
Paper Two Semantics of Trust

Management Language with Negation
Anna Felkner

Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract—The family of Role-based Trust management lan-

guages is used for representing security policies by defining

a formalism, which uses credentials to handle trust in de-

centralized, distributed access control systems. A credential

provides information about the privileges of users and the se-

curity policies issued by one or more trusted authorities. The

main topic of this paper is RT⊖⊖⊖, a language which provides

a carefully controlled form of non-monotonicity. The core

part of the paper defines two different semantics of RT⊖⊖⊖ lan-

guage – a relational, set-theoretic semantics for the language,

and an inference system, which is a kind of operational seman-

tics. The set-theoretic semantics maps roles to a set of entity

names. In the operational semantics credentials can be de-

rived from an initial set of credentials using a set of inference

rules. The soundness and the completeness of the inference

system with respect to the set-theoretic semantics of RT⊖⊖⊖ will

be proven.

Keywords—access control, inference system, monotonicity, Role-

based Trust management, set-theoretic semantics.

1. Introduction

Confidential data, whether in electronic, paper or other

form must be properly protected. Guaranteeing that the

data and services offered by a computer system are not

made available to unauthorized users is an increasingly

significant and challenging issue, which must be solved

by reliable software technologies. This problem is usually

solved by implementing access control techniques. In a typ-

ical access control scenario there are two entities, one is

the requester that wants to access a protected resource,

while the other is an entity that is the resource owner or

provider. Usually these are the only entities involved in

making the authorization decision. This approach fits well

into closed, centralized environments, in which the identity

of users is known in advance. Unfortunately, this simple

scenario does not apply to highly distributed and decen-

tralized networks. Quite different challenges arise in such

decentralized and open systems, where the identity of users

is not known in advance and the set of users can change.

In decentralized environments, the resource owner and the

requester often are unknown to one another, making ac-

cess control based on identity ineffective. To be able to

deal with different requesters coming from different se-

curity domains, we need a more flexible solution, named

trust management.

Trust management is an approach to access control in de-

centralized distributed systems, where access control de-

cisions are based on policy statements made by multiple

principals. The potential and flexibility of trust manage-

ment approach stems from the possibility of delegation:

a principal may transfer limited authority over a resource

to other principals. Such a delegation is implemented by

means of an appropriate credential. This way, a set of cre-

dentials defines the access control strategy and allows de-

ciding on who is authorized to access a resource, and who

is not.

Despite the fact that the credentials-based models do,

to a large degree, solve the access control problem in open

systems, they still have some shortcomings. Most trust

management languages are monotonic: adding new asser-

tion to a query can never result in canceling an action,

which was accepted before [1]. It is a problem, because

each policy statement or credential added to the system

can only increase the capabilities and privileges granted

to others. The monotonicity property can simplify the de-

sign and analysis of complex network-based security pro-

tocols. It is a good property for researching, analyzing and

proving, but causes limited usability, because revocation of

privileges is not possible to assert. However, we can find

in a literature various extensions of basic languages and

models that create negation on different levels. And thus,

in this way we achieve a non-monotonicity. One of the ex-

tensions is Role-based Trust management language with

negation.

The rest of the paper is organized as follows. An overview

of the work related to trust management systems and lan-

guages is given in Section 2. Section 3 shows the overview

of the family of Role-based Trust management languages,

Section 4 describes set-theoretic semantics of RT lan-

guages, including an example, and inference system over

RT credentials with example is shown in Section 5. Final

remarks are given in Conclusions.

2. Related Work

Traditional access control systems often rely on Role-Based

Access Control (RBAC) model [2], which groups the ac-

cess rights by the role name and limits the access to a re-

source to those users, who are assigned to a particular role.

It is the most flexible type of access control policy.

The first trust management application described in the lit-

erature was PolicyMaker [3], which defined a special

assertion language capable of expressing policy state-

ments, which were locally trusted, and credentials, which

102



Two Semantics of Trust Management Language with Negation

had to be signed using a private key. The next generation

of trust management languages were KeyNote [4], which

was an enhanced version of PolicyMaker, SPKI/SDSI [5]

and a few other languages [6]. All those languages allowed

assigning privileges to entities and used credentials to del-

egate permissions from its issuer to its subject. What was

missing in those languages was the possibility of delegation

based on attributes of the entities and not on their identity.

Responding to this need, a family of Role-based Trust man-

agement languages has been introduced in [7]–[9]. These

languages have a well-defined syntax and semantics, which

made them easy to extend in order to apply them to dif-

ferent needs.

A set-theoretic semantics, which defines the meaning

of a set of credentials as a function from the set of roles into

the power set of entities, has been defined for RT0 [10], [9]

and relational semantics, which apply to RT T in [11].

One of the extensions of RT languages is the use of time

validity constraints of the credentials, which made the lan-

guages of the RT family more realistic, because in the real

world permissions are usually given just for a limited pe-

riod of time. Time-dependant credentials were introduced

in [10] (for RT0) and in [12] (for RT T ). This type of time

constraints can eliminate the need of non-monotonic sys-

tem in some cases. Another approach to the monotonicity

feature is an extension of RT0 language, which was cre-

ated to manage trust in P2P applications and access control

in virtual communities described in [1].

3. Role-based Trust Management

Languages

The term of trust management was introduced in year 1996

by Blaze et al. in [13], who defined it as a unified ap-

proach to specify and interpret security policies, credentials

and trust relationships. In a trust management system an

entity’s privilege is based on its attributes instead of its

identities. An entity’s attributes are demonstrated through

digitally signed credentials issued by multiple principals.

A credential is an attestation of qualification, competence

or authority issued to an individual by a third party. Exam-

ples of credentials in real life include identification doc-

uments, driver’s licenses, membership cards, keys, etc.

A credential in a computer system can be a digitally signed

document.

RT is a family of Role-based Trust management languages,

which combines trust management and RBAC features. To

define a trust management system, a language is needed

for describing entities (principals and requesters), creden-

tials and roles, which the entities play in the system.

RT0 is a simple yet powerful trust management language.

It is the core language of RT family, described in detail

in [9]. It allows describing localized authorities for roles,

role hierarchies, delegation of authority over roles and role

intersections. All the subsequent languages add new fea-

tures to RT0, they are progressively increasing in expres-

sive power and complexity. RT1 introduces parameter-

ized roles, which can represent relationships between enti-

ties. RT2 extends RT1 with logical objects, which can be

used to represent permissions given to entities with respect

to a group of logically related objects (resources). Those

extensions can help in keeping the notation concise, but do

not increase the expressive power of the language, because

each combination of parameters in RT1 and each permission

to a logical object in RT2 can be defined alternatively as

a separate role in RT0. RTT language has been introduced

to support threshold and separation of duties policies. Sim-

ilar to a role, which defines a set of principals, a manifold

role defines a set of principal sets, each of which is a set

of principals whose cooperation satisfies the manifold role.

RTD provides mechanism to describe delegation of rights

and role activations, which can express selective use of ca-

pacities and delegation of these capacities, which are useful

when one wants to delegate authority temporarily. In many

scenarios, an entity prefers not to use all his privileges, all

the more, to delegate all his rights. RT⊖ provides a care-

fully controlled form of non-monotonicity. The members

of the RT family presented so far are monotonic: adding

a credential to the system can only result in granting ad-

ditional privileges, it cannot result in canceling an action,

which was accepted before. It is a problem, because each

policy statement or credential added to the system can only

increase the capabilities and privileges granted to others.

In [1], Czenko et al. argue that many access control deci-

sions in complex distributed systems, like virtual commu-

nities, are hard to model in a purely monotonic language.

They propose RT⊖, which adds to RT a restricted form of

negation called negation in context. RT⊖ introduces a new

operator ⊖ and the so called exclusion credential. It was

created to manage trust in P2P applications and access con-

trol in virtual communities. The features of RT T and RT D

can be combined together with the features of RT0, RT1

or RT2. A more detailed treatment of RT family can be

found in [8].

3.1. The Syntax of RT Family Languages

Basic elements of RT languages are entities, role names,

roles and credentials. Entities represent principals that

can define roles and issue credentials, and requesters that

can make requests to access resources. An entity can,

e.g., be a person or program identified by a user account

in a computer system or a public key. We denote an entity

by a name starting with an uppercase letter (or just an up-

percase letter), e.g., A, Alice, University. Role names rep-

resent permissions that can be issued by entities to other

entities or groups of entities. A role name is denoted by

a string starting with a lowercase letter (or just a lower-

case letter), like r or student. Roles denote sets of en-

tities that have particular permissions granted according

to the access control policy. Roles have the form of en-

tity followed by a role name, separated by a dot, like A.r

or University.student. Credentials define roles by appoint-

ing a new member of the role or by delegating authority

103



Anna Felkner

to the members of other roles. There are four types of cre-

dentials in RT0, which are interpreted in the following way:

A.r← B – simple membership: entity B is a mem-

ber of role A.r;

A.r← B.s – simple inclusion: role A.r includes

(all members of) role B.s. This is a del-

egation of authority over r from A to B;

A.r← B.s.t – linking inclusion: role A.r includes role

C.t for each C, which is a member

of role B.s. This is a delegation of au-

thority from A to all the members

of the role B.s;

A.r← B.s∩C.t – intersection inclusion: role A.r in-

cludes all the entities who are mem-

bers of both roles B.s and C.t. This is

a partial delegation from A to B and C;

A.r← B.s⊖C.t – exclusion: all members of B.s which

are not members of C.t are members

of A.r.

A policy is a finite set of credentials.

The languages discussed in this paper can be used, in gen-

eral, in very complex systems. Therefore, we present here

only a simplified example, with the intention to illustrate

the basic notions and the notation, with a focus on RT⊖
credentials.

Example 1. Suppose that John wants to share his pic-

tures and movies using file sharing system. John restricts

the access to his pictures to those of his friends, who are

a members of Picture Club and he gave similar restriction

to his movie, but he requires that his friends should be

members of Movie Club instead of Picture Club.

John can also create a list of people who are forbidden

to see the gallery of his private pictures, which means that

people, who are on the list can see the general gallery of

his pictures but not the private one.

The entire policy can be expressed as follows:

John.accessPic← John. f riend∩ John.pictureClub (1)

John.accessMov← John. f riend∩ John.movieClub (2)

John.privatePic← John.accessPic⊖ John.blackList (3)

Now, assume that the following credentials have been

added:

John. f riend← Bob (4)

John. f riend← Lily (5)

John. f riend←Maria (6)

John. f riend← So f ia (7)

John.pictureClub← Bob (8)

John.pictureClub← Etan (9)

John.pictureClub← Lily (10)

John.movieClub← Alice (11)

John.movieClub←Maria (12)

John.movieClub← So f ia (13)

John.blackList← Bob (14)

Then one can conclude that, according to the policy, peo-

ple who have access to John’s pictures are Bob and Lily,

but only Lily has access to his private gallery, and Maria

and So f ia have access to John’s movies.

4. The Set-Theoretic Semantics

of RT Languages

A set-theoretic semantics of RT0, which defines the mean-

ing of a set of credentials as (monotone) function from the

set of roles into the power set of entities, has been originally

defined in [9]. A slightly different approach, closely related

to the semantics of RT0 language, was shown in [14], where

various semantic readings of Simple Distributed Security

Infrastructure (SDSI) were provided. A definition quoted

in this section is a modified version of the same seman-

tics, which has been introduced in [10], with addition of ⊖
operator.

Definition 1. The semantics of a set P of RT credentials,

denoted by SP , is the smallest relation Si, such that:

1. S0 = /0

2. Si+1 =
⋃

c∈P f (Si,c) for i = 0,1, . . .

which is closed with respect to function f , which de-

scribes the meaning of credentials in the following way

(A,B,C,X ,Y are entities):

f (Si,A.r← X) = {(A,r,X)}
f (Si,A.r← B.s) = {(A,r,X) : (B,s,X) ∈Si}

f (Si,A.r←B.s.t)=
⋃

C:(B,s,C)∈Si
{(A,r,X) : (C,t,X)∈Si}

f (Si,A.r← B.s∩C.t) = {(A,r,X) : (B,s,X) ∈Si

∧(C,t,X) ∈Si}

f (Si,A.r← B.s⊖C.t) = {(A,r,X \Y ) : (B,s,X) ∈Si

∧(C,t,Y ) ∈Si}

Example 2. Set-theoretic semantics for Example 1

We use Example 1 from Section 3 to illustrate the definition

of RT semantics.

The sequence of steps to compute consecutive relations Si

is shown in Table 1. Consecutive sections of the table de-

scribe relations S0 through S3. Each section of Table 1

has exactly one row, which corresponds to the issuer

of the role, John. The columns of the table correspond

to role names. This way, a cell of the table shows the set

of entities, which are members of the respective role issued

by John.

The starting relation S0 is, by definition, empty. Ac-

cording to Definition 1, only credentials (4)–(14) are

104



Two Semantics of Trust Management Language with Negation

Table 1

The relations S0 through S4

John friend pictureClub movieClub blackList accessPic accessMov privatePic

S0 φ φ φ φ φ φ φ

S1

Bob
Bob Alice

Bob φ φ φ
Lily

Etan Maria
Maria

Lily So f ia
So f ia

S2

Bob
Bob Alice

Bob
Bob Maria

φ
Lily

Etan Maria
Lily So f iaMaria

Lily So f ia
So f ia

S3

Bob
Bob Alice

Bob
Bob Maria

Lily
Lily

Etan Maria
Lily So f iaMaria

Lily So f ia
So f ia

mapped in S0 into nonempty sets by function f .

These sets are shown in relation S1 in Table 1.

In S1, credentials (1) and (2) are mapped into in-

stances (John,accessPic,Bob), (John,accessPic,Lily),
(John,accessMov,Maria), and (John,accessMov,So f ia)
of relation S2, and in S2, credential (3) is mapped into

instances (John, privatePic,Lily). The resulting relation

S3 cannot be changed using the given set of credentials,

hence

SP = S3

and it is the end of the set-theoretic semantics for Exam-

ple 1.

5. The Inference System

over RT Credentials

The member sets of roles can also be calculated in a more

convenient way (than set-theoretic semantics) using an in-

ference system, which defines an operational semantics

of RT languages. An inference system consists of an ini-

tial set of formulae that are considered to be true, and a set

of inference rules, that can be used to derive new formulae

from the known ones.

Let P be a given set of RT credentials. The application

of inference rules of the inference system will create new

credentials, derived from credentials of the set P . A de-

rived credential c will be denoted using a formula P ≻ c,

which should be read: credential c can be derived from

a set of credentials P .

Definition 2. The initial set of formulae of an inference

system over a set P of RT credentials are all the formulae

c ∈P ,

for each credential c in P .

The inference rules of the system are the following:

c ∈P

P ≻ c
(W1)

P ≻ A.r← B.s P ≻ B.s← X

P ≻ A.r← X
(W2)

P ≻ A.r← B.s.t P ≻ B.s←C

P ≻C.t← X

P ≻ A.r← X

(W3)

P ≻ A.r← B.s∩C.t P ≻ B.s← X

P ≻C.t← X

P ≻ A.r← X

(W4)

P ≻ A.r← B.s⊖C.t P ≻ B.s← X

P ≻C.t← Y

P ≻ A.r← X \Y

(W5)

The five kinds of credentials described in Section 4 are

handled by the rules above. The rules should be self-ex-

planatory.

5.1. Soundness and Completeness of Inference System

over RT T Credentials

There could be a number of inference systems defined over

a given language. To be useful for practical purposes an in-

ference system must exhibit two properties. First, it should

be sound, which means that the inference rules could derive

only formulae that are valid with respect to the semantics of

the language. Second, it should be complete, which means

that each formula, which is valid according to the seman-

tics, should be derivable in the system.

Due to space constraints, we only present sketches of proofs

and proofs for (W5) formula (introduced in the RT⊖ lan-

guage), full proofs for the rest formulae can be found

in [15]. The semantics of a set P of RT credentials,

defined by the inference system, is given by a set of all

the formulae of the type: P ≻ A.r← X .

105



Anna Felkner

To prove the soundness of such a formula, one must prove

that the triple (A,r,X) belongs to the semantics SP of the

set of credentials P . Let us first note that all the formulae

P ≻ A.r← X , such that A.r← X ∈P are sound. This is

proved in Lemma 1.

Lemma 1. If A.r← X ∈P then (A,r,X) ∈SP .

Proof. The relation SP , which defines the semantics of

P , is a limit of a monotonically increasing sequence of

sets S0,S1, . . ., such that S0 = /0. According to Defini-

tion 1: f (S0,A.r← X) = (A,r,X). Hence,(A,r,X) ∈ S1

and because S1 ⊆SP then (A,r,X) ∈SP .

�

To prove the soundness of the inference system over P , we

must prove the soundness of each formula P ≻ A.r ← X ,

which can be derived from the set P . This is proven in

Theorem 1.

Theorem 1. If P ≻ A.r← X then (A,r,X) ∈SP .

Proof. By induction with respect to the number n of

inference steps, which are needed to derive a for-

mula P ≻ A.r ← X . If n = 1 then the formula

P ≻ A.r ← X could be derived only using rule (W1),
because the premises of only this rule are axioms. Hence,

the thesis is true according to Lemma 1. For the induc-

tive step, assume that the thesis is true if the number of

inference steps was not greater than n. Then, it is possible

to show that it is true also in a case when the number of in-

ference steps equals n+1. Since any one of the rules (W2)
through (W5) could be used in the last (n + 1) step of in-

ference, all those four cases should be discussed separately,

analyzing the premises and using Definition 1 to show that

the thesis holds. As it was mentioned before, a proof for

the rule (W5) is provided, see [15] for rules (W2)–(W4).

(W5) The fist premise of (W5) cannot be derived otherwise

than using (W1). Hence, A.r← B.s⊖C.t ∈P . The sec-

ond premise of (W5): P ≻ B.s← X was derived from P

using at most n steps of inference, hence, (B,s,X) ∈SP

according to the inductive hypothesis. By Definition 1, there

exists such Si that (B,s,X) ∈ Si. Similarly, in the case

of the third premise of (W5): P ≻ C.t ← Y , there ex-

ists such S j that (C,t,Y ) ∈ S j. Let k be the maximum

of (i, j). Then (B,s,X) ∈ Sk, (C,t,Y ) ∈ Sk and (A,r,X \
Y ) ∈ f (Sk,A.r ← B.s⊖C.t) according to f (Si,A.r ←
B.s⊖C.t) = {(A,r,X \Y ) : (B,s,X) ∈Si ∧ (C,t,Y ) ∈ Si}.
Because f (Sk,A.r ← B.s ⊖ C.t) ⊆ Sk+1 ⊆ SP then

(A,r,X \Y ) ∈SP .

�

To prove the completeness of the inference system over

a set P of RT credentials, one must prove that a formula

P ≻ A.r← X can be derived using inference rules for each

element (A,r,X) ∈SP . This is proven in Theorem 2.

Theorem 2. If (A,r,X) ∈SP then P ≻ A.r← X .

Proof. Assume (A,r,X) ∈ SP . By Definition 1, there

exists such i≥ 0 and such c ∈P that (A,r,X) ∈ f (Si,c).
The proof of the thesis is by induction with respect

to the value of index i. If i = 0 then credential c must

take the form of A.r← X . This is because S0 = /0 and

f (S0,d) = /0 for each credential d other than A.r ← X .

Hence, A.r← X ∈P and the formula P ≻ A.r← X can

be derived using rule (W1). For the inductive step, assume

that the thesis is true, if the value of index i in the ex-

pression (A,r,X) ∈ f (Si,c) was not greater than n. Then

it suffices to show that it is true also in a case when the

value of index i equals (n + 1). Assume (A,r,X) ∈ SP

and (A,r,X) ∈ f (Sn+1,c) for a certain c ∈P . The cre-

dential c can take one of the five forms allowed in RT0 and

RT⊖. Each of these types of credentials should be discussed

separately, showing that it can be derived using one of

the rules (W1)–(W5). Definition 1 is used in all cases except

c = A.r← B, which trivially results from (W1). As it was

mentioned before, a proof for c = A.r← B.s⊖C.t is pro-

vided, see [15] for rules (W2)–(W4).

c = A.r← B.s⊖C.t: If (A,r,X) ∈ f (Sn+1,A.r ← B.s⊖
C.t), then according to Definition 1, f (Si,A.r ← B.s⊖
C.t) = {(A,r,X \Y ) : (B,s,X) ∈Si ∧ (C,t,Y ) ∈Si}, there

exist two sets of entities Z, Y such that Z \Y = X and

(B,s,Z) ∈ Sn+1 and (C,t,Y ) ∈ Sn+1. Hence, there ex-

ist credentials c1, c2 such that (B,s,Z) ∈ f (Sn,c1) and

(C,t,Y ) ∈ f (Sn,c2). This implies that (B,s,Z) ∈SP and

(C,t,Y ) ∈ SP , hence, P ≻ B.s← Z and P ≻ C.t ← Y

according to the inductive hypothesis. P ≻ A.r← X is

a conclusion of rule (W5).
�

A conclusion from Theorem 1 and Theorem 2 is such that

the inference system of Definition 1 is sound and com-

plete with respect to the semantics of RT credentials. This

way, the inference system gives an operational definition

of RT semantics (for RT0 and RT⊖) and it proves that the in-

ference system provides an alternative way of presenting

the semantics of RT .

Example 3. (Inference system for Example 1):

We use the inference system to formally derive entities

which can have access to John′s galleries. Using creden-

tials (1)–(14) according to rule (W1) it can infer:

John.accessPic← John. f riend∩ John.picClub∈P

P ≻ John.accessPic← John. f riend∩ John.picClub

John.accessMov← John. f riend∩ John.movieClub∈P

P ≻ John.accessMov← John. f riend∩ John.movieClub

John.privatePic← John.accessPic⊖ John.blackList ∈P

P ≻ John.privatePic← John.accessPic⊖ John.blackList

John. f riend← Bob ∈P

P ≻ John. f riend← Bob

106



Two Semantics of Trust Management Language with Negation

John. f riend← Lily ∈P

P ≻ John. f riend← Lily

John. f riend←Maria ∈P

P ≻ John. f riend←Maria

John. f riend← So f ia ∈P

P ≻ John. f riend← So f ia

John.pictureClub← Bob ∈P

P ≻ John.pictureClub← Bob

John.pictureClub← Etan ∈P

P ≻ John.pictureClub← Etan

John.pictureClub← Lily ∈P

P ≻ John.pictureClub← Lily

John.movieClub← Alice ∈P

P ≻ John.movieClub← Alice

John.movieClub←Maria ∈P

P ≻ John.movieClub←Maria

John.movieClub← So f ia ∈P

P ≻ John.movieClub← So f ia

John.blackList← Bob ∈P

P ≻ John.blackList← Bob

Then, using credentials (1), (4), (5), (8), (10), and rule (W4)
we infer:

P ≻ John.accessPic← John. f riend∩ John.pictureClub

P ≻ John. f riend← Bob P ≻ John.pictureClub← Bob

P ≻ John.accessPic← Bob

P ≻ John.accessPic← John. f riend∩ John.pictureClub

P ≻ John. f riend← Lily P ≻ John.pictureClub← Lily

P ≻ John.accessPic← Lily

showing that the group of people who can see John’s pic-

tures are Bob and Lily.

In the next step the newly inferred credentials and addition-

ally credentials (3) and (14) with the rule (W5) is used:

P ≻ John.privatePic← John.accessPic⊖John.blackList

P ≻ John.accessPic← Bob P ≻ John.accessPic← Lily

John.blackList ← Bob

P ≻ John.privatePic← Lily

showing that only Lily can see John’s private collection.

Additionally, if we want to find a group of people, who can

see John’s movies, we can do this using credentials (2), (6),

(7), (12), (13), and rule (W4). We infer:

P ≻ John.accessMov← John. f riend∩ John.movieClub

P ≻ John. f riend←Maria P ≻ John.movieClub←Maria

P ≻ John.accessMov←Maria

P ≻ John.accessMovie← John. f riend∩ John.movieClub

P ≻ John. f riend← So f ia P ≻ John.movieClub← So f ia

P ≻ John.accessMov← Sofia

showing that the group of people who can see John’s

movies are Maria and So f ia.

6. Conclusions

This paper deals with modeling of trust management sys-

tems in decentralized and distributed environments. The

modeling framework is a family of Role-based Trust man-

agement languages, especially RT0 and RT⊖ languages.

Two types of semantics for RT credentials have been intro-

duced in the paper.

A set-theoretic semantics of RT languages is defined as

a relation over a set of roles and a set of entities.

An operational semantics of RT languages is defined as an

inference system, in which credentials can be derived from

an initial set of credentials using a set of inference rules.

The semantics is given by the set of resulting credentials of

the type A.r←X , which explicitly show a mapping between

roles and sets of entities.

References

[1] M. R. Czenko et al., ”Nonmonotonic Trust Management for P2P

Applications”, in Proc. 1st Int. Worksh. Secur. Trust Manag. STM

2005, Milan, Italy, 2005.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,

”Role-based access control models”, IEEE Comp., vol. 29,

pp. 38–47, 1996.

[3] M. Blaze, J. Feigenbaum, and M. Strauss, ”Compliance checking in

the PolicyMaker trust management system”, in Proc. 2nd Int. Conf.

Financial Cryptogr., London, UK, 1998, pp. 254–274.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis, ”The role of trust

management in distributed systems security” in Secure Internet Pro-

gramming, J. Vitek, C. Damsgaard Jensen, Eds. London: Springer,

1999, pp. 185–210.

[5] D. Clarke et al., ”Certificate chain discovery in SPKI/SDSI”,

J. Comp. Secur., vol. 9, pp. 285–322, 2001.

[6] P. Chapin, C. Skalka, and X. S. Wang, ”Authorization in trust man-

agement: Features and foundations”, ACM Comput. Surv., vol. 3,

pp. 1–48, 2008.

[7] M. R. Czenko, S. Etalle, D. Li, and W. H. Winsborough, ”An In-

troduction to the Role Based Trust Management Framework RT”,

Tech. Rep. TR-CTIT-07-34, Centre for Telematics and Informa-

tion Technology University of Twente, Enschede, The Netherlands,

2007.

[8] N. Li, J. Mitchell, W. Winsborough, ”Design of a Role-Based Trust-

Management Framework”, in Proc. IEEE Symp. Secur. Privacy,

Oakland, CA, USA, 2002, pp. 114–130.

[9] N. Li, W. Winsborough, and J. Mitchell, ”Distributed credential

chain discovery in trust management”, J. Comput. Secur., vol. 11,

no. 1, pp. 35–86, 2003.

[10] D. Gorla, M. Hennessy, and V. Sassone, ”Inferring dynamic creden-

tials for role-based trust management”, in Proc. 8th Conf. Princip.

Pract. Declarat. Program. PPDP 2006, Venice, Italy, 2006. New

York: ACM, 2006, pp. 213–224.

[11] A. Felkner and K. Sacha, ”The semantics of role-based trust manage-

ment languages”, in Advances in Software Engineering Techniques,

T. Szmuc, M. Szpyrka, and J. Zendulka, Eds. LNCS, vol. 7054,

pp. 179–189. Heidelberg: Springer, 2012.

107



Anna Felkner

[12] A. Felkner and A. Kozakiewicz, ”RT T
+ – time validity constraints

in RT T language”, J. Telecom. Inform. Technol., no. 2, pp. 74–82,

2012.

[13] M. Blaze, J. Feigenbaum, and J. Lacy, ”Decentralized trust manage-

ment”, in Proc. 17th IEEE Symp. Secur. Priv. S&P 1996, Oakland,

CA, USA, 1996, pp. 164–173.

[14] N. Li and C. Mitchell, “Understanding SPKI/SDSI using first-order

logic”, Int. J. Inf. Secur., vol. 5, no. 1, pp. 48–64, 2006.

[15] A. Felkner, “Zarządzanie zaufaniem oparte na rolach” (“Role-based

Trust Management”), PhD Thesis, Faculty of Electronics and Infor-

mation Technology, Warsaw University of Technology, 2009.

[16] A. Felkner and A. Kozakiewicz, ”Time validity in role-based trust

management inference system”, Sec. and Trust Comput., Data

Manag., and Appl. Commun. in Comp. and Inform. Sci., vol. 187,

pp. 7–15, 2011.

[17] K. Lasota and A. Kozakiewicz, ”Model of user access control to

virtual machines based on RT – family trust management language

with temporal validity constrains – practical application”, J. Telecom.

Inform. Technol., no. 3, pp. 13–21, 2012.

Anna Felkner graduated from

the Faculty of Computer Sci-

ence of Białystok University

of Technology (M.Sc., 2004)

and the Faculty of Electronics

and Information Technology of

Warsaw University of Technol-

ogy (Ph.D., 2010). At present

she is an Assistant Professor at

Network and Information Secu-

rity Methods Team in NASK

Research Division. Main scien-

tific interests concern the security of information systems,

especially access control and trust management.

E-mail: anna.felkner@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

108


