
Paper Quality Aware Virtual Service

Delivery System
Mariusz Fraś and Jan Kwiatkowski

Wrocław University of Technology, Wrocław, Poland

Abstract—The problem of providing support for quality of

service (QoS) guarantees is studied in many areas of infor-

mation technologies. In recent years the evolution of software

architectures led to the rising prominence of the Service Ori-

ented Architecture (SOA) concept. For Web-based systems

there are three attributes that directly relate to everyday per-

ception of the QoS for the end user: availability, usability,

and performance. The paper focuses on performance issues

of service delivery. The architecture of Virtual Service De-

livery System (VSDS), a tool to serve requests for synchro-

nized services is presented. It is proposed suitable monitoring

technique used for estimation of values of service parameters

and allocation of communication and execution resources by

means of service distribution. The paper also presents re-

sults of experiments performed in real environment that show

effectiveness of proposed solutions.

Keywords—quality of services, service virtualization, service re-

quest distribution.

1. Introduction

For Web-based systems there are three attributes that di-

rectly relate to everyday perception of the quality of ser-

vice for the end user: availability, usability, and perfor-

mance. The performance issues of information systems are

very widely explored in different contexts. For SOA-based

systems solutions concerning the quality of services have

been generally developed in the context of Web services,

usually proposing useful standards for quality of service

mechanisms, such as WS-Policy [1] and WSLA [2]. To

support the quality of service delivery some selection of

service algorithms are also proposed. For example in the

work [3] the service selection based on utility function on

attributes assigned to services (such as price, availability,

reliability and response time) has been proposed. Most of

these works assume that values of service parameters does

not change dynamically.

On the other hand the quality of services can be consid-

ered in the context of the quality of the resource utiliza-

tion. Among the others the virtualization is already being

used as a common and proven way to decrease the overall

hardware needs and costs, however still the hardware uti-

lization is around 20% and storage utilization does not go

above 60% [4]. Using virtualization gives very promising

results, but as stated in [5] it is still not enough. Virtualiza-

tion stopped and is not pushing forward. Mission critical

services are used as before due to the easier maintenance,

controlling and monitoring. What is more, reduced bud-

gets made it much more complicated for real virtualization

adaptation since - especially at the beginning – costs of im-

plementation are higher than those of keeping everything

as is.

In the paper the Virtual Service Delivery System (VSDS),

a tool for efficient allocation of communication and execu-

tion resources to serve requests for synchronous services

and service monitoring during its execution is presented.

The service requests are examined in accordance to the

SOA request description model. The functional and non-

functional requirements in conjunction with monitoring of

execution of services and communication links performance

data are used for requests distribution and for resource al-

location. At the lower layer virtualization is used to control

efficient resource allocation to satisfy service requests.

The paper is organized as follows. Section 2 briefly de-

scribes the main ideas used during designing and develop-

ing presented in the paper Virtual Service Delivery System.

In the Section 3 the main service quality issues are dis-

cussed. The architecture and functionalities of the VSDS

are presented in Section 4. Section 5 describes the ways

how service monitoring and evaluation the values of ser-

vice parameters is done by the Broker and Virtual Server

Manager (VSM), two components of VSDS. In the next

section results of the first experiments performed on the

implemented system are presented. Finally, Section 7 out-

lines the work and discusses the further works.

2. The Concept of Quality Aware

Service Delivery

The concept of effective and quality-aware infrastructure is

based on the idea of Virtual Service Delivery System capa-

ble to handle client’s requests taking into account service

instance non-functional parameters.

The main components of the system are network service

broker (further called Broker) and Virtual Server Manager.

They are built as a component of a SOA. The main as-

sumptions for operation of both modules are:

– the Broker delivers to clients the set of J services (so

called atomic services) as j, j ∈ [1,J],

– the Broker knows execution systems esm,m ∈ [1,M],
where real services (service instances) are available,

– the Broker monitors execution of client’s requests and

collects the monitoring data,

29



Mariusz Fraś and Jan Kwiatkowski

– the Broker acts as a service proxy – it hides real

service instances, and distribute client’s requests for

services to proper instances according to some dis-

tribution policy,

– the VSM is responsible for creation of service in-

stances,

– the VSM is responsible for service execution,

– the VSM offers the access to hypervisor actions that

is independent on any used virtualization system by

using libvirt toolkit,

– the VSM offers information about particular physical

servers as well as running virtual service instances.

– the VSM is responsible for monitoring of executed

services and execution environments (servers) includ-

ing running of servers virtual machines.

The Broker implements the Virtual Service Layer (VSL).

The VSL (Fig. 1) virtualizes real services available on ser-

vice execution systems (servers). The VSM manages virtu-

alized computational resources. Both layers are defined as

the tuple < ES,CL,AS, IS >. ES = {es1, . . . ,esm, . . . ,esM}
is the set of execution systems esm, where: m ∈ [1,M],M –

the number of execution systems. The execution systems

can be placed at different geographic locations. CL =
{cl1, . . . ,clm, . . . ,clM} is the set of communication links clm
from the Broker to execution systems. The Broker delivers

the set of J atomic services AS = {as1, . . . ,as j, . . . ,asJ}.
Each atomic service as j available at the Broker is mapped

to one or more known instances that form instance sub-

set IS j. Instances of given atomic service can be localized at

different execution systems esm. IS = {IS1, . . . , IS j, . . . , ISJ}
is the set of all instances of services, where: IS j is the sub-

set of instances of service as j, is j,m is the m-th instance

Fig. 1. The layers of Virtual Service Delivery System.

of j-th service as j localized in given execution system and

M j is the number of instances of j-th service.

The real services are hidden from client point of view. The

Broker advertises virtual services VS j in accordance with

SOA paradigm, and handles client’s request for services.

The client deals with virtual service (virtualized atomic

service as j) that can be executed at different locations.

The Broker collects essential data about service execution.

It also monitors values of parameters of execution envi-

ronment, i.e., communication links clm and execution sys-

tems esm. The main advantage of virtualization of services

is that according to values of service instance parameters

some quality based policy of service delivery can be ap-

plied. The client of the system C calls the Broker for a ser-

vice, and the Broker distribute the request to one, chosen

service instance to ensure proper values of service quality

parameters.

At the VRL the management of available execution systems

at the lowest level is performed. VSM that implements

VRL is responsible for efficient allocation of execution

resources to services using virtualization techniques [6].

There are two aims of using VRL, which can, and in most

cases would be, mutually exclusive. First of all the man-

ager shall provision the instances of services with proper

resources to ensure the fulfilment of requirements for re-

quested service. Secondly it shall increase the utilization of

the available resources, so that overall capacities are used to

the highest possible degree. Managing the resources can be

described in three distinct steps: provisioning of resources,

adjusting and freeing the resources.

The largest difference between VSM and other similar so-

lutions is coming from another targets standing behind our

proposition. While most of other solutions are strictly de-

voted to manage the infrastructure, VSM is devoted to prop-

erly dispatch the requests, placing the virtualization man-

agement on the second place. Nonetheless one can point

a number of similarities starting from common modular ar-

chitecture with possibilities to customize the software eas-

ily. Furthermore just like other solutions libvirt is used to

overcome the problem with communication with various

hypervisors.

The role of VSM as a dispatcher means that some of the

functionalities are redundant. Under such situation one may

put offering Amazon compatible API, billing integration,

number of control panels and so on. On the other hand the

functionality is extended to understand the SOAP messages,

identify which services are capable of performing them and

finally running those services and dispatching the requests.

Analogical software is found as an addition on top of Open-

Nebula and offers service orchestration and deployment or

service management as a whole [7].

The instances of given atomic service are functionally the

same and can differ only in the values of non-functional pa-

rameters ψ(is j,m) = {ψ1

j,m, . . . ,ψ
f
j,m, . . . ,ψF

j,m}, where ψ
f
j,m

is f -th non-functional parameter of m-th instance of j-th

atomic service. Two kinds of service parameters may be

distinguished: static parameters - constant in long period

30



Quality Aware Virtual Service Delivery System

of time (i.e., service price), and dynamic parameters – vari-

able in short period of time, e.g. the completion time of

execution of the service instance may be the case. From the

client point of view, the very important service parameter

is response time, which is usually quite variable parame-

ter. In the network environment it consists actually of two

components: data transfer time and execution time on the

processing server (later called execution time for short).

3. Service Quality Issues

In order to assure proper quality of service delivery the

three requirements are to be considered: effective and suit-

able service parameters monitoring and estimation, proper

service request distribution according to current service pa-

rameters estimation and resource utilization, and service

execution resources management.

The quality of network services depends on communica-

tion link properties and effectiveness of request process-

ing on the server. Both affect the quality of each ser-

vice instance separately and can be expressed by values

of service instance non-functional parameters. To satisfy

requested service parameters distribution of the request to

proper service instance must be performed. The problem

of service request distribution can be stated using criterion

function Q

is j,m∗ ← argm(ψ1

j,m, . . . ,ψ
f
j,m, . . . ,ψF

j,m) . (1)

It is the task to select such instance is j,m∗ to serve request

for service as j that criterion Q is satisfied. In the partic-

ular case it is the task of finding extreme of the criterion

function.

To satisfy proper service instance selection the current val-

ues of each instance parameters should be known. This

requires methods of estimation and/or forecasting of values

of such parameters. The Broker uses two approaches: sta-

tistical methods based on time series analysis and method

based on artificial intelligence approach – using fuzzy-

neural network [8], [9] and monitoring of parameters

characterizing execution environment. For both approaches

the estimation of values of previous executions is required

what is described in the subsequent sections.

On the basis of forecasted and/or monitored values of pa-

rameters several approaches to service distribution algo-

rithms can be adopted. Generally, the fully controlled en-

vironment case and not fully controlled environment case

can be distinguished. The first one refers to the use of

dedicated links and VSMs in all execution systems. The

second one is when there is no full control of communica-

tion links. It is the most common condition for delivery of

service in the Internet according to SOA paradigm.

For the VSDS the best effort based algorithms for the un-

controlled environment are implemented by now. Two most

commonly considered service parameters are used: data

transfer time and completion time of service execution in

the processing server. The selection of service instance

for requested service as j is performed according to cri-

terion (2)

is j,m∗ ← argmmin(T j,m
PROCESS + T

j,m
TRANSFER) , (2)

where T
j,m

PROCESS is execution time of service instance is j,m

and T
j,m

T RANSFER is data transfer time for fulfilling request for

service instance is j,m.

The distribution algorithms that takes under consideration

the completion time of service execution require estima-

tion and forecasting of values of these parameters. As

mentioned above, the Broker uses time series analysis

based forecasting or fuzzy-neural network based forecasting

shortly described later.

4. The VSDS Components

The two main VSDS components, the Broker and Virtual

Server Manager, are built as a components of a SOA-based

system. The architecture of VSDS is very flexible and gives

opportunity to compose the processes from services pub-

licly or privately available.

The Broker handles SOAP requests for services. The vir-

tual services provided by the Broker are described using

WSDL (Web Service Definition Language) standard and

are published in accordance to SOA paradigm.

The client’s requests are analyzed and checked versus the

information about possible places of execution as well as

values of non-functional parameters of service execution

at each location. In order to support evaluation of values

of service instance parameters the Broker performs active

monitoring of execution environment, i.e., values of param-

eters of communication links to execution systems (servers)

and server state parameters. Execution system state moni-

toring is done with use of SOAP messages.

The above functionality is performed by the following mod-

ules of the Broker (Fig. 2):

• Controller – the main control unit performing service

request distribution. It makes the decision on the

basis of values of service instance parameters derived

from Estimator/Predictor module;

• Service Monitor – monitors the execution of services

at the TCP session level, and records the values of

executed service parameters;

• Environment Monitor – makes active measurement

of values of execution environment parameters – the

server state and values of communication link param-

eters;

• Estimator/Predictor – the module which estimates

values of essential parameters characterizing the ser-

vice and instances with use of TCP session level data,

and performs prediction of values of parameter on the

basis of historic data and current values of environ-

ment parameters.

31



Mariusz Fraś and Jan Kwiatkowski

Fig. 2. The architecture of the Broker.

VSM offers two interfaces to interact with the virtualized

environment. One is XML-RPC based that is used mainly

for communication between internal VSM modules. More

important is the possibility to direct SOAP calls to ser-

vices to be handled by the VSM. Each and every request

is then redirected to proper service instance based on the

requirements it has. Proper instance is either found from

the working and available ones or the new one is started to

serve the request.

Such approach gives the possibility to manage the virtu-

alization automatically with minimal manual interaction.

The architecture of the VSM is presented in Fig. 3, as for

now there is a number of independent modules offering the

XML-RPC interfaces to interact with them.

• Manager – manages all other modules and routes the

requests to the services,

• Virtualization Unit – offers the access to hypervisor

actions, uses libvirt to execute commands what gives

the independence from particular hypervisor,

• Database – module used to store monitoring data, im-

ages of available services (capsules) and information

about available execution systems,

• Monitoring Unit – offers information about particular

physical servers (execution system) as well as about

available virtual service instances,

• Matchmaker – module responsible for the properly

match the requirements of the request with capabili-

ties of the environment and current state of it.

Fig. 3. The architecture of the Virtual Server Manager.

Each SOAP request coming to the system is directed to

the Manager module which extracts requirements passed

in the header section of the message to properly handle

the request. Process of request handling starts with SOAP

message coming from outside through the Broker that is an

actor initiating the process service execution. This is in ac-

cordance to the general idea of placing VSM inside Service

Oriented Architecture where Broker is common module for

such purpose. The Manager module has a role of being the

gateway to the system and hides all of the heavy lifting

from outside world. It extracts the requirements passed in

the SOAP message, in its header section. The requirements

are extracted and converted to simple text form which is

used by the Matchmaker module.

Handling the request can lead to one of three situations.

There is a running service instance, which can perform it

and it will be returned as the target to which the SOAP

request shall be forwarded. There is no running service in-

stance, but there is an image which satisfies the conditions.

In such a case the image will be instantiated and it will

be used as the one to perform the request. Last possibility

is the lack of proper service and image in which case the

error will be thrown and finally returned as a SOAP Fault

message to the client.

As it was already mentioned, virtualization management is

based on open source libvirt toolkit. It offers the virtu-

alization API supporting number of the most popular hy-

pervisors. From the point of view of this paper it is less

important how technically the management is performed.

It is more important to note what are the capabilities of the

management and how it is understood here. The virtualiza-

tion management does not mean simply to start or stop the

virtual machine, it is much more complex problem. The

complexity is coming first of all from the decision mak-

ing problem. Firstly the correct service instance or service

image should be found, by means of fulfilling specified in

the service request requirements. In the case when the new

instance of service has to be created the proper resources

should be allocated and finally make processing as minimal

footprint as possible.

Currently, using VSM the following features are available:

– mechanism for the creation and use of services – us-

ing the SOA paradigm and virtualization; this makes

services independent from the available hardware ar-

chitecture, and ensures the efficient use of hardware

resources;

– method of delivery of services in a virtual machine

environment – are taken into account the perfor-

mance parameters of the virtual machine, service and

equipment on which a virtual service instance is in-

stalled;

– tool architecture and its constituent modules is open,

communication takes place via defined interfaces us-

ing XML-RPC for internal communication and the

SOAP protocol for external communication.

32



Quality Aware Virtual Service Delivery System

5. Evaluation of Values of Service

Parameters

5.1. Service Monitoring and Estimation in the Broker

The Broker performs request distribution based on the ac-

tual values of service instance parameters forecasted from

the monitored and collected data of previous executions.

The two basic service parameters, the data transfer time

and completion time of service execution in the processing

server, are obtained in two ways: with use of SOAP based

cooperation between the Broker and the system which exe-

cutes the service instance, and with use of the monitoring

of TCP session which handles service request to the pro-

cessing server.

In the first case the execution system must be able to inter-

pret the specific additional data in Broker calls for ser-

vice, and include additional specific data in service re-

sponse. The execution systems controlled by VSM has such

ability.

The Broker records the arrival time of each request for

the service, the start time of call for service to the server

which executes the service instance, and the time of end

of processing of the service response from the server. The

difference of the last two times establishes the total time of

the request processing. The execution time of the service

instance (processing time in the server) is delivered in the

service response SOAP message. The service data transfer

time is assumed as a difference between the total time of

the request processing and service instance execution time.

This time includes the time of resolving DNS address of

processing server and all pre-transfer operations. However,

these components of request intervals are measured by the

Broker and can be excluded as described latter.

When cooperation between the Broker and the execution

system is not possible, the values of essential service pa-

rameters are obtained with use of the analysis of the TCP

session that handles the Broker’s request for the service to

the execution system.

The client request arrives at the moment tRA (Fig. 4). The

interval TDM is the time of choosing the service instance

(or server) that will process the request. Starting from this

point the Broker measures the following time intervals of

TCP session of call to processing server:

– the time of resolving DNS name address TDNS ,

– the time of establishing TCP connection (TCP Con-

nect time) TTCPC,

– the time to receive the first byte of transferred data

from the server executing the service TFBYT E ,

– the total time of the request processing TSUM =
TFBYT E + TDTRANS.

The Broker also records the number of sent bytes BS and

the number of received bytes BR during the session.

It is assumed, that services are delivered using SOAP stan-

dard and the server responds after receiving all necessary

Fig. 4. The TCP session of handled client request.

data from the Broker. If we assume that transfer rate to

and from the server are similar (what can be not true in

general case), the service execution time TPROCESS can be

evaluated with Eq. (3):

TPROCESS = TFBY T E −TDNS−
BS

BR

· (TSUM +

−TFBYT E)−2 ·TTCPC . (3)

Very often the request for service does not transmit other

data in addition to those that fully identifies the service,

so the time of this transmission can be neglected. Because

the processing servers are registered in the broker earlier

their IP addresses can be known, and the TDNS time can be

usually also neglected. In such case the service execution

time TPROCESS is calculated according to Eq. (4):

TPROCESS = TFBYT E −2 ·TTCPC . (4)

The data transfer time is the difference between the total

time of the request processing and service execution time

TPROCESS. The service delivery time (for the client which

requests the service from the Broker) includes also the de-

cision making time TDM , which according to distribution

algorithm may be neglected or not.

In more general case some pre-transfer operations (i.e., SSL

connect/handshake) must be also taken into account. The

Broker can measure such operations too. It must be noted,

that in case of lack of cooperation between the Broker and

the execution system the estimation procedure is possible

only when data transfer time from the Broker to the server

is negligible, or data transfer rates to and from the server

can be compared, or the data transfer time to the server can

be measured separately.

Forecasting of values of service execution time and data

transfer time for incoming requests is also performed in

First, with use of time series analysis, i.e.:

– moving average of recorded times of previous execu-

tions:

t̂ n
j,m =

1

L

k−L

∑
k=n−1

wk · tk,

33



Mariusz Fraś and Jan Kwiatkowski

– moving median of recorded times of previous execu-

tions:

t̂ n
j,m = med(tk−1,tk−2, . . . ,tk−L),

where: t̂ n
j,m – forecasted time for n-th request served by

service instance is j,m,L – the length of the observation

window, wk – window function, tk – the times of previous

requests served by instance is j,m,n – the index of current

request.

When cooperation with the server is possible, i.e., when

VSM is applied, the evaluation of service transfer and ex-

ecution times can be performed with use of the concept of

fuzzy-neural controller built with use of 3-layered fuzzy-

neural network [8]–[11].

Fig. 5. Modeling service instances as fuzzy-neural controllers.

The fuzzy-neural controllers model each communication

link and each service instances separately (Fig. 5). The

adaptive model, described in detail [9] evaluate the output

value (transfer or execution time) using two input values of

parameters characterizing communication link or execution

system. The input of the communication link model is, by

now, link throughput of sample value of data downloaded

from execution system, and link latency (namely TCP Con-

nect Time), both derived with use of measurements and

time series analysis. The input of service instance model

can be any of monitored parameter by VSM or the counted

number of being processed calls in the server.

5.2. Service Execution Monitoring in Execution System

The VSM is equipped with Monitoring Unit that is able to

collect different parameters related to service execution and

state of execution systems, depending on Broker request.

Monitoring agent shall accompany with any currently active

service. The frequency of measures or agreed values of

attributes are present in the contract thus the agent shall

simply check if the operations are done accordingly.

To ensure efficient resource utilization, incoming requests

to VSM are attributed to execution classes. The functional

and non-functional requirements are considered. The VSM

exploits the combining the service orientation with auto-

matic management using constraints attached to the re-

quests what increases overall reliability, response time and

constraints fulfilment, reducing the need for manual work

in the same time.

Currently two different ways of performing monitoring can

be in use. First solution based on using Munin, a tool,

which is used to monitoring service execution and state of

execution systems. Unfortunately this approach although

highly efficient does not allow direct monitoring of vir-

tual machines used for service instance execution. It’s why

it was decided to introduce an alternative way of monitor-

ing. The second available solution based on using Xen-stat,

which is an integral part of the package Xen virtualizer.

Using Xen-stat allows to monitor the server and each vir-

tual machine at intervals specified by the administrator. In

particular, it is possible to monitor:

– CPU consumption by each virtual machine indi-

vidually,

– CPU usage on the server,

– RAM memory usage of each virtual machine indi-

vidually,

– RAM usage on a server.

For storing monitoring data simple MySQL database is

used. Implemented database consists of three tables:

– measurements – contains information about the vir-

tual machine load,

– capsules – contains data about virtual machines,

– servers – contains information about the server and

its current load.

To collect and record information about the system load

special module implemented in Perl is used. The module

is run every minute and takes measurements at intervals set

by the administrator. Data from the monitoring of virtual

machines and servers available are displayed by Xentop

command, and then the results are parsed and stored into a

database. Then it is possible to visualized the results of the

monitoring of resource usage by running virtual machines

using Xen Graph tool. Monitoring data collected by the

VSM in the local database are also available to the outside

through accepted by the VRM SOAP messages.

Concluding current solution is very flexible because de-

pending on the needs of monitoring the system usage and

service execution gives the opportunity of using two differ-

ent tools – Munin and Xen-stat.

6. Effectiveness Tests

In the preliminary experiments the selected proposed so-

lutions were tested in real environment – in the Internet.

34



Quality Aware Virtual Service Delivery System

The broker has been implemented as fully operational tool

in Java technology. It supports all described functionalities

and serves its services in accordance with SOA standards.

The experiments has been focused on testing usefulness

of monitoring and evaluation of service instance execution

time, however data transfer time was also tested.

The Broker served a number of clients requesting fixed set

of network services from five servers located in different

countries of Europe. There were established six test ser-

vices. Each service was running on each server giving

a total of 30 service instances. The services generated dif-

ferent amount of data to transfer from 50 to 200 kilobytes.

Service instances were set different values of non-functional

parameters. On each server machine the services run in

www server with established maximum number of parallel

threads for serving clients requests. Each service instance

was implemented in that way that have had minimal time of

processing not including any server service handling over-

head (e.g., queuing delay). The service differed in basic

execution time with one another and the service instances

of the same service differed in basic execution time de-

pending on instance location. The times varied from 2 to

6 seconds.

The clients which requested services and the Broker were

located at Wroclaw University of Technology campus. The

servers that run service instances were located in five dif-

ferent countries:

– planetlab2.rd.tut.fi, (193.166.167.5), Finland,

– ple1.dmcs.p.lodz.pl, (212.51.218.235), Poland,

– planetlab1.unineuchatel.ch, (192.42.43.22), Switzer-

land,

– planetlab4.cs.st-andrews.ac.uk, (138.251.214.78), UK,

– planet1.unipr.it, (160.78.253.31), Italy.

The research scheme was the following:

– the clients requested all six services in a round-robin

fashion, each client in a different order,

– the number of clients increased from 0 to 80 during

3 hour test,

– the requests were distributed by the Broker according

to round-robin algorithm,

– it were measured essential moments of each TCP

session handling requests for services, and recorded

service instance execution times received in server

responses,

– for each request the fuzzy-neural controller calculated

forecasted value of service instance execution time

and data transfer time,

– estimated and forecasted times were compared

against measured ones.

All requests transmitted no additional data to the server. It

was assumed that the true real values of service parame-

ters were: service instance execution time measured in the

server TPROCESS−REAL, and the difference of the total time

of request processing TSUM and the service instance exe-

cution time measured in the server TSUM−TPROCESS−REAL,

assumed as real value of data transfer.

The test showed that none of five servers were overloaded

by requests for services. Figure 6 shows Mean Absolute

Percentage Error (MAPE) calculated for estimation of ser-

vice execution time TPROCESS, using monitoring of TCP

session only. The figure shows MAPE for all 30 instances

grouped in the following manner: first six instances from

first server (each of different service), next six instances

from second server, and so on.

Fig. 6. The MAPE of TPROCESS time estimation for all service

instances.

The total MAPE for all estimation is very good, and is

equal 1,31%. It is interesting to see the visible difference

of error level for particular servers. For server 2 (instances

7 to 12) the total MAPE is the smallest and is 0,51%.

For server 3 (instances 13 to 18) the total MAPE is the

largest and is 2,04%. This could be caused by different

server queue thresholds (the number of requests processed

in parallel), however should be thoroughly examined.

Figure 7 shows effectiveness of forecasting service instance

execution times TPROCESS with use of fuzzy-neural con-

troller. The total error of prediction MAPE is equal 1,32%.

This is very good value. However, it must be noted that

experiment was performed for stable server operation. In

this case no obvious dependency of error level on particular

server is visible.

Fig. 7. The MAPE of fuzzy-neural forecasting of TPROCESS time

for all service instances.

35



Mariusz Fraś and Jan Kwiatkowski

The forecasting of data transfer times were performed us-

ing moving average method and with use of fuzzy-neural

controller. The forecasting errors were much greater than

forecasting execution times. The total MAPE for fuzzy-

neural controller was 13.5% (for weighted moving average

even greater, about 19.3%).

It was due to the fact, that very small amount of data was

transmitted and there were short transfer times – they var-

ied from about 50 ms to hundreds of milliseconds. At the

same time it was found that one of the link (to server 2 –

service instances 7 to 12) was apparently problematic and

significantly expanded total error as shown in Fig. 8. It

must be noted that preliminary experiment was not focused

on testing fuzzy-neural controller for data transfer time fore-

casting, and learning parameters of the controller were not

tuned too. When this conditions will be met the better

forecasting is expected.

Fig. 8. The MAPE of fuzzy-neural forecasting of data transfer

time for all service instances.

To test the performance of the VSM the test environment

has been created. Most of the code has been written in

Python (modules), sample services as well as sample re-

quests are generated using Perl. Tests in current state has

been limited to the CPU usage. The services are dummy

and all they do is to utilize certain capacity of the CPU

during certain amount of time. The solution to make this

happen is somewhat not exact and limits the usage prop-

erly when set above 5%. It uses simple method to increase

the CPU usage to 100% forking Perl processes and starting

never ending loops. Such process would always consume

all of the processing power so it is being limited using

CPUlimit tool.

The number of CPU’s to be stressed is fixed in the code, but

it is not a problem to pass this number as an argument to

the script. Time and CPU usage are limited in the directly

in the dummy services implementation. It is done by first

starting the script as a new process. It’s ID is passed to the

CPUlimit tool with desired usage, e.g., 50% and as the last

step after desired number of seconds the process is killed

to free the resources.

The first performed experiments using testing environment,

in case when VSM is lack of automatic resource freeing

are very promising. During these experiment called ser-

vice is configured to consume 80% of CPU for 60 seconds

what simulates some relatively exhausting operation. The

requests are incoming almost in the same time and they

require at least 30% CPU capacity to be free. The out-

come of such a simple simulation is increasing number of

instances of the service to handle sudden peak in requests,

yet there is no mechanism to limit the number of the in-

stances afterwards.

7. Conclusion

Quality of services in Service Oriented Architectures yields

a number of issues which involves suitable monitoring and

estimation of values of service parameters, distribution of

service requests to selected execution systems running in-

stances of services, forecasting values of service parameters

and virtualization management. Automation of such pro-

cess requires well designed architecture and procedures of

service quality aware system.

The presented solution for solving all mentioned problems

are still under study. First experiments are very promising.

The effectiveness of service request distribution algorithms

depends on precise evaluation of values of service instance

parameters. The two basic ones, execution time and data

transfer time, are the key to satisfy Quality of User Experi-

ence (QoE). The experiments showed that the evaluation of

execution time is very good. However, the case of sending

large amount of data from the client must be also tested.

The evaluation of data transfer time is to be more explored

and requires well prepared extensive experiments.

It is worth to note that presented solutions are implemented

as fully operational tool ready for use in real environment

that applies SOA standards and Simple Object Access Pro-

tocol (SOAP).

Acknowledgment

The research presented in this paper has been partially sup-

ported by the European Union within the European Re-

gional Development Fund programs no. POIG.01.01.02-00-

045/09-00 and POIG.01.03.01-00-008/08.

References

[1] D. Box et al., “Web Services Policy Framework (WS-Policy)”, 2003

[Online]. Available: http://public.dhe.ibm.com/software/

[2] A. Keller and H. Ludwig, “The WSLA framework: specifying and

monitoring service level agreements for web services”, J. Netw. Sys.

Manag., vol. 11, no. 1, 2003.

[3] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang H, “QoS-aware middleware for Web services composi-

tion”, IEEE Trans. Softw. Engin., vol. 30, no. 5, 2004.

[4] P. Sargeant, “Data centre transformation: How mature is your it?”,

2010 [Online]. Available: http://www.gartner.com/it/

[5] B. Snyder, “Server virtualization has stalled, despite the hype”, In-

foWorld, 2010 [Online]. Available: http://www.infoworld.com

[6] D. Rosenberg, “Analyst: Virtualization management key to success”,

2010 [Online]. Available: http://news.cnet.com/8301-13846 3-

10468343-62.html

36



Quality Aware Virtual Service Delivery System

[7] P. Sempolinski and D. Thain, “A comparison and critique of Euca-

lyptus, OpenNebula and Nimbus”, C, in Proc. IEEE 2nd Int. Conf.

Cloud Comput. Technol. Sci. CloudCom 2010, Indianapolis, USA,

2010.

[8] L. Borzemski, A. Zatwarnicka, and K. Zatwarnicki, “Global dis-

tribution of HTTP requests using the fuzzy-neural decision-making

mechanism”, in Proc. 1st Int. Conf. Comp. Collective Intelligence,

Lecture Notes in AI, Springer, 2009.

[9] M. Fras, A. Zatwarnicka, and K. Zatwarnicki, “Fuzzy-neural con-

troller in service request distribution broker for SOA-based systems”,

in Proc. Int. Conf. Computer Networks 2010, A. Kwiecien, P. Gaj,

and P. Stera P., Eds. Berlin, Heidelberg: Springer, 2010.

[10] L. C. Jain and N. M. Martin, Fusion of Neural Networks, Fuzzy Sets,

and Genetic Algorithms: Industrial Applications. CRC Press LLC,

London, 1999.

[11] E. Mamdani, “Application of fuzzy logic to approximate reasoning

using linguistic synthesis”, IEEE Trans. Comp., vol. C-26, iss. 12,

1977.

Mariusz Fraś received M.Sc.

in Electrical Engineering in

1989 and in Computer Sci-

ence in 1991, both in Wrocław

University of Technology. In

2004 he received Ph.D. in

Computer Science in Institute

of Informatics, Wrocław Uni-

versity of Technology. Since

2004 he works as an Assistant

Professor at the Faculty of

Computer Science and Management, Wrocław University

of Technology. His area of scientific interest includes

distributed processing and Internet services. His main

area of interest is parallel and distributed processing in

computer network environment, the quality of network

services, and Internet research and the performance of Web

services.

E-mail: mariusz.fras@pwr.wroc.pl

Wrocław University of Technology

Wybrzeże Wyspiańskiego st 27

50-370 Wrocław, Poland

Jan Kwiatkowski received

M.Sc. and Ph.D. in Computer

Science from the Institute of

Technical Cybernetics, Wroc-

ław University of Technology

at 1977 and 1980, respectively.

Since 1980 he works as an

adjunct at the Faculty of Com-

puter Science and Management,

Wrocław University of Tech-

nology. In the years 1987–1998

he acted as a deputy director responsibly for education.

From 2002 to 2004 under sabbatical leave, he worked as

associate Visiting Professor at Math and Computer Science

Department at the University of Missouri, St. Louis.

Since 2007 he acts as Computer Science and Manage-

ment Faculty Dean representative responsible for foreign

students, currently as a Dean’s Plenipotentiary for Inter-

national Relations. His area of scientific interest includes

software engineering and parallel processing. He is mainly

interested in parallel and distributed software design

process, performance evaluation of parallel programs and

cluster/grid computing.

E-mail: jan.kwiatkowski@pwr.wroc.pl

Wrocław University of Technology

Wybrzeże Wyspiańskiego st 27

50-370 Wrocław, Poland

37


