
Paper Skill-Based Bimanual

Manipulation Planning
Wojciech Szynkiewicz

Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland

Abstract—The paper focuses on specification and utilization

of manipulation skills to facilitate programming of bimanual

manipulation tasks. Manipulation skills are actions to reach

predefined goals. They constitute an interface between low-

level constraint-based task specification and high level sym-

bolic task planning. The task of the robot can be decomposed

into subtasks that can be resolved using manipulation skills.

Rubik’s cube solving problem is presented as an example of

a 3D manipulation task using two-arm robot system with di-

verse sensors such as vision, force/torque, tactile sensors.

Keywords—bimanual manipulation planning, manipulation

skills, robot programming.

1. Introduction

Robots employed in human-centered environments have to

be equipped with manipulative, perceptive and communica-

tive capabilities necessary for real-time interaction with

the environment and humans. Up to now, robot systems

have been only able to deal with the high complexity and

the wide variability of everyday surroundings to a limited

extent. In this paper we are focused on planning dual-

arm/hand manipulation tasks for service robots working in

such environments.

In our everyday lives we perform many operations in which

our two hands cooperate to manipulate diverse objects. The

goal of our research is to understand the nature of two-

handed cooperative manipulation and enhancing the ma-

nipulative skills of the dual-arm robot. Two cooperative

hands, if properly utilized, are capable of grasping and ma-

nipulating a much larger class of objects, including long,

flexible, irregularly shaped, or complex objects (e.g., with

internal degrees of freedom).

Object manipulation tasks typically involve a series of

action stages in which objects are recognized, grasped,

moved, brought into contact with other objects and released.

These stages are usually bound by mechanical events that

are subgoals of the task. These events involve the making

and breaking of contact between either the hands and the

grasped object or the object held in hand and another ob-

ject or surface. Importantly, these contact events usually

produce discrete and distinct sensory events. To simplify

a solution of the overall problem, we usually tend to divide

the task into a sequence of clearly separated subtasks, each

of which accomplishes a specific subgoal. In this case,

a task planning focuses on deciding what operations will

be needed to execute a particular manipulation task, and

in what order the operations should be performed. The

operations are considered at an abstract level, i.e., sensory

operations, gross and fine motion operations, grasping and

releasing operations. In terms of representation, it denotes

the smallest entity which is used for describing an action.

Many studies have been devoted to single-handed manip-

ulation, for overview see [1]. Recently, a bimanual ma-

nipulation has also attracted more attention, especially in

unstructured environments (see for example [2]–[7]). Also,

the literature pertaining to the analysis of bimanual oper-

ations performed by humans is quite extensive, especially

in the field of a human-computer interaction, e.g., [8]. Al-

though many solutions for single-handed manipulation can

be easily adopted for bimanual manipulation, the whole

potential of two cooperative hands cannot be fully utilized

without a deeper understanding of their unique characteris-

tics. In general, two-handed manipulation can be classified

into uncoordinated and coordinated tasks [8]. The latter

can be further subdivided into symmetric and asymmetric

ones.

In this paper we focus on specification and utilization of

manipulation skills to facilitate programming of bimanual

manipulation tasks. The proposed method uses a hierarchi-

cal approach for the decomposition of manipulation skills.

Manipulation skills are compositions of basic robot oper-

ations to reach some predefined goals. They can serve as

an interface between low-level geometric task specification

and high level symbolic task planning. If the skills are well-

defined and robust, then manipulation planning is simplified

because is performed in the “space” of skills rather than in

the high dimensional configuration/operational space. The

task of the robot can be approximated by a set of param-

eterized manipulation skills. The approach presented in

this paper focuses on tasks, rather than motions, and uses

manual programming rather than learning techniques to de-

termine the set of manipulation skills. It should be noted

that the concept of using skills to create complex actions

is a well-studied topic covering many areas, thus, only its

applicability to robot manipulation, especially two-handed

manipulation is discussed. In our approach, each individ-

ual skill is represented as a hybrid finite state automaton

in which each state runs one basic operation, and each

violation of a operation can give rise a transition. Each

transition is the outcome of the basic operation. Skills can

have a set of parameters, which can be used to adapt each

skill to a particular use case. Skills are the components

of the intermediate level between symbolic and geometric

levels. In this paper we focus on solving the coordinated

54



Skill-Based Bimanual Manipulation Planning

bimanual tasks, and we propose the solution of the Rubik’s

cube manipulation as an example of such a task. To im-

plement dual-arm manipulation utilizing vision and force

sensing, the MRROC++ robot programming framework is

used [9], [10].

The paper is organized as follows. In Section 2 an overview

of most representative manipulation planning approaches

is given. Section 3 describes the hierarchical represen-

tation of manipulation tasks. In Section 4 Rubik’s cube

problem solving is discussed as an example of two-handed

manipulation.

2. Related Work

Manipulation planning is an extension to the classical robot

motion planning problem. The robot is able to interact with

its environment by manipulating movable objects, while it

has to avoid self-collisions or collisions with obstacles. Tra-

ditionally, manipulation planning concerns the automatic

generation of the sequence of robot motions allowing to

manipulate movable objects among obstacles. Existing re-

search in manipulation planning has focused mainly on

the geometric aspects of the task, while greatly simplify-

ing the issues of grasping, stability, friction, and uncer-

tainty [4], [11]. Symbolic planning algorithms have typi-

cally assumed perfect models of both the environment and

the robot, not only at an abstract level but at every level

of control. This is a quite reasonable assumption in well-

structured and fully controlled environments. However, in

everyday environments this is not often the case, which

makes that most of the proposed theoretical solutions are

not directly applicable. The real world does not behave as

expected, and in fact it does not behave predictably.

Most of the research in manipulation planning deals with

the creation of the manipulation graph and extraction of

a manipulation path from this graph [12]–[15]. The con-

cept of a manipulation graph was introduced by Alami et

al. [12] for the case of one robot and several movable ob-

jects manipulated with discrete grasps and placements. In

this case, the nodes of the graph represent discrete configu-

rations and the edges correspond to robot motions moving

the grasped object (transfer path), or leaving it at rest to get

to another grasp position (transit path). A solution to the

manipulation planning problem is now given by a manip-

ulation path in this graph. This path is solved using PRM

(Probabilistic Roadmap Method) planners [13], [14].

In most of the existing algorithms it is assumed that a fi-

nite set of stable placements and of possible grasps of the

movable object are given in the definition of the problem

(e.g., [12], [13]). Consequently, a part of the manipula-

tion task decomposition is thus done by the user since the

initial knowledge provided with these finite sets has to con-

tain the grasps, and the intermediate placements required

to solve the problem. In [14] the authors proposed a gen-

eral manipulation planning approach capable of addressing

continuous sets for modeling, both the possible grasps and

the stable placements of the movable object. The nodes of

the manipulation graph (i.e., the places where the connec-

tions between the feasible transit and transfer paths have

to be searched) correspond to a set of sub-manifolds of

the composite configuration space, as opposed to discrete

configurations. Cambon et al. [15] proposed a special-

ized integration of a symbolic task planning and geometric

motion, and manipulation planning. They extended clas-

sical action planning formalism based on a STRIPS-like

description where manipulation planning problems in con-

figuration space are introduced.

One of the most intuitive ways to acquire new task knowl-

edge is to learn it from the human user via demonstration

and interaction. This approach to task learning is known

as Programming by Demonstration (PbD) [2]. It is one of

the most often used programming paradigms of two-arm

manipulation for humanoid robots [7]. PbD systems gen-

erally try to decompose the observed task execution of the

human demonstrator into a sequence of tasks that are per-

formable by the robot. Typically, tasks are recorded from

human demonstrations, segmented, interpreted and stored

using some data representation. Several programming sys-

tems and approaches based on human demonstrations have

been proposed during the last years, e.g., [2], [3].

In [16] an architecture which uses primitive skills that com-

bine to form a skill, which in turn form a complete task

is presented. Each primitive skill is selected by heuristic

selection out of many possible primitive skills, based on

the sensor signals. A neural network is used to detect the

change between the skills. Each primitive skill is executed

by a separate controller.

3. Manipulation Planning

Manipulation planning is a very challenging problem in

robotics research as it consists of a number of subproblems

that themselves are still open issues and subject to ongoing

research. Typical manipulation tasks accomplish relative

motions and/or dynamic interactions between various ob-

jects. Typically, manipulation planning involves motion and

grasp planning. The most effective robot motion planning

strategies today are built upon sampling-based techniques,

including the PRM [13] and Rapidly-exploring Random-

ized Trees [17], and their variants. Robot motion planning

can also be viewed as an optimization problem that aims

to minimize a given objective function [5], [11]. To solve

such a problem in efficient way appropriate tools have to be

used, e.g., [18]. Grasp planning is also an area of intensive

research [19].

Several basic components of manipulation task can be dis-

tinguished (Fig. 1).

Using intended subgoals as a criterion, three different

classes of manipulation tasks can be distinguished [20].

1. Transport operations: the simplest class of robot ma-

nipulation. This kind of task can be easily distin-

guishably by the change of the external state (pose)

of the manipulated object. Various types of transport

55



Wojciech Szynkiewicz

Fig. 1. Components of the manipulation task.

tasks such as pick-and-place or fetch-and-carry are

a component part of almost all manipulation opera-

tions. Accordingly, the trajectory of the manipulated

object has to be considered and modeled in transport

actions models.

2. Object handling: a more specialized class of manip-

ulation tasks deals with changing the internal state of

objects without influencing other objects (like open-

ing doors, pushing a button, manipulating the Rubik’s

cube, etc.). This class of tasks consists of every task

changing an internal state of an object without manip-

ulating another object. In the object-handling tasks,

transition actions changing an internal state have to

be modeled. Moreover, the object models need to

incorporate an adequate description of their internal

state.

3. Tool handling: the most typical characteristic for this

type of actions is the interaction between two objects,

usually a tool and a workpiece. Interaction is related

to the functional role of objects used or the corre-

lation between the functional roles of all objects in-

cluded in the manipulation, respectively. The object

model thus should contain a model of the possible in-

teraction modalities or functional roles the object can

take. According to different modalities of interaction,

considering contacts, movements, etc., a diversity of

handling methods has to be modeled.

We consider a manipulation task to be an activity involving

the composition and coordination of an existing set of ma-

nipulative skills in order to accomplish a given set of goals.

Two representations of robot manipulation skills/tasks can

be distinguished symbolic and non-symbolic.

3.1. Manipulation Skills

We make a crucial distinction between tasks, manipulation

skills and basic skills or primitive actions in this work. Task

is a function to be performed. Manipulation Skill (MS) is

a pattern of activity which describes an ability that achieves

or maintains a particular goal. A manipulation skill can be

defined as an abstraction of a set of basic skills that follow

the same control strategy. Basic Skill (BS) is an action

that abstract a sensory-motor coupling such as skill motion

types (e.g., motion trajectory generators), concrete grasping

and releasing strategies, direct and inverse kinematics for

the specific robots, etc. The set of the BS serves as an

application programming interface. The task of the robot

can be represented by a set of parameterized manipulation

skills. Therefore the overall planning and control system

has a layered hierarchical structure as shown in Fig. 2. It

should be noted that hierarchy can exist at all layers. Task is

the highest level of abstraction, representing a semantically

meaningful task such a solving scrambled Rubik’s cube.

The task consists of a sequence of MS’s, which represent

subtasks, such as turning a single face of the Rubik’s cube.

Skills consist of basic skills or primitive actions which are

the lowest level of control in the proposed architecture.

Each BS is implemented using a single low-level controller,

Control Program (CP) which is responsible for the control

of robot hardware.

Fig. 2. Planning and control three-layered structure.

56



Skill-Based Bimanual Manipulation Planning

To model MS we use a hybrid automaton. A hybrid au-

tomaton is a dynamical system that describes the evolution

in time of the valuations of a set of discrete and continuous

variables. A hybrid automaton H [21], [22] is a collection

H = (Q,X , f , Init,D,E,G,R), where

• Q is a set of discrete states;

• X = R
n is a finite set of continuous states;

• f (·, ·) : Q×X → R
n is a vector field;

• Init ⊆ Q×X is a set of initial states;

• Dom(·) : Q → 2X is a domain;

• E ⊆ Q×Q is a set of edges (events);

• G(·) : E → 2X is a guard condition;

• R(·, ·) : E ×X → 2X is a reset map (relation).

Each state of the automaton has its own low-level con-

trollers and transitions to other states. The proper selection

of the set of manipulation skills is a critical step in our

approach. The following manipulation skills have been de-

fined to solve the Rubik’s cube problem: Localize, Reach,

Turn, Grasp, Release.

Localize – robotic manipulation of an object requires that

this object must be detected and located first. If vision is

used as the robot’s primary source of information about

the environment, the object of interest must be identified

in the image and subsequently localized in 3D space. Gen-

erally, in cluttered environments, detecting a certain ob-

ject is not an easy problem. Recognition and localiza-

tion of a known object in the image is based on match-

ing its certain previously defined features such as: shapes,

sizes, colors, texture, etc. The choice of features and the

matching algorithm is arbitrary and it depends primarily

on the specification of the object and it will not be dis-

cussed here. This task becomes much more difficult if we

want not only to localize the object in the scene (2D local-

ization), but also to find its 3D pose (6D localization) in

relation to the camera frame or to the world frame. Typical

method used for 6D object localization is to calculate the

pose based on the correspondence between 3D model and

image coordinates from camera image. Most of the works

on grasping and manipulation planning have assumed the

existence of a database with 3D models of objects encoun-

tered in the robot surroundings and a 3D model of the robot

itself [2], [9].

Reach – for reaching an object the Reach skill uses motion

planning to compute a collision-free trajectory for moving

the robot arm from its current pose to one that allows grasp-

ing of a specified object with a hand. If both arms are free,

then Reach can employ each of the arm to move to the

vicinity of the object. If one arm is currently grasping an

object, Reach can be used for the other arm to prepare for

grasping. Reach skill requires closed-loop execution to per-

mit interaction with the environment. We utilize a position

based, end-effector open loop visual servo with stand-alone

camera to perform reaching operation [23].

Grasp – this skill is used for grasping objects for manip-

ulation. Grasps are a special subset of manipulation skills

that aimed at constraining the mobility of the object. Grasp

should allow to perform different types of grasps depend-

ing on the hand structure. The parameters of the Grasp

skill are: grasp type, grasp starting point, approaching di-

rection, hand orientation. Grasp type determines the grasp

execution control, namely, the hand preshape posture, the

way the hand approaches the objects, the hand control strat-

egy. For approaching the object, the hand is positioned at

point in the vicinity of the object. The approaching line is

determined by the grasp starting point and the approaching

direction.

Turn – this skill is equivalent to Reach with an object or tool

grasped as the end-effector, rather than the hand. Given

an object grasped by the robot one hand or two hands,

Transfer skill utilize motion planning to move the robot to

configuration such that the object is at target pose. Transfer,

like Reach requires closed-loop execution.

Release – this skill performs an action opposite to the

Grasp, it simply release the object in the current config-

uration.

4. An Example of Two-Handed

Manipulation

As an example of the task for two-handed manipulation we

chose the manipulation of Rubik’s cube puzzle. We used

a Rubik’s cube as an object to be identified, localized and

manipulated. Rubik’s cube combinatorial puzzle was in-

vented by Ernő Rubik of Hungary in 1974. The standard

3× 3× 3 version of the Rubik’s cube consists of 27 sub-

cubes, or cubies, with different colored stickers on each of

the exposed sides of the sub-cubes. In its goal state each of

the six faces has its own color. The total state space for solv-

ing a scrambled Rubik’s cube is sized at (38−1 ·8!) ·(212−1 ·

12!)/2 = 43,252,003,274,489,856,000 ≈ 4.3 × 1019. Ob-

viously, this number of states is prohibitively large for any

sort of a brute force search technique, which is why spe-

cialized algorithms are needed to solve the Rubik’s cube

puzzle. However, the presentation of the algorithms for

recognizing and solving Rubik’s cube are not discussed in

this paper, some information about these algorithms can be

found in [9].

In this particular case we are interested in a coordinated ma-

nipulation in which both hands are manipulating the same

object, thus creating a closed kinematic chain [5]. This

task was chosen as it closely resembles the tasks that ser-

vice robots have to execute. The process of manipulation

of the Rubik’s cube involves all aspects of visual serving

to the vicinity of the cube, alignment of robot arms with

the cube, grasping it with the grippers, and finally rotating

the adequate face of the cube. The last three actions are

repeated as many times as the number of moves is required

to solve the scrambled cube. Here, we assume that from the

57



Wojciech Szynkiewicz

high-level task planning system, i.e., Rubik’s cube solver,

a sequence of the turns of the faces is obtained. The goal is

to plan a proper sequence of hand movements and grasping

actions for both arms.

4.1. Problem Formulation

The task of solving Rubik’s cube needs several sensor-based

operations such as:

– recognizing the cube in the image and localizing it

in the robot workspace – Localize skill,

– approaching the cube while avoiding collisions by

using visual information – Reach,

– grasping the cube using force/torque measurements

for stiffness control and eye-in-hand and tactile sen-

sors mounted in the jaws – Grasp,

– re-grasping the cube in order to identify the cube’s

initial state – Grasp → Release sequence,

– turning the faces of the cube while avoiding jam-

ming using information from force/torque sensor for

implementing interaction control – Grasp → Turn →

Release sequence performed n times, where n is the

number of moves required to solve the cube.

To support the programmer with task specification, object

frames and feature frames are introduced, as well as suit-

able local coordinates to express the relative pose between

these frames. Figure 3 presents the geometrical structure

of the two-arm manipulation system, and coordinate frames

Fi attached to the appropriate components of the system to-

gether with the distribution of sensors.

Fig. 3. Coordinate frames attached to the two-handed robotic

system.

Coordinate frames Fei
, i = 1,2 are attached to the grippers

and sensor frames Fsi
and Fci

attached to the force sensors

and to the eye-in-hand cameras, respectively. Given the

view of the scene, the robot should be able to recognize

the cube and localize it in the robot workspace. As a result

of the visual localization, the position and orientation of

the object frame Fo attached to the cube with respect to

(w.r.t) world frame Fw is computed (as described earlier).

To describe the task for each hand two feature frames

Ffi , i = 1,2 are introduced, as shown in Fig. 3. These frames

are used to plan manipulation skills such as approach tra-

jectories for both hands, grasp and release operations, and

hand movements to turn the cube faces.

The 4×4 matrix i
jT is a homogenous transformation matrix

i
jT ∈ SE(3) (where SE(3) is a special Euclidean group of

a rigid body motions in R
3 [24]) is a linear operator used

in a mapping between the appropriate coordinate frames.

Matrix i
jT may be interpreted as the representation of the

pose of the frame Fj w.r.t. frame Fi. Left-hand superscript

is omitted (i.e., jT ) when the reference frame is evident

from the context, e.g., it is the world frame Fw.

Pre-computed sequence of turns of the faces can be de-

scribed in the Fo coordinate frame as a sequence of rota-

tions about unit vectors x̂xxo, ŷyyo, ẑzzo of its axes:

oR(uuu,ϕ) = Rot(uuu,ϕ), (1)

where uuu = x̂xxo, ŷyyo or ẑzzo, and ϕ = −
π

2
,−π , π

2
or π .

The desired grasp configurations w.r.t. coordinate frame Fo

are described by the following matrices:

• o
f1

T – to grasp a single slice,

• o
f2

T – to grasp two slices simultaneously.

Locations of the possible contact regions on the cube are

imposed by the specific shape of the gripper jaws. The

shape of each of the jaws of the gripper matches the form

of the corner of the cube. The cube is being grasped di-

agonally in such a way that either one or two layers are

immobilized, where the corner pieces of one layer define

the diagonal.

Now, we have to plan such a sequence of admissible grasps

(o
f1

T,o
f2

T ) that enable each single turn of the face without

re-grasping:

f1T = oT o
f1

T ; f2T = oT o
f2

T (2)

The conditions of grasp feasibility are as follows:

f1T = b1
T b1

e1
T (qqq1)

e1
o T o

f1
T ; f2T = b2

T b2
e2

T (qqq2)
e2
o T o

f2
T,
(3)

or equivalently

f1T = b2
T b2

e2
T (qqq2)

e2
o T o

f1
T ; f2T = b1

T b1
e1

T (qqq1)
e1
o T o

f2
T,
(4)

where bi
T, i = 1,2 is the homogenous transformation ma-

trix from the world frame Fw to the robot base coordinate

frame Fbi
. Matrix

bi
ei T (qqqi), i = 1,2 represents direct kine-

matics of the robot arm i, and qqqi is the vector of joint

coordinates of the arm i.

In this case grasp stability conditions are of a geometric

nature and grasp synthesis is reduced to the choice of four

contact regions on the cube (two for each gripper) from the

given set of contacts and computing desired poses of both

grippers, i.e., e1
T and e2

T which guarantee firm grasps. In

fact, grasp synthesis comes down to the proper position-

ing of the grippers. Therefore grasp configurations can be

described in the operational space as well as in the joint

space.

58



Skill-Based Bimanual Manipulation Planning

When both grippers firmly hold the cube the closed kine-

matic chain is established. Now the motion planning prob-

lem is complicated by the need to maintain the closed loop

structure, described by the loop closure constraint.

b1
e1

T (qqq1)
e1
o T (ϕ)− b1

b2
T b2

e2
T (qqq2)

e2
o T = 0 (5)

However, in our case, the motion of the closed chain link-

age can be described in the Fo coordinate frame as a sin-

gle rotation about its axes (i.e., the elementary turn of

the cube’s face). For the frame Fo chosen as it is shown

in Fig. 3 these moves are rotations around its axes de-

scribed in (1).

These moves can be easily transformed to the motions of

the grippers. However, due to kinematic calibration errors,

the two robot arms cannot be position controlled while ex-

ecuting the turns. This would cause excessive build-up of

force in a rigid closed kinematic chain due to small mis-

alignments. Therefore at this stage the motions have to be

executed in position-force control mode.

4.2. Implementation of the Two-Handed Manipulation in

the MRROC++ Framework

The control system of the two-handed system equipped with

special end-effectors, each composed of an electric grip-

per and diverse sensors, was implemented by using the

MRROC++
1 robot programming framework.

MRROC++ is a robot programming framework, thus it pro-

vides a library of software modules (i.e., classes, objects,

processes, threads and procedures) and design patterns ac-

cording to which any multi-robot system controller can be

constructed. This set of ready made modules can be ex-

tended by the user by coding extra modules in C++ [9],

[23], [25]. MRROC++ based controllers have a hierarchic

structure composed of processes (Fig. 4) (some of them

consisting of threads) supervised by the QNX Neutrino real

time operating system. The underlying software is written

in C++.

From the point of view of the executed task MP is the

coordinator of all effectors present in the system. It is re-

sponsible for trajectory generation in multi-effector systems

where the effectors cooperate tightly – as is the case in

the presented system. The manipulation planning system

contained in the MP transforms the solution obtained from

Rubik’s cube solver into a proper sequence of manipula-

tion skills. In the MRROC++ framework these skills are im-

plemented as motion generators, which are used by the

Move instructions. Therefore the MP is responsible both

for producing the plan of the motions of the faces of the

cube and subsequently the trajectory generation for both

manipulators. This trajectory can be treated as a crude

reference trajectory for both arms. At a later stage this

trajectory is modified by taking into account the force

readings.

1The name is derived from the fact that this programming framework

is the basis for the design of Multi-Robot Research-Oriented Controllers

and that the underlaying software is coded in C++.

Fig. 4. MRROC++ based controller for the two-arm system.

Each effector has two processes controlling it: Effector

Control Process ECP and Effector Driver Process EDP.

The first one is responsible for the execution of the user’s

task dedicated to this effector (in our case the task is de-

fined by the MP – it is defined by the reference trajectory

that is to be executed by the manipulator), and the other one

for direct control of this effector. The EDP is responsible

for direct and inverse kinematics computations, as well as

for both position and force servo-control.

4.3. Experiments

The overall experimental setup consists of two 6 degree

of freedom (dof) modified IRp-6 robot arms, each with

a parallel jaw gripper Fig. 5.

Fig. 5. Sensors used to locate and manipulate the Rubik’s cube.

59



Wojciech Szynkiewicz

Fig. 6. Measured force and torque components while manipulating the Rubik’s cube.

Each jaw was instrumented with tactile sensors which de-

tect the presence of contacts with the grasped object. More-

over, each hand was equipped with a wrist-mounted six-

axis force-torque sensor, and an eye-in-hand miniature CCD

color camera [9]. Additionally, a global vision system with

fixed-mount color camera and Digital Video Processor for

fast image acquisition and realtime processing of the in-

coming data was used.

During the task execution either pure position control or

position–force control is used, depending on the current

task execution stage. Typically, these execution stages are

position controlled in which there in no simultaneous con-

tact between the two end-effectors and the cube, or between

one of the end-effectors and the cube held by the operator.

The stages, where such contact is present or expected to

occur, are position–force controlled.

Cube grasping starts with one of the manipulators initiating

the closing of the gripper jaws to catch the cube already

held by the other manipulator or the operator. The manipu-

lator currently holding the cube is commanded to keep the

current position, hence it is position controlled. Figure 6

presents the force and torque plots for three stages of ma-

nipulation for the second manipulator, which is currently

force-controlled.

60



Skill-Based Bimanual Manipulation Planning

Force/torque (F/T) sensors provide information about the

magnitude and direction of the forces and torques that ap-

pear when the robot arms and the object are in contact.

Free motion can be observed in the first phase (reaching

the object), this stage occurs when one of the manipula-

tors is currently holding the cube and the second one is

approaching to gain a direct contact with the other side

of the cube. Then, after the contact, grasping phase be-

gins. The visible oscillations occur due to arms and Ru-

bik’s cube compliance. Once the cube is grasped firmly

the torque stabilizes (Fig. 6). The rapid change in torque

appears when the rotation of the cube face is initiated

(turn phase), because initially the rotated face was jam-

med – this can be seen from the plot. In the release phase

the gripper is opened, and the closed kinematic chain is

disjoined.

5. Conclusion

In this paper, a framework for the description of two-

arm/hand manipulation task based on the definition of a pri-

ori specified manipulation skills was proposed. The whole

task was decomposed into a set of subtask each of which

is resolved by a set of manipulation skills. To manage

the task or environment variations the skills were param-

eterized. The parameters are generally related to the task

variations, such as: type of a motion, grasping rule, an

initial and final points, etc. Rubik’s cube solving problem

was used as a 3D manipulation task using two-arm robot

system with diverse sensors such as vision, force/torque,

tactile sensors. The manipulation task was implemented in

the MRROC++ framework.

References

[1] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview

of dexterous manipulation” in Proc. IEEE Int. Conf. Robot. Autom.

ICRA 2000, San Francisco, USA, 2000, pp. 255–262.

[2] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,

K. Welke, J. Schröder, and R. Dillmann, “Toward humanoid ma-

nipulation in human-centred environments”, Robot. Autonom. Sys.,

vol. 56, no. 1, pp. 54–65, 2008.

[3] A. G. Billard, S. Calinon, and F. Guenter, “Discriminative and adap-

tive imitation in uni-manual and bi-manual tasks”, Robot. Autonom.

Sys., vol. 54, no. 5, pp. 370–384, 2006.

[4] Ch. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi,

D. V. Dimarogonas, and D. Kragic, “Dual arm manipulation –

a survey”, Robot. Autonom. Sys., vol. 60, no. 10, pp. 1340–1353,

2012.

[5] W. Szynkiewicz and J. Blaszczyk, “Optimization-based approach to

path planning for closed-chain robot systems” Int. J. Appl. Mathem.

Comp. Sci., vol. 21, no. 4, pp. 659–670, 2011.

[6] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dill-

mann, “Humanoid motion planning for dual-arm manipulation and

re-grasping tasks”, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Sys.

IROS 2009, St. Louis, MO, USA, 2009, pp. 2464–2470.

[7] R. Zöllner, T. Asfour, and R. Dillmann, “Programing by demonstra-

tion: Dual-arm manipulation tasks for humanoid robots”, in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Sys. IROS 2004, Sendai, Japan,

2004, vol. 1, pp. 479–484.

[8] Y. Guiard, “Asymmetric division of labor in skilled bimanual action:

the kinematic chain as a model” J. Motor Behav., vol. 19, no. 4,

pp. 486–517, 1987.

[9] C. Zieliński, W. Szynkiewicz, T. Winiarski, M. Staniak, W. Cza-

jewski, and T. Kornuta, “Rubik’s cube as a benchmark validating

MRROC++ as an implementation tool for service robot control sys-

tems”, Industr. Robot: An Int. J., vol. 34, no. 5, pp. 368–375,

2007.

[10] C. Zieliński and T. Winiarski, “Motion generation in the MRROC++

robot programming framework”, The Int. J. Robot. Res., vol. 29,

no. 4, pp. 386–413, 2010.

[11] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge

University Press, 2006.

[12] R. Alami, T. Siméon, and J. P. Laumond, “A geometrical approach

to planning manipulation tasks. The case of discrete placements and

grasps”, in Proc. Fifth Int. Symp. Robot. Res., Cambridge, MA, USA,

MIT Press, pp. 453�-463, 1990.

[13] Ch. Nielsen and L. Kavraki, “A two-level fuzzy prm for manipulation

planning”, in Proc. EEE/RSJ Int. Conf. Intell. Robots Sys. IROS,

Takamatsu, Japan, 2000, pp. 1716–1721.

[14] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-

tion planning with probabilistic roadmaps”, The Int. J. Robot. Res.,

vol. 23, no. 7–8, pp. 729–746, 2004.

[15] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate

motion, manipulation and task planning”, Int. J. Robot. Res., vol. 28,

pp. 104–126, 2009.

[16] G. Milighetti, H. B. Kuntze, C. W. Frey, B. Diestel-Feddersen, and

J. Balzer, “On a primitive skill-based supervisory robot control ar-

chitecture”, in Proc. IEEE Int. Conf. Robot. Autom. ICRA 2005,

Barcelona, Spain, 2005, pp. 141–147.

[17] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient ap-

proach to single-query path planning”, in Proc. IEEE Int. Con-

ference Robot. Autom. ICRA 2000, San Francisco, USA, 2000,

pp. 995–1001.

[18] E. Niewiadomska-Szynkiewicz and M. Marks, “Software Environ-

ment for Parallel Optimization of Complex Systems”, in Applied

Parallel Scientific Computing, Lecture Notes in Computer Science

LNCS 7133, K. Jonasson, Ed. Springer, 2012, pp. 86–96.

[19] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review”,

in Proc. IEEE Int. Conf. Robot. Autom. ICRA 2000, San Francisco,

CA, USA, 2000, pp. 348–352.

[20] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zoellner, “Incre-

mental learning of tasks from user demonstrations, past experiences,

and vocal comments”, IEEE Trans. Sys. Man, Cybernet., Part B,

vol. 37, no. 2, pp. 418–432, 2007.

[21] T. A. Henzinger, “The theory of hybrid automata”, in Proc. Eleventh

Ann. IEEE Sympo. Logic Comp. Sci. LICS’96, New Brunswick,

USA, 1996, pp. 278–292.

[22] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework

for hybrid control: Model and optimal control theory”, IEEE Trans.

Autom. Contr., vol. 43, pp. 31–45, 1998.

[23] W. Szynkiewicz, C. Zieliński, W. Czajewski, and T. Winiarski, “Con-

trol Architecture for Sensor-Based Two-Handed Manipulation”, in

CISM Courses and Lectures – 16th CISM-IFToMM Symposium on

Robot Design, Dynamics and Control, RoManSy’06, T. Zielińska and

C. Zieliński, Eds., no. 487, pp. 237–244. Wien, New York: Springer,

2006.

[24] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction

to Robotic Manipulation. CRC Press, 1994.

[25] C. Zieliński, W. Szynkiewicz, and T. Winiarski, “Applications of

MRROC++ robot programming framework”, in Proc. Fifth Int.

Worksh. Robot Motion Control RoMoCo’05, Dymaczewo, Poland,

2005, pp. 251–257.

61



Wojciech Szynkiewicz

Wojciech Szynkiewicz re-

ceived Ph.D. degree in Robotics

in 1996 from the Warsaw Uni-

versity of Technology (WUT).

He is an Assistant Professor

employed in the Institute of

Control and Computation En-

gineering of WUT. From 1999

to 2003, he was the Deputy

Director and Secretary to the

Scientific Council of the Re-

search Center for Automation and Information-Decision

Technology-CATID. His research activities concentrate on

multi-robot/multi-agent systems, motion planning, auto-

nomous mobile robots, robot controller structures, and

real-time and distributed systems. He works on sensor-

based motion planning and control algorithms for multi-

robot systems, including service, personal and mobile

robots.

E-mail: W.Szynkiewicz@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00–665 Warsaw, Poland

62


