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Abstract — The optical frequency shift of an electromagnetic
wave reflecting from a boundary of a medium is studies for
two cases: for temporal variations of medium permittivity,
and for a moving plasma boundary. It has been shown that
a simultaneous occurrence of both cases leads to an enhanced
frequency shift.

Keywords — frequency shift, moving plasma boundary.

Introduction

As it’s known, temporal variations of medium parameters
cause alterations in the frequency and amplitude of the elec-
tromagnetic wave propagating in the medium. The wave
reflection from a moving medium boundary results in the
same effect. A combination of these two phenomena may
produce a qualitatively new effect that consists of an en-
hanced frequency shift.

Frequency transformation by time
altering of medium permittivity

It is well known [1-4] that a plane wave E0(t, r) =
E0eiωte−iωsr, as an initial field, maintains a wave number
s= ω/ν with a jump changing of a medium permittivity
but exhibits a transformation of a frequency and an ampli-
tude. Wave splitting into direct and inverse waves comes
about also. For example, for a dissipative dielectric, when
a medium goes to a state with a permittivity ε1 and a con-
ductivity σ1 at some moment of time, ε → ε1,σ1, the initial
field transforms to the form E1(t, r) = A(t)e−isr, where
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, ω1 = ν1

ν ω , σ(t) = σ(t)/ε0,

ν1 = c/
√ε1, ε0 is the electric permittivity of vacuum.

For abrupt ionisation of a medium, when a cold plasma
is created and the permittivity becomes equal to ε =
= 1−ω2

e1/ω2, where a plasma frequency takes a value ωe1

the transformation has an analogues form
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Wave splitting is connected with time variation of a medium
parameter and occurs not only with an abrupt change of
parameter but with continuous changing of ones [5] as well
as for an electromagnetic impulse [6].
When parameters change continuously exact solutions can
be derived only in unique cases [5]. But it can be made
numerically by virtue of the recursion method [7, 8] that
based on the evolutionary approach [9]. The field is deter-
mined by means of the equations that for the n-th time step
have the form
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Here, I0 is the modified Bessel Function, δ is the Dirac
function. It is convenient to calculate not electric field
but an electric flux density which remains continuous with
time jumps of medium parameters: Dn(τ,ξ ) = ε0εnEn(t,x),
Ln(τ,ξ ) = ε0εFn(t,x), where τ = tνκ, ξ = xκ are dimen-
sionless variables, and κ is the factor with a wave number
dimension.
For example, a transformation of the harmonic primary
field L0(τ,ξ ) = cos(τ − ξ ) for various time dependencies
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Fig. 1. The frequency shift with time jump of permittivity at
τ0 = 12 when ε1/ε = 9

of the permittivity is given below. The coefficients for
this calculation are chosen from the data refraction index
n = n′+ in′′ for semiconductor of kind InGaAsP [10] that
has magnitudes n′ ≈ 3.6, n′′ ≈ 0.01. For an abrupt change

Fig. 2. The field transformation for small modulation depth of
the permittivity: (a) g =

√
2,b = 0.15, (b) g = 1.9,b = 0.2

of permittivity ε(τ) = ε1
ε θ(τ − τ0), the result is shown in

Fig. 1.
For periodic modulation of the permittivity ε(τ) =
[1+bsin(gτ)]−1 a transformed field is shown in Fig. 2
and 3.

Fig. 3. The field transformation for great modulation depth of
the permittivity: (a) g =

√
2,b = 0.9, (b) g = 1.9,b = 0.7

Enhanced reflection of electromagnetic
wave from a plasma moving in a

waveguide structure

Another way to shift a wave frequency and to amplify
its amplitude is a double Doppler effect when an electro-
magnetic wave reflects from a moving medium boundary
[11-18].
It is a common practice to characterise the efficiency of
such a wave reflection by the ratio of a boundary velocity
to a wave phase velocity. However, in a dispersive structure
the ratio of a boundary velocity to a wave group velocity is
of prime importance [19, 20]. It appears most clearly in a
waveguide structure when a double dispersion mechanism
is in existence.
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Fig. 4. A wave reflection from a plasma cluster moving in a
waveguide

Simulation of such an interaction is a cluster of a homoge-
neous cold plasma that moves along the waveguide with ve-
locity u (Fig. 4). Let us ωe is the Lorentz-covariant plasma
frequency, δ = ωe/ω is the plasma factor, γ2 = (1−β 2)−1

is the relativistic factor, β = u/c.
The incident electromagnetic wave is of the TE type

E0(t,x) = b⊥E0exp
(
i(ωt−k0x)

)
,k0(ω) =

1
c

√
ω2−ω2

k

is the wave number in an empty waveguide, ωk - the waveg-

uide frequency, Λ−1 =
(√

1− (ωk/ω)2
)−1

is a waveguide

factor for the considered mode.
The frequencies and the wavenumbers of the interior waves
are
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where Ω = ω−uk0(ω) and ω2
ke = ω2

k +ω2
e .

For the plasma velocity β > β1, where β1 defined by

β1 =
(

Λ−δ
√

δ 2−Λ2 +1
)(

δ 2 +1
)−1

(6)

depends strongly on waveguide and plasma factors (what
is illustrated in Table 1, the interior field consists of the
damped waves as the expressions under the roots are neg-
ative.
The frequency multiplication coefficient for the reflected
wave is determined by the movement velocity and the
waveguide factor by virtue of the formula

P = ωr/ω =
(
1−2βΛ+β 2)/(1−β 2) , (7)

and does not depend on the interior parameters of the clus-
ter (length and plasma frequency).

Table 1
The β1 values

Λ−1 δ = 0.5 δ = 1.0 δ = 1.5
10 0.365 0.665 0.800
2.5 -0.097 -0.472 -0.688
1.25 0.327 -0.183 -0.499

1.001 0.584 -0.090 -0.390

Reflectance and external transmittance are given by the for-
mula

R=
P f2i sinα

(1− f 2)cosα + i (1+ f 2)sinα
,

T =
(1− f 2)exp(i γ δ ω c−1gl)

(1− f 2)cosα + i(1+ f 2)sinα
,

(8)

where q = γ
(

Λ−β )/δ , f = (q−
√

q2−1
)2

and

α = γ δ ω c−1l
√

q2−1.
When the plasma cluster length tends to infinity one has a
reflectance of a half-infinite plasma cluster

R0 = P f = P
(

q−
√

q2−1
)2

. (9)

This reflectance peaks at β ≈ β1.
Reflectivity and transmittancy of a cluster are determined
by the known equations

R= SR/SO = RR∗νgR/νgO, T = ST /SO = TT∗ , (10)

where SO,SR,ST are the energy fluxes of incident, reflected
and passed waves, respectively.
For β1 ≤ β
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The maximal reflectivity of the electromagnetic wave in the
waveguide can take very great magnitudes and is observed
not for relativistic values of the cluster velocity but for
smaller values as it is noticed in Table 2. The value of this
plasma cluster velocity depends on the parameters of the
plasma and the waveguide and can be done very small. A
strong influence of the waveguide is explained by the fact
that the group velocity of the incident wave tends to zero
when Λ−1→∞ but the group velocity of the reflected wave

νgR= c
(

2β−
(
1+β 2

)
Λ
)(

1−2βΛ+β 2
)−1

does not tend
to zero.
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Table 2
The reflectivity of the half-infinite cluster

Freq. The The The Reflectiv.
multipl. relativistic waveguide plasma of the half-inf.
coeff. P factor γ factor Λ−1 factor δ clust. R0

2 1.05 1.25 1.25 4.5
2 1.12 2.5 1.1 7.2
2 1.21 20 0.073 70.0
10 1.84 1.25 3.0 125.0
10 1.96 2.5 2.55 225.0
10 2.3 20 2.18 2000.0

The shift of the reflectivity maximum to smaller values of
the cluster velocity owes to the existence of a double dis-
persion mechanism, a plasma dispersion and a waveguide
dispersion.

Combination of two mechanisms
for a frequency shift

Combination of an effect of electromagnetic wave fre-
quency changing caused by time variation of permittiv-
ity and a similar one caused by reflection from a moving
boundary gives a new effect. It is shown at an example of a
flat dielectric slab whose boundaries move beginning from
zero moment of time and meet through any time interval
(Fig. 5).
The equation for electromagnetic field inside the slab as
well as outside one is analogues to Eq. (5)
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E .

(15)

Here, ε is the permittivity outside a slab; ε1 and ε2 are
the permittivity inside a slab before zero time moment and
after it, respectively; χ(t,x) - characteristic function that
equals to one inside a slab and zero outside of it; θ(t) -
the Heaviside unit function.

Fig. 5. The geometry of the problem

Fig. 6. Formation of time-spatial zones a slab that is collapsing

Collapsing slab is created after zero moment of time when
slab boundaries begin to move with a velocity u and meet
at a moment tc = a/2u. The electromagnetic field has qual-
itatively dissimilar forms in the different zones on the time-
spatial diagram, Fig. 6.

A distance between zones decreases by the law (for the case
u < ν2)

tn− tn−1 = p1−n a
ν2 +u

, (16)

so that infinitely many zones are packing up in a finite
interval. Here, p = ν2+u

ν2−u .

If u > ν2 the slab boundaries do not influence on a field.
The field in the 00 zone consists of two splitting waves [21]
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The field in the mm zone has more complicated structure
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J O U R N AL O F T E L E CO M M U N I CAT I O N S
AN D I N FO R M AT I O N T E C H N O LO GY 1-2/2000 49



Aleksander G. Nerukh, Igor V. Scherbatko, and Marian Marciniak

where

C0 =
2ν2

ν +ν2
, q =

2ν2

ν2−u
,

ω(±) = ω
ν2

ν
ν−u

ν2± (−1)u
, R1 = pR, R=

ν−ν2

ν +ν2
,

Φ = e
−iω 2a

ν2 , im =
1
2

(1− (−1)m) . (19)

Inside the slab there are two waves caused by splitting
waves C1 and C2 owing to a permittivity jump, but fre-
quencies of these waves rise with a zone number. The set
of the waves that are proportional to C0 and raised by a field
that incidences upon a slab after zero moment of time has
a descrete frequency spectrum. Frequencies of all waves
grows up with a zone number and with time consequently.
A frequency multiplication coefficient equals p= ν2+u

ν2−u and
grows with u→ ν2.
Behavior of the secondary waves amplitudes is determined
by a relation between wave phase velocity and a boundary
velocity. If R1 > 0, that is νu− ν2

2 > 0, the amplitudes
grow infinitely during a finite time interval. The region
with such a relation between velocities is shown in Fig. 7
as a single crosshatched region.

Fig. 7. Regions where amplitudes grow and field energy accu-
mulates

The energy balance for waves raised by the waves C1 and
C2 in the slab in the time interval [tm−1 , tm] is determined
by

dW
dt

= ε2

(
ν2−u

)(
R2
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)

R2(m−1)
1

×

×
{
C2
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(
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)
+C2
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(
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)}
,

(20)

where ωm = pm−1 ν2+u
ν ω .

When a movement is absent u = 0 then dW/dt < 0. The
waves with the frequency ω2 are shone out.
When boundaries move and R2

1− p > 0 or

u
ν

>
2ν2

2

ν2 +ν2
2

(21)

then dW/dt > 0.

A region where a field energy accumulates is shown in Fig.
7 as a double crosshatched region.
Outside the slab the field represents a sequence of waves
packages that are devided by fronts xm = νtm. The field in
such a package within planes νtm+1 and νtm has the form

Em =
2ν2

ν2(ν +ν2)
ν2 +u

ν +u
Cim

1 C1−im
2 ×

×Rm
1 e−iω pm ν2+u

ν+u (t+x/ν)+(−1)miωηm
a
ν ,

(22)

where ηm = − ν2−u
2u p1−im

(
1− pm+im

)
. This wave fre-

quency rises by a factor pm. A field energy within the
package is proportional to

Wex≈

[(
ν−ν2

ν +ν2

)2

p

]m

. (23)

If u
ν >

2ν2
2

ν2+ν2
2

a field energy within the package outside

the slab grows infinitely when m→ ∞, that corresponds to
approaching to a collapse moment.
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