
Paper

Adaptive Distributed Data Storage

for Context-Aware Applications
Elena Burceanu, Ciprian Dobre, and Valentin Cristea

Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania

Abstract—Context-aware computing is a paradigm that re-

lies on the active use of information coming from a variety of

sources, ranging from smartphones to sensors. The paradigm

usually leads to storing large volumes of data that need to

be processed to derive higher-level context information. The

paper presents a cloud-based storage layer for managing sen-

sitive context data. To handle the storage and aggregation of

context data for context-aware applications, Clouds are per-

fect candidates. But a Cloud platform for context-aware com-

puting needs to cope with several requirements: high con-

current access (all data needs to be available to potentially

a large number of users), mobility support (such platform

should actively use the caches on mobile devices whenever

possible, but also cope with storage size limitations), real-time

access guarantees – local caches should be located closer to

the end-user whenever possible, and persistency (for trace-

ability, a history of the context data should remain avail-

able). BlobSeer, a framework for Cloud data storage, is a per-

fect candidate for storing context data for large-scale applica-

tions. It offers capabilities such as persistency, concurrency

and support for flexible storage schema requirement. On top

of BlobSeer, Context Aware Framework is designed as an ex-

tension that offers context-aware data management to higher-

level applications, and enables scalable high-throughput un-

der high-concurrency. On a logical level, the most impor-

tant capabilities offered by Context Aware Framework are

transparency, support for mobility, real-time guarantees and

support for access based on meta-information. On the phys-

ical layer, the most important capability is persistent Cloud

storage.

Keywords—Blobseer, brokers, context, distributed, mobile de-

vices communication.

1. Introduction

Today smartphones are becoming commodity hardware.

They are seen everywhere, as more people realize that hav-

ing more sensing and computing capabilities in every-day

situations is attractive for many reasons. Smartphones are

in fact already used to optimize (e.g., by helping organizing

tasks, contacts, etc.) and assist (e.g., with navigation, find

information more quickly, access online data, etc.) users

with their everyday activities. Their success is the basis for

a shift towards developing mobile applications that are ca-

pable to recognize and pro-actively react to user’s own envi-

ronment. Such context-aware mobile applications can help

people better interact between themselves and with their

surrounding environments. This is the basis for a paradigm

where the context is actively used by applications designed

to take smarter and automated decisions: mute the phone

when the user is in a meeting, show relevant information

for the user’s current location, assist the user find its way

around a city, or automatically recommend events based on

the user’s (possibly learned) profile and interests.

This vision is supported today by the inclusion of context

as an active operational parameter of service provisioning.

For many mobile applications an important requirement is

represented by the active sensing of the operational envi-

ronment, as users expect to receive only relevant content

back on their mobile devices (e.g., when the user accesses

a transportation service he expects to receive a route rel-

evant for current location). The advances in mobile tech-

nologies support the inclusion of context as an active oper-

ational parameter for such applications, as today’s mobile

devices allow the users to acquire and manipulate com-

plex, multifaceted information in real time, and to interact

with each other in seamless ways. The range of appli-

cations using context is increasing rapidly, and it spans

from urban navigation, cultural heritage to entertainment

and peer-to-peer communication. The challenge for such

pervasive applications is how to make them continuously

adapt to dynamic changes in the environment, even when

people move and when the underlying network architecture

can offer only limited services.

To support this, the authors designed the Context Aware

Framework as a middleware to automate the provisioning of

context data to mobile applications. It sits between a persis-

tence layer, where data is actually stored in a Cloud storage

system, and the actual context-aware application running on

the user’s mobile devices, masking the complexity of man-

aging the data. In our vision, a truly context-aware system

is one that actively and autonomously adapts and provides

the appropriate services or content to the users, using the

advantages of contextual information without too much user

interaction. Thus, providing efficient mechanisms for pro-

visioning context-sensitive data to users is an important

challenge for these systems. Context Aware Framework is

designed to support the storage of context data for such

context-aware systems. It manages every problem related

to, for example, the unpredictable wireless network connec-

tivity and data privacy concerns over the network, providing

transparent access to the data to such systems.

The contribution of this paper is twofold: we first introduce

the Context Aware Framework middleware, together with

the design requirements that motivated our choices; we then

58



Adaptive Distributed Data Storage for Context-Aware Applications

present experimental results, supporting our decisions and

illustrating the performance obtained when using Context

Aware Framework.

The rest of the paper is organized as follows. Section 2

presents an overview of the main relevant work in the field.

Section 3 makes an analysis of the main requirements for

context-aware storage systems and presents the architecture

of the Context Aware Framework that we devised following

this analysis. Section 4 presents details of the implemen-

tation, while Section 5 presents evaluation scenarios and

results illustrating the overall obtained system performance.

The paper is concluded in Section 6.

2. Related Work

The ubiquity of mobile devices and sensor pervasiveness

call for scalable computing platforms to store and process

the vast amounts of the generated streamed data. Cloud

computing provides some of the features needed for these

massive data streaming applications. For example, the dy-

namic allocation of resources on an as-needed basis ad-

dresses the variability in sensor and location data distribu-

tions over time. According to the Association for Computer

Operations Management (AFCOM), in year 2011 90.9% of

data center sites used more storage space than they did

three years ago. During that same three-year period, 37%

were able to reduce their staff, and 29% kept their staffing

levels the same. This trend is in large part due to the de-

velopment and implementation of new tools and processes

that have allowed IT departments and data centers to store

massive amounts of data efficiently and inexpensively. The

advent of cloud-based storage systems has had since then

a profound impact on the way businesses collect and store

their information. However, today’s cloud computing plat-

forms lack very important features that are necessary in

order to support the massive amounts of data streams en-

visioned by the massive and ubiquitous dissemination of

sensors and mobile devices of all sorts in smart-city-scale

applications.

Several cross-device context-aware application middleware

systems have been developed previously. In their major-

ity these were Web service-based context-aware systems,

especially the most recent ones. However, there has been

a big variety of middleware systems, developed mainly in

the early 2000, that do not rely on Web service technologies

and are not designed to work on Web service-based envi-

ronments [1]. In this work the authors began by studying

several popular context-aware platforms, considering their

provided functions and particular characteristics. From the

category of non-based on web service context-aware plat-

forms the following could be mentioned.

RCSM [2] is a middleware supporting context sensitive

applications based on an object model: context-sensitive

applications are modeled as objects. RCSM supports situ-

ation awareness by providing a special language for spec-

ifying situation awareness requirements. Based on these

requirements, application-specific object containers for run-

time situation analysis will be generated. RCSM run-

time system obtains context data from different sources

and provides the data to object containers which conduct

the situation analysis.

The JCAF (Java Context Awareness Framework) [3] sup-

ports both the infrastructure and the programming frame-

work for developing context-aware applications in Java.

Contextual information is handled by separate services to

which clients can publish and from which they can retrieve

contextual. The communication is based on Java RMI (Re-

mote Method Invocation). An example of application that

use Java RMI is MultiCaR: Remote Invocation for large

scale, Context-Aware Applications [4]. This application

also address the issue of big data analytics.

The PACE middleware [5] provides context and preference

management together with a programming toolkit and tools

for assisting context-aware applications to store, access, and

utilize contextual information managed by the middleware.

PACE supports context-aware applications to make deci-

sions based on user preferences.

CAMUS is an infrastructure for context-aware network-

based intelligent robots [6]. It supports various types of

context information, such as user, place and environment,

and context reasoning. However, this system is not based

on Web services and it works in a close environment.

SOCAM is a middleware for building context-aware ser-

vices [7]. It supports context modeling and reasoning based

on OWL. However, its implementation is based on RMI.

Web service-based context-aware platforms include the

following.

CoWSAMI is a middleware supporting context-awareness

in pervasive environments [8]. The ESCAPE frame-

work [1] is a Web services-based context management sys-

tem for teamwork and disaster management. ESCAPE ser-

vices are designed for a front-end of mobile devices and the

back-end of high end systems. The front-end part includes

components support for context sensing and sharing that

are based on Web services and are executed in an ad hoc

network of mobile devices. The back-end includes a Web

service for storing and sharing context information among

different front-ends.

The inContext project [1] provides various techniques for

supporting context-awareness in emerging team collabora-

tion. It is designed for Web services-based collaborative

working environments. inContext provides techniques for

modeling, storing, reasoning, and exchanging context infor-

mation among Web services.

Being context-aware allows software not only to be able to

deal with changes in the environment the software operates

in, but also being able to improve the response to the use

of the software. That means context-awareness techniques

aim at supporting both functional and non-functional soft-

ware requirements. Authors of [9] identified three impor-

tant context-awareness behaviors:

– the representation of available information and ser-

vices to an end user,

59



Elena Burceanu, Ciprian Dobre, and Valentin Cristea

– the automatic execution of a service,

– the tagging and storing of context information for

later retrieval.

For massive context data streaming applications, M3 [10]

is a prototype data streaming system that is being realized

at Purdue using Hadoop. M3 eliminates all of Hadoop’s

disk layers, including the distributed file system (HDFS),

and the disk-based communication layer between the map-

pers and the reducers. It proposes a hybrid memory-based

and disk-based processing layer, includes dynamic rate-

based load-balancing and multi-stream partitioning algo-

rithms, and fault-tolerance techniques. However, M3 can

handle only streaming data and does not handle queries

that mix streaming with disk-based data. A context aware-

ness extensible layer for M3 has been demonstrated sepa-

rately in Chameleon [11]. However, Chameleon lacks gen-

eral context-based indexing techniques for realizing context

awareness, thus when the context changes the system can-

not easily augment the query being executed by additional

predicates to reflect that change.

Similar to Context Aware Framework, the author of [12]

present a large scale system, called Federated Brokers, for

context-aware applications. In order to avoid the centralized

design (single point of failure) found in previous papers, the

authors propose a context-aware platform that includes mul-

tiple brokers. The main difference compared to our system

is that our architecture implies the existence of a metadata

manager for all stored information, which relieves much of

the burden impose for managing data on the mobile appli-

cation, and that we offer prediction capabilities based on

the provisioned data. Also notable is that the evaluation of

Federated Brokers was conducted over a small-size homo-

geneous environment. The authors actually tested Context

Aware Framework over a large grid environment, with more

brokers and clients, considering a large distributed storage

configuration.

From an utility point of view, our platform can also be com-

pared with Google Now [13] and Microsoft On{X} [14].

Google Now [13] is able to predict what information an

user need, based on his previous searches and on his con-

text data. Microsoft On{X} lets the user set actions for

states defined by his context data. When a certain state

(previous defined by the user) is reached, a trigger is

fired. This platform supports this kind of approaches, be-

ing build as a framework for developers, not as a stand

alone application, like Google Now or Microsoft On{X}.

Unlike previous work, the platform presented in this pa-

per is specifically designed for the management of large-

scale pervasive environments. The platform is designed

to support scenarios with potentially thousands of sen-

sors working together for the fine-grain analysis of phe-

nomena. For example, the platform can cope with Smart

City context-aware applications and services, providing citi-

zens with real-time information, regardless of their mobility

constraints, about current traffic values or other events of

interests.

3. Architecture

3.1. Analysis of Requirements for Context-aware

Applications

In a typical context-aware application users rely on their

mobile devices to receive information depending on their

current environment. Such applications can help users aug-

ment their reality: they could receive information about

neighboring places or buildings in a typical tourism ap-

plication; they could receive recommendations or naviga-

tion data that could help a driver to more easily navigate

around a city. In such scenarios users are generally moving,

and typical context data includes elements such as locality,

time, user’s status, etc. Proximity is important for provi-

sioning – the amount of data is potentially too large to be

served entirely on the user’s mobile device, thus a selection

of only the most relevant context data, from the immediate

surrounding environment, is preferred. Therefore, Context

Aware Framework should be able to support user’s mobil-

ity and provisioning of data according to his locality.

Except for mobility, context-aware applications should pro-

vide real-time guarantees for data provisioning. The user

should not receive events that happened too far in the past,

as such events might not even be valid for his current in-

terests. For example, if a tourist is looking for information

about objectives near him, he might not be so happy re-

ceiving recommendations for a trip taken some while back.

The same might happen when users expect alerts about po-

tential congestions in traffic: if he receives such alerts when

is already in the congested road, the information is not so

valuable anymore. To cope with such a requirement, Con-

text Aware Framework should support fast dissemination of

data between users.

We also acknowledge the imperfections of today’s wireless

communication infrastructures. Context Aware Framework

will not assume the user is always connected to the In-

ternet (e.g., in situations where a wireless connection is

not available). It will support the use of context data even

when an Internet connection is not available, and in this

case we look at alternatives such as opportunistically us-

ing the data accessed by others from distributed caches us-

ing only short-range communication (in form of Bluetooth

and/or Wi-Fi).

The system should allow efficient access to the data – in

terms of speed of access, as well as support for complex

queries. Applications should be able to express their inter-

ests using complex queries, in forms of naturally-expressed

filters. For example, the application will be able to request

the data using an expression similar to “get prediction of

my friends’ location, but only for those in town”. Or, an

aggregated request could be expressed as “get prediction of

road traffic on a particular street”.

For context-aware applications we consider that the system

should support discovery and registration of data sources

(e.g., sensors and external services such as a weather ser-

vice), access to data using different granularities, and the

aggregation of information.

60



Adaptive Distributed Data Storage for Context-Aware Applications

The framework needs to support scalability. For a typical

collaborative traffic application, the number of users could

potentially be in the range of millions. The data should be

persistently stored. The history of data should be preserved

for traceability and advanced data mining processing.

Except for these theoretical requirements, the functional

demands coming from a context-aware application was also

analyzed. For this we analyzed CAPIM [15], a platform

designed to support context-aware services. Such services

are designed to help people in an university, who may be

endowed with a portable device, on top of which they run

an application which facilitates the access to information

by automatically reacting to changes of context. CAPIM

brings support by:

– providing different information contents based on the

different interests/profiles of the visitor (student or

professor, having scientific interests in automatic sys-

tems or computer science, etc.), and on the room he

is currently in;

– learning, from the previous choices formed by the

visitor, what information he is going to be interested

in next;

– providing the visitor with appropriate services – to

see the user’s university records only if appropriate

credentials are provided, to use the university’s in-

tranet if the user is enrolled as staff;

– deriving location information from sensors which

monitor the user environment;

– provide active features within the various areas of the

university, which alert people with hints and stimuli

on what is going on in each particular ambient.

In addition to the previously identified requirements, this

scenario validated several new ones in terms of data ac-

cesses: users write frequently, while they read the data in

a sparse way. They have also an interest in storage of large

data volumes, for mining and processing relevant high-level

context information.

To cope with these requirements, Context Aware Frame-

work should include several layers. First of all, for persis-

tence, collaborative and mobility support, the data should

be stored remotely to any mobile device. A typical rela-

tional database has the disadvantage that accesses to the

same data units should be synchronized for strong consis-

tency guarantees. This cannot support well a typical sce-

nario envisioning millions of concurrent users writing their

context data.

BlobSeer [16] is a large-scale, distributed, binary storage

service. It keeps versions for all records, so that concur-

rent read/write accesses are facilitated without affecting the

high throughput of the system. BlobSeer allows concurrent

accesses to the data, and for that it uses a versioning mech-

anism. Another benefit is that BlobSeer allows fine grain

access to the data. It is possible to access small chunks,

without having to read the entire Blob for example. Blob-

Seer also offers high throughput for read and write opera-

tions. Clients can write new information in a chunk while

others can read the old information, without needing to

synchronize.

Thus, BlobSeer [16] offers an appropriate alternative, as

it provides real-time guarantees, large concurrent access

guarantees, and support for eventual consistency through

an advanced versioning mechanism. This is what motivated

our choices in what follows.

3.2. Architecture

Based on the identified requirements, we propose the ar-

chitecture presented in Fig. 1 is proposed.

The architecture includes several components (see Fig. 2):

Data and Metadata Clients, Brokers, the Metadata Manager,

and a Cloud-based storage layer.

The Metadata Client and Data Client connect the Con-

text Aware Framework with the third-party context-aware

applications. In the practical implementation (detailed in

the next Section) both these software components are in-

tegrated into the context-aware application in need of their

support (they offer an API for such applications).

The Metadata Client is responsible for creating and ac-

cessing the metadata information that describes the context

data schema used by a particular application. In fact, we

acknowledge that various context-aware applications have

different requirements in terms of the data scheme used in-

ternally. Consequently, each application can use a different

data schema to model the context.

A Data Client can write, retrieve, and store context data

necessary to a particular context-aware application. Here

we assume a one-to-one relation, each application being

served by a dedicated Data Client. Each Data Client is

responsible for supporting the mobility of the user, sup-

porting seamless access to the nearest Broker. The Data

Client works with its own local cache, used for offline situ-

ations, when the user cannot access anymore the data from

its Broker.

A dedicated Discovery Service is also used for the reg-

istration and discovery of the existing Metadata Manager

and Brokers. In the architecture we assume the existence

of one Metadata Manager, but several Brokers. The Dis-

covery Service is, therefore, also responsable for finding

the Broker most convenient for a particular Client.

The Metadata Manager manages the connections between

the meta-information describing the data, and the informa-

tion regarding the actual physical data storage. When a new

context-aware application is registered for the first time,

the Metadata Client connects to the Metadata Manager and

writes meta-information describing that particular applica-

tion. The information contains, among others, the datatype

formats to describe the context data collected/stored by the

application. Next, when the Data Client writes context

data, it connects to the nearest Broker. The context data is

sent to the Broker, which in turn writes it to the Persis-

tence layer. The process involves two steps: first the Client

writes the data, and next asynchronously the Broker handles

61



Elena Burceanu, Ciprian Dobre, and Valentin Cristea

Fig. 1. The proposed architecture.

Fig. 2. Architecture layers.

transparently (in background) the actual writing into the

Persistence layer.

The Broker also writes information describing the physical

storage parameters to the Metadata Manager. For persis-

tent storage we decided to adopt the use of Blobs. A Blob

stores the context data needed by one context-aware ap-

plication. The Metadata Manager actually links the meta-

information all the way to a particular Blob and to an offset

inside it where the particular data resides. The Metadata

Manager also manages the relation between the persistent

Blobs (the ones used for history preservation of context

data) and the Brokers, where the real-time information is

preserved.

The Context Aware Framework comprises several dis-

tributed Brokers. The Broker is responsible for handling

real-time guarantees specified when an application wants

to access context data. The Broker handles requests com-

ing from a limited number of users, grouped based on their

locality. It supports distributed writing of data, and pro-

cessing of requests coming from clients.

For accessing the context data, a Client application gener-

ates a filter (expressing the parameters of interest) for find-

ing it. This filter is further received and processed by the

Broker. The resulting data is sent back to the Client, and is

also temporarily stored in a cache, local to the Broker. This

cache is used to speed up the response time for subsequent

62



Adaptive Distributed Data Storage for Context-Aware Applications

requests for similar data. If another client sends a simi-

lar request, the Broker is capable to reply directly with the

data from its own cache unless the data was invalidated by

a subsequent write.

For the Persistence layer we use the BlobSeer [16] storage

distributed system. BlobSeer consists of a set of distributed

entities that cooperate to enable a high throughput storage.

Data providers physically store the blocks corresponding to

the data updates. New providers may dynamically join and

leave the system. The provider manager keeps information

about the available storage space and schedules the place-

ment of newly generated blocks, according to a load bal-

ancing strategy. Metadata providers store the information

that allows identifying the blocks that make up a version

of the data. The version manager is in charge of assign-

ing version numbers in such a way that serialization and

atomicity are guaranteed. In addition, clients can access

the Blobs with full concurrency, even if they all access the

same Blob. One can get data from the system (Read), up-

date it by writing a specific range within the Blob (Write)

or add new data to existing Blobs (Append). Rather than

updating the current pages, each such operation generates

a new set of pages corresponding to a new version. Meta-

data is then generated and “weaved” together with the old

metadata in such way as to create the illusion of a new

incremental snapshot. This actually shares the unmodified

pages of the Blob with the older versions.

For our Context Aware Framework Clients can some-

times access the second to the last version of the context-

aware data until one write-in-progress operation is fin-

ished. Context Aware Framework uses this to provide to

the higher-lever applications eventual consistency support

for read/write operations.

Typical context-aware applications [15] usually generate big

amounts of unstructured or semistructured data. Applica-

tions can interpret this data in particular ways, by defining

appropriate meta-information associated with it. The appli-

cations can decide on their own different granularities – for

example, an application can write several chunks of data at

once, for the data corresponding to several events, and de-

fine one single meta-entry to describe this. It is entirely left

in the responsibility of the application to define its use and

schema corresponding to the context data and associated

model.

3.3. Overall Architectural Benefits

The architecture of Context Aware Framework brings sev-

eral capabilities mentioned below.

The framework is designed for context-aware applications

that work with data represented mostly as time-based series,

where entries are in the form 〈timestamps,Ob ject〉.

The architecture supports scalable applications. Once de-

ployed, the system can support a large number of appli-

cations, involving potentially large number of users, each

with its own context data. This is because each application

runs in a separate environment.

Context Aware Framework provides Locality, Mobility and

Real-time access guarantees. In order to have good re-

sponse times, a client will connect to the closest Broker

before launching a request. All read operations are cached

on two levels: one is on the Data Client side, and one

on the Broker side. If two clients issue the same request,

the response for the second one will be fetched from the

Broker’s cache. This ensures both a good response time.

Persistence is also supported. Clients write their data,

which in turn is saved in the storage system (where we

use BlobSeer).

Later on, clients can ask for data, through complex search

filters. Also, prediction is supported. In order to bene-

fit from the large amount of stored data, clients can acti-

vate predictions for a specific set of data (see Section 4.2).

When this is happening, the context data is pre-fetched on

the Broker cache, based on complex prediction algorithms.

This can be used to cache in advance data for certain data

types.

4. Implementation

Next a pilot implementation of the Context Aware Frame-

work architecture previously described was developed.

As explained, the Metadata Manager is responsible for han-

dling the logical relation between the description of the

context data and its actual physical storage. In example in

a large city many users might send GPS data to collab-

oratively support an application capable to aggregate this

information and offer a traffic model. Some users are ca-

pable to also send data about pollution (they have sensors

for monitoring the air quality). We assume this information

is sent and stored using the previously described Context

Aware Framework.

First, the Client will write in the Metadata Manager the
datatypes used by the application:

object Location {

float lat, long;

string hw_description;

}

object COLevel {

float level;

string hw_description;

}

Next, different Clients will write the actual context data,
which is similar to:

array{Timestamp, Location} ==> {

{243452343L, {14.5, 34.45, ’Nexus Galaxy’}},

{243452354L, {14.51, 34.467, ’Nexus Galaxy’}},

{243452368L, {14.53, 34.473, ’Nexus Galaxy’}}

}

array{Timestamp, COLevel} ==> {

{243452344L, {45.3, ’Air Quality Sensor’}},

{243452360L, {45.4, ’Air Quality Sensor’}},

{243452412L, {45.37, ’Air Quality Sensor’}}

}

63



Elena Burceanu, Ciprian Dobre, and Valentin Cristea

The data is written in a Blob, inside the Persistence layer
– the actual data is stored in BlobSeer. In this example,
the data is written in bursts. We support this feature in
cases, for example, when a car can collect data and sent
it only when a Wi-Fi connection becomes available. The
actual information used to describe the physical storage
looks similar to

{UUID, BlobID, BlobVers, BlobOffs, Size}

where UUID refers to the application id that generated the
data, BlobID, BlobVers, BlobOffs and Size identify the
blob, its version, the data offset and size in the Blob where
the information was written. Next, the Metadata Manager
adds an entry linking the UUID to the

{TimestampStart, TimestampEnd, DataType, UUID,

BlobID, BlobVers, BlobOffs, Size, NoRecords}:

(e.g.,

{243452343L, 243452368L, ’Location’, 0x242,

213412L, 34, 0, 1234402L, 3}).

The actual implementation of the Metadata Manager uses

Mongodb [17], a flexible open source document-oriented

NoSQL database system. Mongodb includes support for

master-slave replication and load balancing. For searching,

it also supports regex queries. For Context Aware Frame-

work, the database system was preferred for several reasons:

The number of entries kept by the Metatada Manager – en-

tries previously described – is small. Each entry follows

a structured object-oriented data schema. Consequently, an

object-oriented database model is preferred.

Also, when the number of metadata access requests be-

comes high enough, the system should be able to scale.

MongoDB, the distributed object relational database, is the

natural choice, because it support distributed deployment

and high scalability [18].

The Metadata Manager is also collaboratively used by dif-

ferent applications. For security and management reasons,

in the actual implementation each application stores its re-

lated data in separate sandboxes.

4.1. Filtering

As previously described, for accessing the data the Client

builds a search filter. This can include different custom

data types defined by an application. The filter specifies

the restrictions for searching particular datatypes. For in-

stance, a filter can include restrictions for retrieving specific

location and pollution levels. In this example, the filter

looks similar to:

class Filter {

Location l;

COLevel c;

...

bool filter() {

return l.lat > 10.53 and

l.long < 20.45 and

c.level < 15;

}

}

The filter result is in format (timestamp, location, level).

The Client sends the serialized version of this filter class,

and the Broker loads it and instantiate it with values that

match the implementation of the filter instance.

4.2. Prediction

Prediction is done using linear interpolation (in the pilot

implementation Lagrange interpolation was used). The pre-

diction module is extensible, and the user/application can

easily replace it.

For predicting a future value based on a time-

dependentł;inebreak series, the user specifies several pa-

rameters. The predictability pattern specifies how the data

varies (possible values include daily, weekly, or hourly pat-

terns). For example, a daily pattern considers that data is

similar for the same hours each day, while a weekly pattern

assumes data is similar for the same days each week.

To optimize the prediction process, only a subset of all

data in history is used by the prediction algorithm (a time-

window like approach, considering only the last most rel-

evant values). The interpolation considers the set of last

values and depends on the type of prediction pattern se-

lected.

To use this facility, the API allows the user to specify N,

and two timestamp values. N specifies the number of pre-

dicted values the user is requesting – and it is used to

define the granularity of the sampling history data. The

two timestamps specify the interval in the future of interest

for the prediction – the prediction returns in this case the

N values spread over the requested interval, by mediating

the obtained predicted values. Obviously, if the prediction

cannot be performed (or the error is too high), the returned

answer can be also none.

We applied the prediction facility to implement an adaptive

cache. Such cache is filled with values that it predicts the

user will need in the near future – thus, it can support the

losing of the connectivity, or it can support an optimiza-

tion by requesting data asynchronously from the persistence

layer before the actual request for data takes place.

Let’s consider the example of an application requesting data

about weather. In this case weather is considered to be

a function of hour and location. A predictive cache could

predict the location of the user in the near future, as well

as the time moment he will get there. Thus, it will be

able to further interrogate a weather service and request the

weather values in advance. We tested this assuming that

a client requests a new weather value every 30 minutes, and

the cache replenishes the weather values in advance, such

that by the time client makes the actual request, the cache

is able to opportunistically serve him the data (i.e., even in

case an Internet connection is no longer in place).

5. Experiments, Evaluation and Results

5.1. Experimental Setup

For evaluating Context Aware Framework, the following

scenario is used: Many taxis from a city are equipped

64



Adaptive Distributed Data Storage for Context-Aware Applications

with mobile devices that run a context-aware application.

This application collects GPS data, and sends it to a server.

Clients are presented with context-aware capabilities, such

as searching for nearby free taxis or inspecting routes

(for example, the municipality can learn the popularity of

routes).

As input data, a real-world dataset publically available on

CRAWDAD is used [19]. The dataset contains mobility

traces of taxi cabs in San Francisco, USA, in the form

of GPS coordinates for approximately 500 taxis collected

over 30 days in the San Francisco Bay Area. It includes

approximately 11 millions unique entries.

These taxis were considered as clients for our context-aware

middleware. They were able to write data, and use different

access patterns to obtain context-based information. Each

client runs on a different node inside a distributed system.

For these experiments we used Grid’5000 [20], a large-

scale distributed testbed specifically designed for research

experiments in parallel, of large-scale distributed comput-

ing and networking applications.

To evaluate the performance of Context Aware Framework

we had to first filter the data for each unique taxi in the

experiment. Therefore, 500 different input files was used,

with an average of approximately 20,000 records per file.

Each record is specified as [latitude, longitude, occupancy,

time]. For example, a record is expressed as [37.75134

–122.39488 0 1213084687], where latitude and longitude

are in decimal degrees, occupancy shows if a cab has a fare

(1 = occupied, 0 = free) and time is in Unix epoch format.

For the storage layer, we used BlobSeer. The total data

written by each taxi is approximately 5 MB.

In Grid’5000 112 dedicated parallel nodes for the clients

was used, and 4 other dedicated parallel nodes for 4 Bro-

kers. One other dedicated node was used for the Metadata

Manager, and another one for BlobSeer. In these experi-

ments we used an increasing number of Brokers – ending

with the 4-based Broker experiment. We assume the city

is equally split between these Brokers – if a taxi always

connects to the nearest Broker, the mobility data is equili-

brated such that we obtained an approximately even number

of data sent to each Broker. Thus, the number of clients

distributed per broker is uniform.

During the experiment configuration data was varied, such

as: the parameters used for BlobSeer configuration (num-

ber of data providers, and page size was progressively in-

Fig. 3. Write test.

Fig. 4. Simple search.

Fig. 5. Complex search.

creased up to 12 MB), the number of clients and brokers,

the maximum records written per chunk. We were particu-

larly interested in time taken to perform different operations

(to illustrate the capability to support real-time traffic), as

well as in the consumed data traffic, to evaluate the opti-

mization obtained when adding the caches.

First, the writing performance was evaluated. For this the

authors conducted several experiments where the number of

clients that write data (entire input files) to Context Aware

Framework was increased. Since 112 dedicated nodes is

used, the evaluation is relevant up to this limit – the results

are presented in Fig. 3. Figures 4 and 5 show the result

obtained for different read access patterns. Compared to

these figures, the write operation is more time consuming.

Still, the time increases by small amounts, thus the system

shows good scalability results.

For evaluating the read operations, we considered two dif-

ferent scenarios. First, a simple search consists in a query

where a driver wants to obtain all data relevant for a par-

ticular location (given as latitude and longitude limits) and

time period. A more complex search operation is one where

a client queries the system for the nearest free taxi consider-

ing a particular time moment and location. For such query

the system has to aggregate data from two different data

types.

Again, we varied the number of clients assumed in the

experiment, up to 112. The experiment ran until Context

Aware Framework has all the context data persistently writ-

ten. When all data is written, next all clients issue a filter

such that all queries will always return results. In a first

experiment, we used the same filter, but the caches will re-

turn always the value and the time penalty is minimal. We

65



Elena Burceanu, Ciprian Dobre, and Valentin Cristea

next assumed that each client issues a unique filter, thus

each query is served by questioning the last layer: Blob-

Seer. We were interested to see the Broker’s capability to

support parallel client requests. Figures 4 and 5 show the

results obtained in this case.

Again, in this case Context Aware Framework is able to suc-

cessfully handle the queries coming from distinct clients.

The results show that time increases by small amounts, thus

the system shows again good scalability results.

5.2. Evaluation of Prediction

Next, the prediction component is evaluated. In this ex-

periment the prediction is activated for each taxi within

the dataset. The input data file is splitted in two parts:

80% of the data was used as input for learning, and then

20% of the data was used for the evaluation of the pre-

diction accuracy. The predictor in this case uses the data

to predict where a cab will be for future time moments,

considering daily repeatability patterns – it can be used

by a client to search for the nearest taxis, for example, at

a future moment of time. In this case, as mentioned, the

authors were particularly interested to measure the predic-

tion accuracy.

The results in Fig. 6 show a cumulative graph for num-

ber of values passing a prediction acceptance threshold.

A threshold of 10% means, for example, that for a vari-

ation range of 40 km, a value predicted with a 4 km er-

ror is still accepted as being correct. For the experiment,

a 10% threshold means that a value is predicted such that,

when compared to the real observed value in the input file,

it gives a variation of no more than 10% of the entire city

area, assuming that each car drives through the entire city

during its experimental lifetime and has an equal probabil-

ity to be at a certain moment of time in any of the next

probable locations.

Fig. 6. Accuracy acceptance.

Looking at Fig. 6, when accuracy acceptance percent goes

down, there is a random factor that determines some of the

values to still be correct. When the percent goes up, there

are some “unpredictable” values that make the prediction

slightly lower then 100%.

Also, it can be observed that a good threshold is around

the value 0.2 for accuracy acceptance, where the prediction

becomes very good, yielding approximately 80% correct

predicted results.

Next the prediction type was varied (considering hourly or

weekly patterns). It can be observed that the correct pre-

diction behavior is similar, but it depends on the nature of

the dataset and assumed prediction pattern. For example,

predicting with one hour pattern for a too large time in-

terval results in inaccurate prediction results, because the

cabs’ moving patterns is not hourly based (8 am traffic, for

example, is different than the 11 am one).

5.3. Predictive Cache

A good use of the prediction module consists in the im-

plementation of a predictive cache that can be used by

a mobile application. The cache sits on the mobile device,

tightly coupled with the application, and uses prediction

to obtain in an opportunistic way data from the storage

layer.

First an experiment was designed to test the prediction ac-

curacy of the predictor in a real application. In this experi-

ment, from time to time (e.g., once an hour), a background

process asks for a predicted value for the location (e.g., us-

ing a pattern such as predict my location after an hour).

Then, the process uses this predicted location to ask further

for the weather, having both the location and the time for

the next interval (hour). Then, the answer is saved into the

cache. So, after an hour, the user can ask for the weather

in his locations, and the answer can be found in the cache

with a 80–100% location prediction accuracy.

These experiments were done on a machine with the fol-

lowing characteristics: Intel Core i5 processor, 2.5 GHz,

4 GB RAM. Unlike the next series of experiments, in this

case we assumed that all Clients are always connected to

the Internet (and, thus, can access at all times the Broker).

To test the implementation, we have used one Broker.

Clients are periodically (every 30 minutes) asking for their

predicted location. The obtained results (Fig. 7) show that

the answer time increases logarithmicaly with the number

of clients. Thus, that the predictive cache scales very well

for a big number of clients.

Fig. 7. Predictive cache.

For evaluating this capability, next an application that runs

on the user’s mobile device and present him with traffic

information is simulated. This kind of data is context-aware

66



Adaptive Distributed Data Storage for Context-Aware Applications

because the user is interested to receive traffic information

depending on his both time and location.

The scenario consists in cabs from San Francisco moving

inside the town and trying to acquire the traffic information

using a public service. Their only way to connect to the

Internet is using Wi-Fi hotspots (3G/4G is too expensive

for a large scale system), distributed in a grid configuration

through all the town (see Fig. 8).

Fig. 8. Taxis connect to the nearest Wi-Fi access points.

The grid was chosen because it provides a good covering

of the town with fewer resources than other configurations.

The active area of the town is around 250 square km, tak-

ing into account our users moving pattern from the input

dataset.

We assume that the prediction component is available in the

form of a Web service, reachable over the Internet. In our

scenario we assumed users ask for new traffic information

every 30 minutes (access the Web service).

We also assumed the traffic data does not dependent nec-

essarily on the real-time information. For a typical traffic

navigator, the traffic data is generally served by aggregating

the traffic data for a certain period of time. This assump-

tion was needed because we assume the information is still

valid, even if it is kept in cache for 30 minutes.

Next, the following scenario is envisioned.

From time to time (30 minutes), the user tries to access rel-

evant traffic information, related to his time and location. In

the implementation this is accomplished by a background

process continuously waking up periodically in order to

ask the Context Aware Framework about the most “pos-

sible” future location of a particular car. This process,

which actually simulates the behavior of the Client cache,

then downloads traffic information related to his future pre-

dicted location – for this, it sends to the traffic prediction

Web service the time in future for which it wants the in-

formation. The request will be served only if there is an

Internet connection available at the moment the request is

issued. If not, the service will fail to bring results. If suc-

cessful, the returning pair (future time, future location) will

be locally cached (on the Client cache).

When the client will actually need the traffic data, if the

predicted value for its future location was computed cor-

rectly it will actually use the cached data. This means that

this client will not need an Internet connection to access

this new data, and it will have it fast (since it is already

cached locally).

Because traffic information is very sensitive to the current

user location, in experiments relevant only location values

predicted with an accuracy error lower than 5% was con-

sidered.

Considering the scenario and the experiment conditions de-

scribed above, the average time for one request is plotted,

having the predictive cache on or off. In the experiment,

the number of hotspots in the town’s Wi-Fi grid is varied,

from 40 to 120 different access points. The obtained results

are presented in Figs. 9 and 10.

Fig. 9. Predictive cache on.

Fig. 10. Predictive cache off.

When cache is active the time necessary to serve each re-

quest is actually decreasing. A large amount of requests

are finishing under 1 second, with or without Internet con-

nection. When the cache is stopped, only requests which

are issued by clients within Wi-Fi coverage zones are still

served within good time limits, while for the others taxis

are not capable to acquire the data until they reach Internet

connectivity.

Since there is a compromise between the time for a request

and the density of Wi-Fi hotspots, as seen in the plots, the

number of hotspots has an important impact over how well

the queries are served when using the predictive cache.

However, we cannot assume a too much density of such

67



Elena Burceanu, Ciprian Dobre, and Valentin Cristea

hotspots, considering our scenario that covers only approx-

imately 250 sq·km. For instance, a more detailed analysis

for 66 hotspots, when we vary the acceptance level of the

prediction to 0.13 (if the predicted location doesn’t need to

be so precise) revealed that only 12.5% of the requests need

an Internet connection. The rest of them were cache hits.

This, combined with the fact that only 20% of requests are

issued when cabs have Internet connection, leads to only

10% probability for a request not to be solved at the mo-

ment it was made.

6. Conclusions and Further Work

In this paper we presented a platform designed to support

several hot challenges related to big data management on

clouds by focusing on a particular class of applications:

context-aware data-intensive applications. A representative

application category is that of Smart Cities, which covers

a large spectrum of needs in public safety, water and energy

management, smart buildings, government and agency ad-

ministration, transportation, health, education, etc. Today,

many Smart City applications are context-based and event-

driven, which means they react to new events and context

changes. Such applications have specific data access pat-

terns (frequent, periodic or ad-hoc access, inter-related data

access, etc.) and address specific QoS requirements to data

storage and processing services (i.e., response time, inter-

rogation rate). With the advent of mobile devices (such as

smartphones and tablets) that contain various types of sen-

sors (like GPS, compass, microphone, camera, proximity

sensors), the shape of context-aware or pervasive systems

changed. Previously, context was only collected from static

sensor networks, where each sensor had a well-defined pur-

pose and the format of the data returned was well-known

in advance and could not change, regardless of any factors.

Nowadays, mobile devices are equipped with multimodal

sensing capabilities, and the sensor networks have a much

more dynamic behavior due to the high levels of mobility

and heterogeneity.

Context Aware Framework is designed to support such re-

quirements. In a pervasive world, where the environment

is saturated with all kinds of sensors and networking ca-

pabilities, support is needed for dynamic discovery of and

efficient access to context sources of information. Such re-

quirements are mediated in our case through a dedicated

context management layer, which is responsible for dis-

covering and exchanging context information. The authors

presented the context storage system architecture for data

management that includes an additional set of components.

This supports the mapping between meta-information

(describing the context) and the actual context data stored

in BlobSeer, data caching and handling requests coming

from a distinct set of users or city area, and connecting the

metadata management layer to context-aware applications.

In addition, we presented a layer that is responsible for

creating and accessing the metadata information that de-

scribes the context data schema used by a particular appli-

cation and allows the mobile application to write, retrieve,

and store context data. It is also responsible for supporting

user’s mobility. The components support several require-

ments: user’s mobility and provisioning of data according

to his locality; real-time guarantees for data provisioning;

allow efficient access to the data in terms of speed of ac-

cess, as well as support for complex queries; discovery and

registration of data sources and access to data using differ-

ent granularities; and scalability.

Acknowledgements

The research presented in this paper was supported by

the INRIA Associated Team DataCloud@work. This work

was also partially supported by project “ERRIC – Em-

powering Romanian Research on Intelligent Information

Technologies/FP7-REGPOT-2010-1”, ID: 264207, and by

the Sectoral Operational Programme Human Resources De-

velopment 2007-2013 of the Romanian Ministry of Labour,

Family and Social Protection through the Financial Agree-

ment POSDRU/89/1.5/S/62557. The authors would like to

thank Luc Bouge and the entire KerData team. The ex-

periments presented in this paper were carried out using

the Grid’5000/ALADDIN-G5K experimental testbed, an

initiative of the French Ministry of Research through the

ACI GRID incentive action, INRIA, CNRS, RENATER and

other contributing partners (see http://www.grid5000.fr/).

References

[1] H.-L. Truong and S. Dustdar, “A survey on context-aware web ser-

vice systems”, Int. J. Web Inform. Syst., vol. 5. no. 1, pp. 5–31,

2009.

[2] S. S. Yau and F. Karim, “A context-sensitive middleware for dynamic

integration of mobile devices with network infrastructures”, J. Parall.

& Distrib. Comput., vol. 64, no. 2, pp. 301–317, 2004.

[3] J. E. Bardram, “The java context awareness framework (JCAF) –

a service infrastructure and programming framework for context-

aware applications”, in Proc. 3rd Int. Conf. on Pervasive Computing

PERVASIVE 2005, Munich, Germany, 2005, pp. 98–115.

[4] G. Cugola and M. Migliavacca, “Multicar: Remote invocation for

large scale, context-aware applications”, in Proc. IEEE Symp. Comp.

Commun. ISCC 2010, Riccione, Italy , 2010, pp. 570–576.

[5] K. Henricksen and R. Robinson, “A survey of middleware for sen-

sor networks: State-of-the-art and future directions”, in Proc. 7th

Int. Worksh. Middlew. for Sen. Netw. Middleware ’06, Melbourne,

Australia 2006, pp. 60–65.

[6] H. Kim, Y.-J. Cho, and S.-R. Oh, “Camus: A middleware supporting

context-aware services for network-based robots”, in IEEE Worksh.

Adv. Robot. and its Soc. Impacts, 2005, on, Nagoya, Japan, 2005,

pp. 237–242.

[7] T. Gu, H. K. Pung, and D. Q. Zhang, A service-oriented middle-

ware for building context-aware services. J. Network & Comp. Appl.,

vol. 28, no. 1, pp. 1–18, 2005.

[8] D. Athanasopoulos et al., “CoWSAMI: Interface-aware context gath-

ering in ambient intelligence environments”, Pervasive & Mob. Com-

put., vol. 4, no. 3, pp. 360–389, 2008.

[9] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware

applications”, Human-Comp. Interact., vol. 16, no. 2, pp. 97–166,

2001.

[10] A. M. Aly et al., M3: Stream processing on main-memory mapre-

duce”, in Proc. IEEE 28th Int. Conf. Data Engin. ICDE’12, Wash-

ington, DC, USA, 2012, pp. 1253–1256.

68



Adaptive Distributed Data Storage for Context-Aware Applications

[11] T. M. Ghanem, A. K. Elmagarmid, P.-A. Larson, and W. G. Aref,

“Supporting views in data stream management systems”, ACM Trans.

Database Syst., vol. 35, no. 1, pp. 1:1–1:47, 2008.

[12] S. L. Kiani et al., “Federated broker system for pervasive context

provisioning”, J. Syst. & Softw., vol. 86, no. 4, pp. 1107–1123,

2013.

[13] Google now [Online]. Available: www.google.com/landing/now (ac-

cessed July 9th, 2013).

[14] Microsoft onX [Online]. Available: https://www.onx.ms/ (accessed

July 9th, 2013).

[15] C. Dobre, “Capim: A platform for context-aware computing”, in

Proc. 6th Int. Conf. on P2P, Paral., Grid, Cloud Internet Comput.

3PGCIC 2011, Barcelona, Spain, 2011, pp. 266–272.

[16] B. Nicolae, G. Antoniu, and L. Bougé, “Blobseer: how to enable

efficient versioning for large object storage under heavy access con-

currency”, in Proc. EDBT/ICDT Joint Conf. (12th Int. Conf. Ext.

Datab. Technol. & 12th Int. Conf. Datab. Theory) EDBT/ICDT 2009,

Saint-Petersburg, Russia, 2009, pp. 18–25.

[17] R. Hecht and S. Jablonski, “Nosql evaluation: A use case oriented

survey”, in Proc. Int. Conf. Cloud & Service Comput. CSC 2011,

Hong Kong, China, 2011, pp. 336–341.

[18] P. Pääkkönen and D. Pakkala, “Report on scalability of database

technologies for entertainment services”, 2012 [Online]. Available:

http://virtual.vtt.fi/virtual/nextmedia/Deliverables-2011/

D1.2.3.3 MUMUMESE Report%20on%20Scalability%20of%

20database%20technologies%20for%20entertainment%

20services.pdf

[19] San Francisco taxi dataset [Online]. Available:

http://crawdad.cs.dartmouth.edu/meta.php?name=epfl/mobility

[20] Grid’5000 [Online]. Available: https://www.grid5000.fr/ (accessed

July 9th, 2013).

Elena Burceanu received the

M.Sc. degree from the Univer-

sity Politehnica of Bucharest.

Her main research areas are In-

telligent Recommendation Sys-

tems, Cloud Data Storage and

Large Scale Distributed Sys-

tems. The topic of her diploma

thesis was in the field of Crowd-

based Recommendation, with

a particular focus towards Pervasive Systems. This was

later continued during her master studies. During that

period, as member of the DataCloud@Work Associated

Team, she was visiting student with INRIA Rennes Ker-

Data team. Her Master research topic addressed the use

of context data, gathered using monitoring instruments for

Clouds, for opportunistic storing, load balancing and fault

tolerance in case of large datasets. She proposed using

monitoring data related to the current context, together

with augmenting the data with additional semantic informa-

tion (meta-data), to optimize data location based on differ-

ent performance metrics. Such metrics can use the seman-

tics, system’s load, network throughput, history of failures,

proximity to opportunistic store the large blobs of data to

deliver near-optimum response times.

E-mail: elena.burceanu@cti.pub.ro

University Politehnica of Bucharest

313, Splaiul Independentei

Office EG403, sector 6

060042 Bucharest, Romania

Ciprian Dobre has scientific

and scholarly contributions

in the field of large scale

distributed systems concer-

ning monitoring (MonALISA),

data services (PRO, Data-

Cloud@Work), high-speed net-

working (VINCI, FDT), large

scale application development

(EGEE III, SEE-GRID-SCI),

evaluation using modeling and

simulation (MONARC 2, VNSim). He was awarded

a Ph.D. scholarship from California Institute of Tech-

nology (Caltech, USA), and another one from Oracle.

His results received two CENIC Awards, and three Best

Paper Awards, and were published in 6 books, 10 articles

in major international peer-reviewed journal, and over

60 articles in well-established international conferences

and workshops. He is local project coordinator for na-

tional projects: CAPIM – Context-Aware Platform using

Integrated Mobile Services, and TRANSYS – Models and

Techniques for Traffic Optimizing in Urban Environments.

E-mail: ciprian.dobre@cs.pub.ro

University Politehnica of Bucharest

313, Splaiul Independentei

Office EG403, sector 6

060042 Bucharest, Romania

Valentin Cristea is Professor of

the Computer Science Depart-

ment of UPB. His main fields

of expertise are Large Scale

Distributed Systems, e-Ser-

vices, Distributed Systems,

Grid Computing. He is the

director of the NCIT. He has

a long experience in the de-

velopment, management and

coordination of international

and national research projects. He participated to the

specification of RoDiCA – Romanian Distributed Collab-

orative Architectures, leaded the PUB team in COOPER

and conducted the CoLaborator project for building

a collaborative environment for High Performance Com-

puting in Romania. He co-supervised the PUB Team in

SEE-GRID-SCI (FP7) and EGEE III (FP7). He is Partner

Coordinator in DataCloud@work and in 2003 and 2011

received the IBM faculty award. Prof. Cristea published

more than 120 specialist papers, 25 books, and 60 tech-

nical reports. He is Ph.D. supervisor, coordinator of the

Master program on Advanced Software Services, and the

Romanian coordinator of the Master program on Parallel

and Distributed Computer Systems co-developed with

VU Amsterdam.

E-mail: valentin.cristea@cs.pub.ro

University Politehnica of Bucharest

313, Splaiul Independentei

Office EG403, sector 6

060042 Bucharest, Romania

69


