more practically

inclined members of the community – for their irrelevance

and overly pessimistic conclusions. The culprit, or rather

culprits, were identified among the popular collection of

models (both analytical and simulation), whose cavalier ap-

plication to describing poorly understood and crudely ap-

proximated phenomena had resulted in worthless numbers

and exaggerated blanket claims [5]. Our own studies of

low-level protocols for local-area networks, on which we

embarked at that time [8–12, 14–16], were aimed at devis-

ing novel solutions, as well as dispelling myths surrounding

the old ones. Owing to the fact that exact analytical models

of the interesting systems were (and still are) nowhere in

sight, the performance evaluation component of our work

relied heavily on simulation. To that end, we developed

a detailed network simulator, called LANSF (local area net-

work simulation facility) and its successor SMURPH (sys-
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tem for modeling unslotted real-time phenomena) [13, 19],

which carefully accounted for all the relevant physical phe-

nomena affecting the correctness and performance of low-

level protocols, e.g., the finite propagation speed of signals,

race conditions, imperfect synchronization of clocks, vari-

able event latency incurred by realistic hardware. In ad-

dition to numerous tools facilitating performance studies,

SMURPH was also equipped with instruments for dynamic

conformance testing [3].

At some point we couldn’t help noticing that the close-

to-implementation appearance of SMURPH models went

beyond mere simulation: the same paradigm could be used

for implementing certain types of real-life applications.

The first outcome of that observation was an extension of

SMURPH into a programming platform for building dis-

tributed controllers of physical equipment represented by

collections of sensors and actuators. Under its new name,

SIDE (sensors in a distributed environment), the package

encompassed the old simulator augmented by tools for in-

terfacing its programs to real-life objects [20, 21].

A natural next step was to build a complete and self-

sustained executable platform (i.e., an operating system)

based entirely on SMURPH. It was directly inspired by

a practical project whose objective was to develop a low-

cost intelligent badge equipped with a low-bandwidth,

short-range, wireless transceiver allowing it to communi-

cate with neighbors. As most of the complexity of the

device’s behavior was in the communication protocol, its

model was implemented and verified in SMURPH. The

source code of the model, along with its plain-language

description, was then sent to the manufacturer for a physi-

cal implementation. Some time later, the manufacturer sent

us back their prototype microprogram for “optical” confor-

mance assessment. Striving to fit the program’s resources

into as little memory (RAM) as possible, the implementer

organized it as an extremely messy single thread for the bare

CPU. The program tried to approximate the behavior of our

high-level multi-threaded model via an unintelligible com-

bination of flags, hardware timers and counters. Its original,

clear, and self-documenting structure, consisting of a hand-

ful of simple threads presented as finite state machines, had

completely disappeared in the process of implementation.

While struggling to comprehend the implementation, we

designed a tiny operating system providing for an easy, nat-

ural and rigorous implementation of SMURPH models on

microcontrollers. Even to our surprise, we were able to ac-

tually reduce the RAM requirements of the re-programmed

application. Needless to say, the implementation became

clean and clear: its verification was immediate.

2.2. PicOS threads

The most serious problem with implementing non-trivial,

structured, multitasking software on microcontrollers with

limited RAM is minimizing the amount of memory re-

sources needed to describe a thread. While the basic record

of a thread in the kernel of an embedded system can be con-

tained in a handful of simple variables (status, code pointer,

data pointer, one or two links), the most troublesome com-

ponent of the thread footprint is its stack, which must be

preallocated to every thread in a safe amount sufficient for

its maximum possible need. In addition to providing room

for the automatic variables used by thread functions, includ-

ing the implicit ones (like return addresses), the stack is an

important part of the thread’s context. When the thread

is preempted, the stack preserves the snapshot of its trace,

which will make it possible to resume the thread later, in

a consistent and transparent manner.

At first sight, it might seem that microcontrollers with very

small amount of RAM are condemned to running thread-

less systems. For example, in TinyOS [24, 26], the issue

of limited stack space has been addressed in a radical man-

ner – by avoiding multithreading altogether. Essentially,

TinyOS defines two types of activities: event handlers (cor-

responding to interrupt service routines and callbacks) and

the so-called tasks, which are simply chunks of code that

cannot be preempted by (and thus cannot dynamically co-

exist with) other tasks.

One way to strike a compromise between the complete lack

of threads on the one hand, and overtaxing the tiny amount

of RAM with partitioned and fragmented stack space on

the other, may be to reduce the flexibility of threads regard-

ing the circumstances under which they can be preempted

(i.e., lose the CPU). The idea is to create an environment

where the thread is forced to relinquish its stack before pre-

emption. That would restrict the preemption opportunities

to a collection of checkpoints of which the thread would be

aware. By stimulating a structured organization of those

checkpoints, we could try to

– avoid locking the CPU at a single thread for an ex-

tensive amount of time;

– turn them into natural and useful elements of the

thread’s specification, e.g., enhancing its clarity and

reducing the complexity of its structure.

These ideas lie at the heart of PicOS’s concept of threads,

which are structured like finite state machines (FSM) and

exhibit the dynamics of coroutines [4, 7] with multiple entry

points and implicit control transfer.

For illustration, consider the sample thread code shown in

Fig. 2. This is in fact a C function: any exotic keywords

or constructs are straightforward macros handled by the

standard C preprocessor. The states are marked by the entry

statements. Whenever a thread is assigned the CPU, its

code function is invoked in the current state, i.e., at one

specific entry point.

State boundaries represent the checkpoints at which a thread

can be preempted and resumed. The way it works is that

a thread can only lose the CPU when it explicitly relin-

quishes control at the boundary of its current state. In par-

ticular, this happens when the thread executes release,

as within state RC PASS in Fig. 2. This has the effect of

returning the CPU to the scheduler, which is then free
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to allocate it to another thread. A thread receiving the CPU

will always find itself at the entry point to one of its

states.

Fig. 2. A sample thread code in PicOS.

Typically, before executing release, a thread issues a num-

ber of wait requests specifying one or more conditions

(events) to resume it in the future. Then, the effect of

release is to block the thread until at least one of the con-

ditions is fulfilled. If multiple events are awaited by the

thread, the earliest of them will wake it up. Once that hap-

pens, all the pending wait requests are erased: the thread

has to specify them from scratch at every wake-up. As

a wait request, besides the condition, specifies the state to

be assumed by the awakened thread, the collection of wait

requests issued by a thread in every state describes the op-

tions for its transition function from that state.

In state RC PASS (Fig. 2), if the if condition holds, the

thread issues two wait requests: one with when and the other

with delay. With when, the thread declares that it wants

to be resumed in state RC PASS upon the occurrence of an

event represented by the address of a data object (buffer).

Such events can be signaled with trigger, as illustrated in

state RC ENP. The delay operation sets up an alarm clock for

the prescribed number of milliseconds (1000). The event

waking the process up will be triggered when the alarm

clock goes off.

A somewhat less obvious case of a wait request is opera-

tion proceed (at the end of state RC ENP), which implements

an explicit transition (a kind of “goto”) to the indicated

state. It can be thought of as a zero delay request (in-

dicating the target state) followed by release. Thus, the

transition involves releasing the CPU and re-acquiring it

again, which gives other threads a chance to execute in the

meantime.

The above paradigm of organizing tasks in PicOS has

proved very friendly, versatile, and useful for describing the

kinds of applications typical of embedded systems, i.e., re-

active ones [1, 39]. The FSM layout of the praxis comes

for free and can be mechanically transformed, e.g., into

a statechart [17, 23], for easy comprehension or verifica-

tion. Owing to the fact that a blocked thread needs no stack

space, all threads in the system can share the same sin-

gle global stack. The programmer-controlled preemptibil-

ity grain practically eliminates all synchronization problems

haunting traditional multi-threaded applications.

2.3. The footprint

So far, PicOS has been implemented on the MSP430 mi-

crocontroller family and on eCOG1 from Cyan Technology.

A port to ARM7 is under way. The size of the thread con-

trol block (TCB) needed to describe a single PicOS thread

is adjustable by a configuration parameter, depending on

the number of events E that a single thread may want to

await simultaneously. The standard setting of this number

is 3, which is sufficient for all our present applications and

protocols. The TCB size in bytes is equal to 8+4E , which

yields 20 bytes for E = 3. The number of threads in the

system (the degree of multiprogramming) has no impact

on the required stack size, which is solely determined by

the maximum configuration of nested function calls. As

automatic variables are not very useful for threads (they do

not survive state transitions and are thus discouraged), the

stack has no tendency to run away. 96 bytes of stack size

is practically always sufficient. In many cases, this number

can be reduced by half.

2.4. System calls

In a traditional operating system, a thread may become

blocked implicitly when it executes a system call that

cannot complete immediately. To make this work with

PicOS threads, which can only be blocked at state bound-

aries, potentially blocking system calls must incorporate

a mechanism involving a combination of a wait request

and release. For illustration, see the first statement in state

RC TRY (Fig. 2). Function tcv rnp (belonging to VNETI –

see Subsection 2.5) is called to receive a packet from a net-

work session represented by descriptor efd. It may return

immediately (if a packet is already available in the buffer),

or block (if the packet is yet to arrive). In the latter case,

the system call will block the thread and resume it in the

indicated state when it makes sense to re-execute tcv rnp,

i.e., upon a packet reception.

Essentially, there are two categories of system calls in

PicOS that may involve blocking. The first one, like

tcv rnp, may get into a situation when something needed

by the program is not immediately available. Then, the

event waking up the process will indicate a new acqui-

sition opportunity: the failed operation has to be re-done.

The second scenario involves a delayed action that must

be internally completed by the system call before the pro-

cess becomes runnable again. In such a case, the event

indicates that the process may continue: it does not have

to re-execute the system call. To keep the situation clear,

the syntax of system call functions unambiguously deter-

mines which is the case. Namely, for the first type of calls,
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the state argument is first on the argument list, while it is

last for the second type. Incidentally, all system calls that

can ever block take more than one argument.

2.5. The versatile network interface (VNETI)

The interface of a PicOS application (praxis) to the outside

world is governed by a powerful module called VNETI.

VNETI offers to the praxis a simple and orthogonal col-

lection of application programming interface (API), in-

dependent of the underlying implementation of network-

ing. To avoid the protocol layering problems haunting

small-footprint solutions, VNETI is completely layer-less

and its semi-complete generic functionality is redefined by

plug-ins.

Fig. 3. The structure of VNETI.

The structure of VNETI is shown in Fig. 3. Standard sets

of interfaces are provided for attaching drivers of physical

communication modules (PHY), as well the plug-ins rep-

resenting the protocols configured into the system. The

API available to the praxis consists of a fixed set of opera-

tions that are independent of the configured assortment of

plug-ins or the physical modules.

Fig. 4. Plug-in interface.

A plug-in is described by a numerical identifier and a set of

operations, as shown in Fig. 4. Generally, those operations

intercept various requests coming from the praxis, as well

as the packets, as they make their passes through the buffer

storage of VNETI (Fig. 3). For example, when the praxis

opens a communication session, by executing the tcv open

function of VNETI, it specifies the identity of the plug-in

to be responsible for the session. Thus, VNETI will invoke

the ope (tcv ope) function provided by the plug-in, to carry

out any specific administrative operations required to set up

the session. Now, consider a packet being received from the

network. The PHY module receiving the packet presents

it to VNETI by invoking a standard interface function. In

response, VNETI will in turn apply to the packet the rcv

functions (tcv rcv in Fig. 4) of all the configured plug-ins.

Based on the packet content and the identity of the PHY

module, the function may decide to claim the packet (by re-

turning a special value) and assign it to a particular session

(the return argument ses), which typically corresponds to

one of the active session being handled by the praxis and

associated with the plug-in. The last argument of tcv rcv

returns the pointers to the packet’s low-level header and

trailer, which will be discarded when the claimed packet is

deposited by VNETI in its buffer space.

The set od operations available to plug-ins involve queue

manipulations, cloning packets, inserting special packets,

and assigning to them the so-called disposition codes rep-

resenting various processing stages. Any sophisticated

protocol (e.g., TCP/IP) can be implemented within this

paradigm. Its underlying premise is to treat all packets

“holistically” with no regard for any assumed layers of their

processing.

2.6. Real time considerations

One problem resulting from the limited preemptibility of

threads is its potentially detrimental impact on the real-

time behavior of the embedded application [2, 29]. This

is because the maximum rescheduling time for any thread

(regardless of its priority [37]) will include the maxi-

mum non-preemptibility interval for any other thread in the

system.

PicOS scheduler admits several options, which can be se-

lected at the time the system is compiled into a praxis.

The most naive (and also the most popular) of those op-

tions implements a fixed priority (non-preemptive) scheme,

whereby the threads are sorted in the decreasing order of

their importance. Whenever a thread releases the CPU,

the scheduler assigns it to the first thread that is not wait-

ing for any event. This way, when multiple threads are

ready to run, the one closer to the front of the list will win

the CPU.

In most cases, this trivial approach to scheduling is quite

adequate to fulfill the real time requirements of the ap-

plication, especially if those requirements are soft. This

is because reactive applications tend to do little com-

putations (are not CPU bound) and focus on process-

ing events, which actions typically take a small amount

of time. Notably, the truly critical actions (like extract-

ing data from time-constrained peripheral equipment) are

carried out in interrupts, which are not subjected to the

kind of postponement exercised by threads. Consequently,
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the limited preemptibility of the latter does not impair

the rate at which external events can be formally ab-

sorbed by the PicOS application. The way interrupt ser-

vice routines are organized in PicOS renders them inter-

ruptible: consequently an interrupt service routine can be

preempted by another interrupt service routine, according

to the pre-declared criteria of importance. To avoid inflat-

ing the bound on the maximum stack size, this feature is

optional: it can be turned on selectively, on a per-interrupt

basis, to cater to the hard real-time requirements of critical

peripherals.

It is a good practice to organize PicOS threads in such

a way as to keep the maximum execution time of a single

state reasonably small. Note that the granularity of thread

states is under the programmer’s control. There is virtually

no penalty for introducing extra states with the purpose of

bringing down the maximum duration of a CPU burst ex-

hibited by the thread. In many circumstances, in addition to

improving the real-time behavior of the entire application,

this approach enhances the clarity, self-documentability,

and re-usability of the thread code.

Fig. 5. Avoiding non-trivial loops in PicOS threads.

It is also recommended to avoid non-trivial loops that do not

cross state boundaries. Such loops can be always converted

as shown in Fig. 5, i.e., by starting the loop at a state

boundary and closing it with proceed, which has the effect

of enabling preemptibility at every turn. Although proceed

has the appearance of “goto,” the operation involves an

actual state transition, i.e., the thread function is exited

and re-entered via the scheduler, which is thus allowed to

interleave other threads with the loop. This way, any higher

priority threads will be able to claim their share of the CPU

in between the loop turns.

All internal functions (system calls) of PicOS have been

programmed with consistent adherence to the principle of

simplicity and orthogonality. This also applies to the inter-

nals of VNETI. Every function implements a loop-less ac-

tion, whose execution time is approximately constant. This

way, the timing of code referencing such functions is easy

to estimate within a very narrow uncertainty margin. Con-

sequently, it is possible to carry out meaningful real-time

assessments, including hard real-time guarantees, by esti-

mating the execution time of thread states. The latter can

be often accomplished by a purely mechanical analysis of

the compiler output, i.e., the tally of the CPU cycles in

a loop-less sequence of machine instructions.

3. Communication

Most routing protocols for ad hoc wireless networks,

as described in the literature, assume point-to-point com-

munication, whereby each node forwarding the packet on

its way to the destination sends it to a specific neighbor.

Regardless of whether the scheme is proactive [6, 33] or

reactive [22, 25, 27, 31, 32, 38], its primary objective is to

determine the exact sequence of nodes to forward the pack-

ets from point A to point B. Despite the fact that the wire-

less environment is inherently broadcast, this free feature

is rarely exploited during the actual forwarding of session

packets, although all protocols necessarily take advantage

of broadcast transmissions during various stages of route

discovery (e.g., the periodic HELLO messages broadcast

by all nodes to announce their presence in the neighbor-

hood). For example, in AODV [34], a node S initiating

packet exchange with node D broadcasts a request to its

one-hop neighbors to start the so-called path discovery op-

eration. Based on its current perception of the neighbor-

hood and cached information collected form previous path

discoveries, a node receiving such a request may decide to

forward it elsewhere, or respond with a path information

intended for the initiating node S. At the end, a single path

between S and D has been established. A problem arises

when the path is broken, because such a mishap effectively

demolishes the entire delicate structure. When that hap-

pens, a new path discovery operation is essentially started

from scratch.

On top of the susceptibility to node failures and disappear-

ance (mobility), this generic approach requires the nodes

to store a potentially sizable amount of elaborate routing

information, which cannot be made fuzzy. For example,

if a node is unable to store the identity of the next-hop

neighbor for a particular session, then it will simply not be

able to carry out its duties with respect to that session (thus

breaking the path). It may confuse the network by offering

a service that it is unable to deliver, resulting in stalled path

discovery and, ultimately, communication failure.

3.1. Tiny ad hoc routing protocol (TARP): forwarding by

re-casting

The idea behind our solution, dubbed TARP, is to embrace

fuzziness as a useful feature and take full advantage of the

inherently broadcast nature of the wireless medium. Tradi-

tional schemes view this nature as a rather serious problem

and try to defeat its negative consequences (hidden/exposed

terminals) via MAC-level handshakes intended to facilitate

point-to-point transmission [28]. TARP, in contrast, turns

it into an advantage.
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Suppose that node S wants to send a packet to node D.

With TARP, S simply transmits (broadcasts) the packet to

its neighbors. A neighbor may decide to drop the packet

(if it believes that its contribution to the communal for-

warding task will not help) or retransmit it. This process

continues until the packet reaches the destination D. An im-

portant property of this generic scheme (otherwise known

as flooding) is that a retransmitted packet is never specifi-

cally addressed to a single next-hop neighbor. Needless to

say, to make it useful, measures must be taken to limit the

number of retransmissions to the minimum at which the

desired quality of service is maintained. This part comes

as a series of rules that determine when a node receiv-

ing a packet should rebroadcast it, as opposed to dropping.

Some ideas for such rules are obvious, e.g., discarding du-

plicates of already seen packets and limiting the maximum

number of hops that a packet can travel.

Fig. 6. Application of rules in TARP.

Figure 6 illustrates the way TARP applies its rules to an

incoming packet. The important property of any rule im-

planted into TARP is its naturally conservative behavior

in the face of incomplete information (uncertainty). This

means that a rule that does not know what to do always

fails, which is to say that the packet will not be dropped on

its account. As most of the rules are cache driven, such con-

servative behavior provides for automatic scalability of the

rule to the limitations of its resources. A better-equipped

rule may tend to drop more packets and thus avoid pollut-

ing the neighborhood with superfluous traffic. The same

rule executed on a device with smaller memory may not

be as exacting, but if it errs, it does so on the safe side,

i.e., it drops no packets that would not have been dropped,

had the node been more resourceful. This is something that

point-to-point forwarding protocols find difficult to accom-

plish. To them, a path is just a path: you either know the

precise identity of your next hop neighbor, or you know

nothing at all. There is no room for fuzziness in that kind

of setup.

3.2. The selective packet discard (SPD) rule

The key to the success of our variant of flooding is the

most representative rule of TARP, one that brings the paths

traveled by forwarded packets down to a narrow (but in-

tentionally fuzzy) stripe of nodes along the shortest route.

This rule is named SPD, for suboptimal path discard.

Fig. 7. The rule for selective packet discard.

Consider the three nodes shown in Fig. 7. K is contemplat-

ing whether it should re-broadcast an “overheard” packet

sent by S and addressed to D. Suppose K knows this in-

formation: hb – the total number of hops traveled by some

packet that has recently reached S arriving from D (in the

opposite direction); h f – the number of hops traveled so

far by the current packet; hDK – the number of hops sep-

arating K from D. If hb < h f + hDK , K can suspect that

the packet can make it to D via a shorter path leading

through another node. This is because, apparently, packets

can make it from D to S in fewer hops than the combina-

tion of whatever the packet has already gone through with

the number of hops it still must cover if forwarded via K.

Thus, in such a case, K may decide to drop the packet.

The requisite information can be collected from the headers

of packets that K overhears as the session goes on. To

make it possible, the packet header should carry the current

number of hops traveled by the packet as well as the number

of hops traveled by the last packet that arrived at the sender

from the opposite end. As a duplicate packet is always

discarded at the earliest detection, a non-duplicate packet

arriving at a destination makes it along the fastest (and

usually the shortest) path. Until the network learns about

a particular session (understood as a pair of nodes that

want to communicate), the forwarding for that session may

be overly redundant.

Owing to the inherent imperfections of the ad hoc wire-

less environment, K should not be too jumpy with nega-

tive decisions. TARP uses two adjustable ways to damp

the behavior of the SPD rule to account for the uncer-

tainty of knowledge. One of them is the slack param-

eter m shown in the inequality in Fig. 7. When m > 0,

the rule will allow the node to forward the packet even

though the path that it is able to offer appears to be slightly

longer (by up to m hops) than the currently believed shortest

path.

Each entry in the SPD cache, in addition to the node identi-

fier and the current estimate for the number of hops, carries
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a counter (CSK and CDK in Fig. 7), which is incremented

by 1 each time the rule succeeds on that entry (i.e., the

packet is dropped). When the counter reaches a predefined

threshold, the rule will forcibly fail, thus letting the packet

explore other routing opportunities.

3.3. Smooth hand-offs

To see how a nonzero slack helps the network cope with

node dynamics (mobility, failures), consider the scenario

shown in Fig. 8. Packets traveling between U and V are for-

warded within the clouded fragment of the network. Sup-

pose that the arrows represent neighborhoods. In a steady

state, the path A–B–C (of length 2) is the shortest route

through the cloud.

Fig. 8. A smooth handoff in TARP.

Let m be set to 1. This means that nodes E and F will

also retransmit the packets because the route through them

incurs a 1-hop increase over the best path. The worst

thing that can happen is the disappearance of node B,

which is a critical component of the current best path.

Note, however, that this disappearance will not disrupt the

traffic, because the second best path through the cloud,

i.e., A–E–F–C, is also being used. The net outcome of this

disappearance will be that a would-be duplicate arriving at

A or C (from E or F), will be now bona fide received and

forwarded towards the destination. After a short while, as

the destinations update their hb values in response to the

increased number of hops along the best path, the nodes

within the cloud will learn that A–E–F–C is the best path

at the time. Then, nodes D and G will become involved

as those located along the second best path (with 1-hop

overhead), thus providing backup in case of subsequent

mishaps.

3.4. Avoiding multiple paths with the same cost

One redundancy problem that SPD is unable to address is

caused by possible multiple paths with the same smallest

number oh hops. Consider the situation depicted in Fig. 9.

Even with the most restrictive setting of the slack parame-

ter, m = 0, both paths <K1,K2,K3> and <L1,L2,L3> will

be occupied by the packets traveling between S and D. The

duplicates will be eliminated at A (for the D–S direction)

and B (for the direction from S to D); however, each of

the Ki and Li nodes will be consistently forwarding them

because, according to SPD, each of those nodes is located

on a shortest path between S and D. The problem is par-

ticularly nasty if the two rows of nodes can hear each other

because then the redundant traffic contributes to the noise

in their neighborhood and feeds into congestion.

Fig. 9. Multiple paths with the same minimum cost.

To address this problem, TARP has an option whereby the

packet header carries one extra bit labeled OPF (for optimal

path flag). This flag is set by a forwarding node when it

knows that the packet is being forwarded on one of the best

paths, i.e., the SPD rule has failed non-forcibly. This means

that the packet should normally reach the destination, unless

some nodes have moved away or failed.

Consider nodes K1 and L1 in Fig. 9 receiving a packet from

node A. Owing to the collision avoidance mechanism and

randomized retransmission delays applied by the RF driver

(the PHY module), one of these nodes, say K1 will be first

to re-broadcast the packet. The other node, L1 will yield

to this transmission and overhear (receive) the packet re-

broadcast by K1. Normally, that packet would be diagnosed

as a duplicate and promptly discarded. However, if the OPF

bit is set in the packet header, the rule in charge of discard-

ing duplicates yields to another rule, which compares the

signature of the received packet against the signatures of

all packets currently queued for transmission. If a match-

ing packet is found at L1 and its h f is not less than h f −1

in the received duplicate, then the packet at L1 is dropped.

In plain words, L1 concludes that by forwarding its copy

of the packet, it would not improve upon the forwarding

opportunities already extended by K1.

This mechanism will not help if the paths are disjoint, but

it will kick in wherever they cross. Note that while long

disjoint paths of the same length need not be rare in a real-

istic network, the ones for which the length is the shortest

possible definitely are.

3.5. Re-casting versus point-to-point forwarding

The term “flooding” permeating the description of TARP

may carry negative connotations in confrontation with the

point-to-point forwarding protocols, which avoid that nasty

problem by identifying precise paths within the unkempt

mesh of nodes. This view is grossly misleading. First of all,
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no knowledge comes out of the blue, and a point-to-point

scheme is not able to deliver packets until it has discov-

ered the paths, which operation must necessarily involve

some kind of flooding. Many cases of “sales pitch” (and

even some “performance studies”) either ignore those stages

completely or misrepresent them.

If the network is perfectly stable and static, then TARP

(with zero slack) is able to achieve essentially perfect con-

vergence to a single shortest path between any pair of peers

A and B (the rare scenarios mentioned at the end of Sub-

section 3.4 are statistically irrelevant). This is why the

term “flooding” does not adequately reflect the nature of

TARP, and we prefer to call our paradigm “re-casting.”

On the other hand, if the network undergoes changes, then

the point-to-point schemes are forced to constantly recover

from lost paths, which means resorting to various forms

of broadcasting and flooding. Also, the standard broadcast

component of any point-to-point scheme is the persistent

transmission of HELLO packets allowing all nodes to keep

track of their neighborhoods.

One may argue that the point-to-point protocols are able to

exploit the benefits of handshakes (like RTS-CTS-DATA-

ACK of IEEE 802.11) and, in particular, circumvent the

hidden/exposed terminal problem, as well as use acknowl-

edgments on every hop, thus enhancing the reliability of

communication. However, owing to the fact that most traf-

fic in low-cost wireless networks involves packets that are

very short, an RTS/CTS-type handshake is going to be com-

pletely useless and likely harmful [35]. While hop-by-hop

acknowledgments can help sometimes, they are not impos-

sible in TARP, although the problem must be considered

from a slightly different angle.

In contrast to a point-to-point hop, a TARP hop has no

well-defined single recipient. Notably, an internal node,

i.e., one that solely forwards packets and neither gener-

ates nor absorbs them, need not even be equipped with

a network address. Thus, if it cares about feedback fol-

lowing its forwarding action, then it would like to know

whether the packet has been picked up by one or more

nodes in the neighborhood, which will bona-fide attempt

to forward it towards the destination. The approach used in

our first implementation of TARP was to listen for a copy of

the transmitted packet (forwarded by one of the neighbors)

and interpret it as an indication of success – in addition to

timers and counters used to diagnose failures. There are

two problems with this solution. First, depending on the

load at the forwarding node, there can be a significant de-

lay between packet reception and retransmission. Second,

to make this idea work, the destination itself has to “for-

ward” (i.e., retransmit) all received packets, which creates

unnecessary noise in its neighborhood.

A better solution employs the so-called fuzzy acknowledg-

ments. When a node receives a packet, it first evaluates

the rules and then, if all of them fail (i.e., the packet will

be forwarded), the node responds with a short burst of RF

activity (a simple unstructured packet) of a definite dura-

tion. This activity, if present, will tend to occur after a very

short period of silence (analogous to SIFS in IEEE 802.11)

needed by the node to evaluate the rules. When multiple

recipients send their acknowledgments at (almost) the same

time, the sender may not be able to recognize them as valid

packets. However, it can interpret any activity (of a certain

bounded duration) that follows the end of its last transmitted

packet as an indication that the packet has been success-

fully forwarded. Even though the value of this indication

may appear inferior to that of a “true” acknowledgment, it

does provide the kind of feedback needed by the (informal)

data-link function to assume that its responsibility for han-

dling the packet has been fulfilled. When TARP operates

with the fuzzy ACK option, any normal packet transmission

is preceded by a short LBT (listen before transmit) period

whose duration guarantees that fuzzy acknowledgments are

not interfered with by regular packets.

Note that the implementation of fuzzy acknowledgments

can be viewed as an example of inadequacy of layering in

the wireless world. This is because the acknowledgment

(which formally belongs to the data-link layer) can only be

sent after the rules have been evaluated, i.e., the node con-

cludes that its reception of the packet is going to contribute

to its “network-layer” delivery. This is not the only place

in TARP where layering gets in the way. Some rules op-

erate best if their evaluation is postponed until the packet

is about to be retransmitted, i.e., past the queuing in the

data-link layer. Note that shortcuts of this kind are easily

implementable within the plug-in model of VNETI.

4. Execution and emulation

The large number of generic applications for the wireless

devices, combined with the obvious limitations of field test-

ing, result in a need for emulated virtual deployments fa-

cilitating meaningful performance assessment and param-

eter tuning. The close relationship between PicOS and

SMURPH hints at the possibility of transforming PicOS

praxes into SMURPH models with the intention of execut-

ing them virtually. Until recently, one element painfully

missing from the scene was a detailed model of wireless

channel (SMURPH was originally intended for modeling

wired networks). Once that deficiency was eliminated, the

circle could be closed, i.e., SMURPH became a vehicle for

executing PicOS praxes in virtual settings, practically at the

source code level.

4.1. Wireless extensions to SMURPH

Owing to the proliferation of wireless channel models,

and the general confusion regarding their adequacy [36],

SMURPH does not implement a fixed set of channel mod-

els, but instead allows the user to easily implement flexi-

ble models, potentially capturing all the aspects of signal

propagation required for a detailed functional description

of diverse RF modules.

A radio channel model in SMURPH is an object of type

RFChannel. Its role is to interconnect transceivers, which
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provide the interface between nodes and radio channels.

The built-in RFChannel class is intentionally open-ended:

although it provides a complete functionality of sorts, that

functionality is practically useless. It should be rather

viewed as a generic parent type for building actual channel

types, whose exact behavior is fully specified by a collec-

tion of virtual assessment methods provided by the user.

The primary role of those methods (see Fig. 10) is to de-

termine how a signal attenuates over distance, and how

the levels of multiple signals perceived by the same recip-

ient determine whether any of those signals can be recog-

nized as a valid packet. In essence, they encapsulate the

static (formula-like) component of the model, thus mak-

ing its specification straightforward, while all the dynamic

processing (like transforming the formulas into events) is

hidden inside the SMURPH kernel.

Fig. 10. Assessment methods of a wireless channel model in

SMURPH.

For example, method RFC att from Fig. 10 is responsible

for calculating the received signal level, with the original
signal strength and distance passed as the first two argu-

ments. In some cases, the calculation may only depend

on the distance (possibly involving randomized factors),

in some others it may hinge on some intricate properties of

the two transceivers involved, which are also made avail-

able to the method. Another method, RFC add, carries out
signal addition and is used to assess the level of interfer-

ence into a reception. The multiple signals perceived by the

transceiver are represented as an array of objects of type

SLEntry (signal level entry). In addition to the numerical

signal level, as determined by RFC att, a signal level entry
carries a generic user-definable attribute, which may intro-

duce arbitrary factors into the operation, e.g., representing
CDMA codes that impact the degree to which different sig-

nals contribute to the interference. Methods RFC bot and
RFC eot are invoked to proclaim a success or failure for

the action of perceiving the beginning and end of a packet.
They base their decision on the so-called interference his-

tograms (type IHist) reflecting the complete stepwise his-

tory of the interference suffered by the packet’s pream-

ble (in the first case) and the entire packet (for RFC eot).
RFC erb and RFC erd deal with bit errors and prescribe ran-

domized occurrence of errors in preambles and packets, as
well as the timing of user-definable events depending on

errors. For example, the model can trigger an event on the
first occurrence of a symbol error, thus aborting a packet

reception in progress.

In contrast to many popular network simulators, e.g.,

ns-2 [30], where the fate of every packet is essentially de-

termined at the moment of its departure, our model makes

it possible for the virtual RF module to perceive a variety

of events depending on dynamic levels of interference and

changing predictions of bit errors. A packet reception is

not a single indivisible episode, but can be split into stages

affecting the module’s response. Any physical action of the

real counterpart of the module’s virtual incarnation can be

expressed and meaningfully accounted for in the model.

4.2. The virtual underlay execution engine (VUE2)

Figure 11 shows the layout of a complete PicOS system

implanted into a microcontrolled node. In particular, TARP

(described in Subsection 3.1) can be seen as a plug-in to

VNETI (Subsection 2.5).

Fig. 11. System structure.

By imposing a certain software layer on SMURPH, which

provides a collection of event-driven interfaces represent-

ing the environment of a PicOS praxis, and implementing

a set of macros transforming PicOS keywords into their

SMURPH counterparts, one can render the praxis source

code acceptable as a SMURPH program. This is even pos-

sible without a formal converter1, as long as the praxis

has been coded with adherence to certain rules. This way,

a PicOS praxis can be compiled and executed in the envi-

ronment shown in Fig. 12, with all the physical elements

of its node replaced by their detailed SMURPH models.

Notably, exactly the same source code of VNETI is used

in both cases.

The VUE2 has been built with surprising ease because of

the similarity in the thread models in PicOS and SMURPH.

In both environments, a thread describes a finite state ma-

chine, with the state transition function specified in terms

of event wait operations. The rules for aggregating such

operations and waking up the threads based on the occur-

rence of the awaited events are practically identical in both

1Such a converter would be helpful, of course, and is being imple-

mented.
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systems. In SMURPH, viewed as a simulator, the awaited

events are delivered by abstract objects called activity inter-

preters, while in PicOS they are triggered by actual physical

phenomena (a packet reception, a character arrival from

the universal asynchronous receiver/transmitter (UART),

and so on).

Fig. 12. The structure of a VUE2 model.

The first significant difference between the two systems is in

the interpretation of time flow. In SMURPH, time is purely

virtual, which means that formally nobody cares about the

actual execution time of the simulation program, but only

about the proper marking of the relevant events with vir-

tual time tags. As in all event-driven simulators, the virtual

time tags have nothing to do with the real time. Conse-

quently, the useful semantics of time for SMURPH and

PicOS threads are different. The actual execution time of

a SMURPH thread is essentially irrelevant (unless it renders

the model execution too long to wait for the results) and all

that matters is the virtual delays separating the artificially

triggered events. For example, two threads in SMURPH

may be semantically equivalent, even though one of them

may exhibit a drastically shorter execution time than the

other (due to more careful programming and/or optimiza-

tion). In PicOS, however, the threads are not (just) models

but they run the “real thing.” Consequently, the execution

time of a thread may directly influence the perceived be-

havior of the PicOS node. In this context, the following

two assumptions make the VUE2 project worthwhile:

1. PicOS programs are reactive, i.e., they are practically

never CPU bound (see Subsection 2.6). In other

words, the primary reason why a PicOS thread is

making no progress is that it is waiting for a pe-

ripheral event rather than the completion of some

calculation.

2. If needed (from the viewpoint of model fidelity), an

extensive period of CPU activities can be modeled in

SMURPH by appropriately (and explicitly) delaying

certain state transitions.

In most cases, we can safely ignore the fact that the execu-

tion of a PicOS program takes time at all and only focus

on reflecting the accurate behavior of the external events.

With this approximation, the job of porting a PicOS praxis

to its VUE2 model can be made trivially simple. To further

increase the practical value of such a model, SMURPH pro-

vides for the so-called visualization mode of execution. In

that mode, SMURPH tries to map the virtual time of mod-

eled events to real time, such that the user has an impression

of talking to a real application. This is only possible if the

network size and complexity allow the simulator to catch

up with the model execution to real time. If not, a suitable

slow motion factor can be employed.

A VUE2 model can be dynamically interfaced to various

remote agents (Fig. 12) implementing its interfaces to the

real world. The behavior of those agents can be driven from

scripts or manually, possibly over the Internet, by a human

experimenter. For example, nodes can be powered up and

down, their I/O pins can be examined and set, their sensors

can be set to specific values, their UARTs or USB inter-

faces can be mapped to user-accessible virtual terminals

or made available to other programs. In particular, an ex-

ternal operations support system (OSS) prepared to talk to

the real network can be authoritatively tested in the virtual

setup. Networking practitioners should immediately recog-

nize the potentials of VUE2 when applied to diverse areas

of software development, from rapid prototyping to test

automation. The virtual nodes can be rendered mobile in

response to explicit commands or driven by programmable

scenarios. The latter feature comes courtesy of SMURPH

and is not VUE2-specific.

5. Sample application blueprints

Our collection of PicOS praxes includes a set of generic

wireless applications that can be easily adapted for various

“typical” custom deployments. Those generic applications

are called blueprints, even though they are fully working,

demonstrable systems. For illustration, we present here two

such blueprints: routing tags (RTags), and tags and pegs

(T&P). They cover two large classes of applications with

different mobility aspects and traffic patterns. They also

illustrate how TARP, owing to its rule-driven behavior, can

be optimized to different characteristics of the application.

5.1. Routing tags

Routing tags (Fig. 13) is characterized by the presence of

an “elevated” node type called master. Any node can be-

come master at any time, either self proclaimed or elected

by other nodes. Usually, the network is partitioned among

the masters with OSS interfaces for external (human or

computer) operators. In a typical deployment, masters

send messages to other nodes to solicit replies or to trig-

ger some actions. This does not preclude other nodes

(any nodes) exchanging messages: the traffic originating

or terminating at masters is merely “highlighted,” which

is to say that some of TARP’s parameters are optimized
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for its presence. In the case of multiple OSS masters,

the partitioning is functional (a given group of sensors

communicates with a designated master), without being

actual: the sensors and/or RTags-routers can intersperse

geographically and route traffic in a group-transparent

fashion.

Fig. 13. Routing tags.

Masters usually send messages meant to update the context

of newcomers, synchronize time-stamped functionality, and

repaint fragments of the network topology for the recipi-

ents, i.e., keep the SPD caches filled with useful informa-

tion (Subsection 3.2). Routing is optimized for relatively

infrequent traffic and low mobility. A typical representa-

tive of this application class is an on-demand low-mobility

asset monitoring system.

5.2. Tags and pegs

With tags and pegs (Fig. 14), the network consists of

two types of nodes. Pegs are intentionally immobile, at

least compared to tags. Some pegs can play the role of

OSS gateways. Their primary purpose is to provide a kind

of semi-fixed infrastructure for tracking the whereabouts

of tags. Depending on the requirements, the assortment

of tools facilitating this tracking may include specialized

sensors deployed at tags (e.g., accelerometers, magnetic

sensors) reporting their status to pegs. A significant de-

gree of accuracy for many instances of location track-

ing can be achieved by measuring and correlating the re-

ceived signal level (RSSI) at multiple pegs perceiving the

same tag.

Fig. 14. Tags and pegs.

The tracking may involve various predicates applied to dy-

namic configurations of tags perceived in the same neigh-

borhood. For example, a gathering of, say, 4+ people

with certain attributes in an airport washroom can be de-

tected and signaled as an event calling for special atten-

tion. The class of applications covered by T&P deals with

mobile objects (assets, luggage, people, hazardous materi-

als), whose mobility patterns may have to be classified by

event-triggering predicates: mutual exclusion, avoidance of

certain spots, time restrictions, etc.

One observation from our experiments with the various

“communication modes” of the network is that practically

any attempt at classification yields interesting transgres-

sors, i.e., useful application patterns that weld fragments

from seemingly distinct areas into innovative functionality.

For example, T&P clouds embedded into an RTags mesh

bring about the capacity for distributed self-monitoring.

Envision groups of art exhibits at an exposition. A group

can raise an alarm if a neighbor becomes mobile; also, it

can signal the presence of an unknown member, e.g., one

being removed from another area. A traveling exposition

can be made self-configurable, enforcing identical setups on

every stop.

We started with RTags, providing a generic blueprint of

a monitoring system, and only after implementing T&P

did we notice this additional and attractive distribution (or

localization) of previously centralized functionality. From

this point of view, our framework not only facilitates prac-

tical ad hoc networking, but also uncovers its hidden ap-

plications. Owing to the high flexibility of a TARP node,

such “reconfigurations” can be often soft and dynamic,

e.g., available through a sequence of commands injected

into the network from an OSS agent.

6. Summary

Using the technology described in this paper, we have been

able to build several practical ad hoc networks, including

serious industrial deployments. By a “practical network”

we understand one that works and meets the expectations

of its users.

Customary, we extend the notion of practicality onto tech-

nologies, e.g., we say that Ethernet technology is practi-

cal, even if some of its botchy specimens fail. Networks

acquire practicality via technological progress and indus-

trial acceptance, but this acquisition need not be universal.

Ethernet or IP networks are indisputably practical, so are

ATM and Bluetooth, even if their cases illustrate the fact

that practicality not always follows common sense. On the

other hand, IP extensions (meant to make it a “one for all”

choice), should, after all these years, be denied practicality.

So, we are afraid, must some wireless ad hoc network-

ing schemes, notably ZigBeer, despite powerful industrial

sponsors behind them. In the latter case, most of the harm

is inflicted by confusing a general scheme with a complete
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solution, of which the scheme is merely a (likely quite sub-

optimal) part.

We have presented here a technology that, in our opin-

ion, makes ad hoc networks practical, i.e., functional and

deployable in a variety of industrial frameworks. While

we do not claim that ours is the only possible approach

to practical ad hoc networking, we couldn’t find a better

one despite honest attempts. Our present library of ap-

plication blueprints (working, demonstrable, open-ended

data-exchange patterns) makes us confident that the com-

bination of tools and methodologies comprising our plat-

form is powerful enough to handle many practically in-

teresting cases of distributed sensing, monitoring, indus-

trial process control, and so on. We are proud of the

fact that every detail described in this paper has found

its way into real (deployed) ad hoc networks. Large frag-

ments of our research and development were stimulated,

or even directly triggered, by the findings and wishes of

their users.
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