
Paper Ensuring interoperability

of command and control information

systems – new ways to test conformance

to the MIP solution
Nico Bau, Michael Gerz, and Michael Glauer

Abstract—In the Multilateral Interoperability Programme

(MIP), 25 nations and NATO develop consensus-based, sys-

tem-independent specifications to achieve semantic interoper-

ability among distributed and heterogeneous command and

control information systems (C2ISs). Implementing a dis-

tributed system is a complex and error-prone task. Therefore,

extensive and efficient testing of the national MIP implementa-

tions is critical to ensure interoperability. For MIP baseline 3,

Research Institute for Communication, Information Process-

ing, and Ergonomics (FKIE) develops a test system that checks

the conformance of national C2ISs with regard to the MIP

specifications. It aims at reducing the testing effort and in-

creasing the quality of MIP-compliant C2IS by automating

the testing process. For that purpose, formal and executable

test cases are specified. The test system is used as the MIP

Test Reference System (MTRS) for the official MIP system

level tests. In this paper, we motivate the development of the

MTRS and describe the underlying testing approach. The

client-server architecture and the test language are described

in detail. Finally, the status quo and an outlook on future

enhancements are given.

Keywords— Multilateral Interoperability Programme, confor-

mance testing, MTRS.

1. Introduction

In an age, in which information superiority decides on

the outcome of military missions, the interoperability of

command and control information systems (C2ISs) is of

paramount importance. However, the C2 systems currently

fielded do not speak a common language, yet. Over the

years, each nation has developed and maintained their own

C2 system(s) based on their national doctrine and informa-

tion requirements. This has led to dozens of systems with

different, incompatible interfaces.

To support information exchange across national do-

mains in combined and joint operations, 25 nations and

NATO collaborate in the Multilateral Interoperability Pro-

gramme (MIP) [5]. MIP is a voluntary forum that devel-

ops consensus-based, system-independent specifications. It

aims at achieving “international interoperability of com-

mand and control information systems (C2IS) at all levels

from corps to battalion, or lowest appropriate level, in or-

der to support multinational (including NATO), combined

and joint operations and the advancement of digitization

in the international arena” [4]. MIP defines a common

interface for distributed, heterogeneous C2ISs and covers

operational, procedural, and technical aspects of C2 infor-

mation exchange [3].

A core feature of the MIP solution is the joint command,

control, and consultation information exchange data model

(JC3IEDM) [6]. The JC3IEDM provides the basis for in-

formation exchange and specifies the semantics of militarily

relevant objects, actions, etc., as well as their relationships

in an unambiguous way. In addition, MIP defines infor-

mation exchange protocols and procedures. The MIP data

exchange mechanism (DEM) follows the publish-subscribe

paradigm and supports partial replication of operational

data.

The MIP interoperability tests. Implementing the MIP

solution – like any distributed system – is a complex and

error-prone task. In particular, this holds for its integra-

tion into legacy systems, which use proprietary data mod-

els and information exchange mechanisms internally. For

such systems, not only the network protocols have to be im-

plemented properly but also syntactic and semantic trans-

formations must be applied to operational data/information.

At the same time, the national MIP gateways build the back-

bone of the multinational network. A failure, in software

or hardware, may have the most serious consequences!

Therefore, extensive and efficient testing of the national

MIP implementations is critical to ensure interoperability

even in special (error) situations and under heavy load.

In order to improve and evaluate the degree of interop-

erability of national C2ISs, MIP provides standardized test

specifications with test cases of varying technical detail and

abstraction. For instance, there are high-level test cases for

verifying operating procedures as well as test cases for spe-

cific technical issues in the protocols of the DEM.

The MIP differs between three types of tests:

• Implementation level tests (ILT) are conducted under

national responsibility.

• System level tests (SLT) demonstrate the timely end-

to-end transfer of operational data between national

C2ISs.

• Operational level tests (OLT) evaluate the MIP solu-

tion, when deployed in the context of an operational

scenario, and validate that the MIP solution meets

the operational objective.

5

Nico Bau, Michael Gerz, and Michael Glauer

The MIP system level tests are divided into three subcate-

gories [7]:

• SLT 1 focuses on data transmission and communica-

tion protocols (technical level testing).

• SLT 2 focuses on the correct information exchange

between JC3IEDM databases (data and procedural

level testing).

• SLT 3 validates the information exchanges between

C2ISs (C2IS level testing).

The MIP nations test their implementations in bi- and mul-

tilateral interoperability test sessions. These sessions are

performed via the Internet or during fixed periods in Gred-

ing, Germany. According to [10], the MIP test activities can

be classified as active interoperability testing, since some

test specifications require fault injection (in order to test the

error handling of the peer C2IS) or detailed information on

the internal state of the MIP gateway.

Fig. 1. Test configuration for bilateral MIP interoperability tests.

A generic test configuration for bilateral MIP tests is shown

in Fig. 1. With this test configuration, the interoperabil-

ity of two C2ISs A and B is tested. Both systems are

stimulated by inputs and their behavior is compared with

the expected results specified in the MIP test cases. More-

over, tester A and B are able to disrupt the underlying MIP

LAN in order to test their implementations under adverse

circumstances. During test execution, the test operators

must coordinate with each other offline (e.g., by online

chat) to stimulate their C2ISs in the right order and to de-

termine the final test verdict. The test cases are executed

twice with the national systems alternately taking the role of

both C2IS A and B.

Restrictions of the current approach. Unfortunately, this

way of testing has several limitations:

• Since the MIP test cases are described informally

or semi-formally only, they easily become subject to

interpretation. Moreover, they have to be performed

manually. Therefore, the test results often depend on

the judgment of the test operators involved (which

may also be the C2IS implementers).

• Due to the needed coordination with test partners and

the lack of automation, testing has proven to be very

time-consuming.

• Interoperability does not necessarily imply that the

systems conform to the MIP specifications. If all

interoperating systems are implemented in the same

erroneous way, errors remain undetected. The MIP

community tries to address this problem by testing

their C2ISs against as many other C2ISs as possi-

ble (3 to 5 systems). However, the resources for test

sessions are limited, especially when the MIP com-

munity continues growing.

• Fieldable C2IS are not designed for testing. We can-

not expect C2ISs to have (standardized) test inter-

faces for their internal components, as this would

strongly limit implementation options.

• A C2IS does not provide dedicated support for the

different stages of the testing process, i.e., test de-

velopment, test preparation, test execution, and test

evaluation. When testing with another C2IS, a lot of

time is spent on setting up the test configuration (in-

cluding resetting the operational database). Thus, it

is practically impossible to run thorough regression

tests after software changes.

The MIP Test Reference System. In order to support

the correct implementation in national C2ISs, the Research

Institute for Communication, Information Processing, and

Ergonomics (FKIE) develops a dedicated test system, in-

corporating ideas and feedback of the MIP community1.

Its purpose is to check the conformance of a national C2IS

with regard to the MIP specifications rather than its inter-

operability with other C2ISs. The test system makes use

of formal test cases and thus supports automated execution

and evaluation of test cases. The test system is supposed

to support the full range of MIP system level tests with the

exception of tests for the message exchange mechanism.

Initially, the MIP Test Reference System (MTRS) was

planned as a national project in order to decrease resources

needed for testing several MIP implementations while in-

creasing the test quality at the same time. Nevertheless,

the plans and concepts for a conformance test system have

been presented to the MIP Programme Management Group

and various working parties. Due to the positive feedback,

the test system is used as the MTRS for the official MIP

system level tests, which have started in September 2007.

The MTRS is offered free of charge to all systems partic-

ipating in the MIP SLT. Furthermore, we try to make the

MTRS as “transparent” as possible by unveiling its archi-

tecture, the test scripts, and the internal data flow during

test execution.

1The project is funded by the Federal Office of the Bundeswehr for

Information Management and Information Technology.

6

Ensuring interoperability of command and control information systems – new ways to test conformance to the MIP solution

2. Conformance testing

In contrast to interoperability tests, which check whether

two or more systems are able to communicate and exchange

data with each other, conformance tests aim at checking

the functional behavior of a single system under test (SUT)

with regard to a specification. In doing so, the SUT is

considered as a black box. The task of a conformance test

system is to control the SUT by sending some input (stim-

uli) and to compare the observed output (responses) with

the expected results.

The MIP conformance testing is challenging for two rea-

sons.

First, the MIP solution requires the implementation of sev-

eral different software components. These include the DEM

protocol stack, a replication transaction component that

assembles outgoing and processes incoming operational

data, and, typically, a JC3IEDM-compliant database. Other

software components may validate data against JC3IEDM

business rules and map JC3IEDM data onto APP6a sym-

bols on screen and vice versa. When testing for MIP con-

formance, these software elements cannot be tested in iso-

lation but have to be considered as embedded components

in a complex C2IS. Moreover, no clear line can be drawn

between the C2IS core and the MIP-specific parts. Thus,

testing MIP compliance does not stop at the gateway/inter-

face of a C2IS but involves many different, possibly deeply

hidden, C2IS components.

Second, the only standardized test interface of the C2IS

under test is the MIP interface. Therefore, the control and

observation of the SUT by means of an automatic test tool

is restricted. If the protocol data units (PDUs) sent and re-

ceived via MIP do not allow for the complete execution and

evaluation of a test case, the test operator has to be involved.

For instance, the test system may ask the operator to estab-

lish a contract manually via the user interface of the C2IS.

In terms of the open systems interconnection (OSI) confor-

mance testing methodology and framework (CTMF) [2],

only the remote test method is applicable. A generic test

configuration for MIP conformance testing with a single

MIP tester gateway is shown in Fig. 2.

Fig. 2. Conformance testing – remote test method.

Testing of the MIP solution must happen on different tech-

nical and logical layers (protocol layers, database layers).

Accordingly, test cases should be specified on different lev-

els of abstraction. In fact, it is unacceptable and virtually

impossible to specify test events on the lowest level, i.e.,

as TCP/UDP service primitives, when testing operational

data. Therefore, parts of a MIP implementation have to be

integrated into the test system itself.

For the MTRS, the MIP-specific modules have been de-

signed as fine-grained components, each mapping to a par-

ticular aspect of the MIP specifications. They have been

modeled as closely to the MIP specifications as possible.

In particular, the names and the structure of the DEM mes-

sage classes in the MTRS implementation match with the

service primitives defined in the MIP DEM specification.

Moreover, we developed a lightweight component frame-

work that adopts concepts from popular Java frameworks.

The component framework allows to set up different test

configurations and provides the test operator with informa-

tion on the data flow between the components. The latter

enables efficient error diagnosis and test evaluation. The

concrete test configuration is specified as part of each for-

mal test case.

“Quis custodiet ipsos custodes”2. The inclusion of MIP

components raises the question whether the test system

itself is implemented correctly3. There are several ap-

proaches to minimize the risk of an incorrect implemen-

tation. For instance, we use FindBugs [9], a static analysis

tool that scans the source code of the MIP components

for anti-patterns. Where possible, the test system compo-

nents are derived directly from the (platform-independent)

MIP specifications, which are correct by definition. Model-

driven software development is applied for the MIP infor-

mation resource dictionary that does not only comprise the

meta model of the relational JC3IEDM but also formal rep-

resentations of many JC3IEDM business rules. This way,

database transactions can be handled generically.

Most importantly, a bootstrapping approach can be applied.

The conformance test suite is not only applied to the na-

tional C2ISs but also to the MIP components of the MTRS.

This is achieved in an incremental manner: starting with

a test system that does not include any MIP gateway com-

ponents, the test components of the lowest level (those that

use TCP or UDP at their lower interfaces) are tested. Once

these test components have passed all tests, they can be

used in the test system to test components of the next layer.

In other words: in order to test layer n+1, it only takes MIP

components of layer [1..n] and the executable test script for

layer n + 1.

This iterative process continues, until all test components

have passed the conformance test suite successfully. Note

that since the test cases for layer n + 1 and the MIP com-

ponents of the same layer are developed independently,

the MIP implementation does not automatically pass all

tests. Furthermore, the correctness of a test case can be

2“Who watches the watchmen?” Decimus Junius Juvenalis.
3Of course, the test framework, which is responsible for interpreting and

executing the test cases, may also be erroneous.

7

Nico Bau, Michael Gerz, and Michael Glauer

verified by the MIP community by reviewing the test scripts

and analyzing the data flow of test runs.

3. System architecture

The MTRS is designed as a client-server application. The

high-level architecture of the MTRS is shown in Fig. 3.

Fig. 3. Test system architecture.

The national test operator interacts with the MIP test sys-

tem via the test client (see also below). In particular, the

national test operator is able to run test cases on the server

and to analyze the way the data is processed in the test

server.

Conceptionally, the test server consists of a test manager

that is responsible for test execution and evaluation. The

test framework supports concurrent execution of test cases

for different C2ISs. The MTRS test suite, the test results of

each individual C2IS, and the user data are made persistent

in the server database.

Depending on the test configuration required by a given

test case, the test manager sets up, controls, observes, and

synchronizes specific test components. In Fig. 3, two MIP

gateway instances are set up. This is useful for, e.g., testing

the data forwarding capabilities of a C2IS, where the test

manager sends operational data via MIP gateway instance 1

and checks for the reception of the same data at MIP gate-

way instance 2. Exchange between the test server and the

national C2IS takes place via TCP/IP and UDP/IP.

As mentioned above, the MIP interface is the only stan-

dardized interface provided by all national C2ISs. There-

fore, at certain points, the test server sends action requests

to the test client, which asks the test operator to perform

some action or to provide feedback on what information is

displayed at the C2IS’s user interface.

Using a common test server shared by multiple nations has

some advantages and disadvantages.

On the one hand, the integrity of test cases and test results

is ensured by a central repository – the test operators are

not able to change them (neither accidentally nor intention-

ally). Since all test results are available, cross-national test

reports can be produced for the MIP test controllers at run

time. For that purpose, we have implemented a PDF export

functionality.

Moreover, the upgrade procedure for the test system and for

test cases is simplified, as no distribution among the nations

is needed. As described below, test scripts can be updated

on the fly without having to restart the server. Similarly,

the test suite shown in the test client can be synchronized

with the server database during a user session.

Finally, server configuration and database backups are at

the responsibility of a single organization, freeing the C2IS

developers and test operators from administration.

On the other hand, a server-based test system is a single

point of failure such that reliability and availability become

crucial quality factors. In particular, we must ensure that:

– parallel test runs do not interfere;

– faulty test components do not tear down the complete

server;

– no “zombie” threads remain if the test operator/client

disconnects from the server without previously stop-

ping a test run.

These issues have been addressed by encapsulating error-

prone server components in a sandbox. All exceptions

thrown within the sandbox are caught. Moreover, watch-

dog timers trigger the termination of long-running test cases

and of user sessions for which no activity was noticed for

a long period.

When running tests over the Internet, test operators must

assure that their C2ISs are able to access the server. Typ-

ically, the companies and organizations involved in MIP

have very strict firewall policies. Therefore, the MTRS was

designed in a way that it uses a minimal number of fixed

ports. For the MTRS client-server communication, access

must be granted to only two server ports (1098/1099). For

communication of the national C2IS with the MTRS server,

the same TCP gateway ports are re-used for each test run.

Of course, all test data transmitted over the Internet must

be unclassified. Since all test scripts – which describe the

test data to be exchanged – are publicly available anyway,

we do not consider this as a major problem.

Test client user interface. The MTRS client is a Java ap-

plication. It can be run on any system, on which Java

Runtime Environment 5 or higher is installed. Figure 4

shows a screenshot of the MTRS client.

The graphical user interface is split into three main areas.

On the left, the test suite with its test groups, test cases,

and corresponding test runs is represented as a tree.

On the top right, meta information is provided for the cur-

rently selected tree node. For instance, test cases are char-

acterized by their name, version, and purpose, a reference

to the relevant MIP documentation, a selection criteria, gen-

eral comments, and keywords. The latter can be used for

8

Ensuring interoperability of command and control information systems – new ways to test conformance to the MIP solution

Fig. 4. The MTRS client.

filtering test cases in the test client. Moreover, the operator

may add some C2IS-specific comments to a test case. For

a test run, the MTRS keeps track of the status (running,

terminated, aborted, etc.), test verdict, start date and time,

and the duration, as well as the test operator and the ver-

sions of the SUT, MTRS, and test case at the time when the

test was executed. In alignment with the OSI CTMF, the

MTRS supports three possible test verdicts: pass, fail, and

inconclusive. Test verdict inconclusive is assigned if the

C2IS does not meet the test objective but behaves correctly

according to the MIP specifications. Other causes for the

verdict inconclusive include firewall and network problems.

Finally, on the bottom right, the internal data flow between

the MTRS MIP gateway components and various status

messages are shown. Besides displaying the log informa-

tion in a tabular view, the MTRS is able to create sequence

diagrams. The data flow shown in Fig. 4 corresponds to

a successful execution of the test case given in Fig. 5.

4. Test specification

In order to run test cases in an automated way, they have

to be written in a formal test language. Among others,

such a language must fulfill a couple of test-specific re-

quirements.

First, the test language has to allow for the definition of

dynamic test configurations. It must be possible to set

up and link individual test components on a per test case

basis. The configuration concepts of the language must

match with the component model used for the MIP imple-

mentation. As mentioned above, the MTRS is written in

Java. It employs a lightweight component model based on

asynchronous message exchange and uses the Java interface

concept and the dependency injection pattern.

Second, the test language must provide control structures

for handling non-deterministic, partially ordered, and unex-

pected test events. Whenever the test system expects some

response from the SUT, it must be able to cope with vari-

ous possible inputs, including valid, inopportune, and erro-

neous responses. Moreover, the order of (valid) responses

may not be fixed. For instance, if a C2IS is expected to

send three database records, the order of the records may be

irrelevant. In other cases, alternative messages may be re-

ceived (e.g., a connection confirmation or a disconnection).

For clarity, the main body of a test case should describe the

expected behavior. Nevertheless, the test system must be

able to catch erroneous and inopportune behavior as well.

For that purpose, some kind of exception handling should

be available.

Third, the test language must support time and timers. Oc-

casionally, response times of an SUT have to be constrained

9

Nico Bau, Michael Gerz, and Michael Glauer

to check functional requirements and to make sure that,

eventually, the test case terminates. For instance, timers are

needed in scenarios, in which the MTRS checks whether

a response does not occur within a given period. More-

over, it may be desirable to measure the time it takes for

a C2IS to forward data from one system to another and to

check whether this duration falls within a certain range of

tolerance.

Finally, it must be possible to specify test verdicts based

on the test events.

Ideally, the test language should be standardized. Rather

than reinventing the wheel, the test language should adhere

to some de facto or de jure standard. For the MIP test sys-

tem, two test languages/frameworks have been investigated

with regard to the requirements above: JUnit/Java and the

testing and test control notation (TTCN-3).

JUnit is an open source framework for writing and running

repeatable tests4. It provides assertions for testing expected

results, test fixtures for sharing common test data, and test

runners for running tests. JUnit test cases are actually Java

classes that follow certain naming conventions or have spe-

cial annotations.

Our assessment has shown that the control structures pro-

vided by JUnit/Java are not sufficient to cope with alterna-

tive system behavior in an elegant way. In addition, proper

timer handling leads to convoluted code. This is not sur-

prising, as JUnit was designed for unit testing rather than

for testing distributed systems.

The TTCN-3 is widely used in the telecommunication and

automotive area and has been standardized by the European

Telecommunications Standards Institute (ETSI). In contrast

to JUnit, it has very sophisticated testing features for dis-

tributed systems. However, we concluded that the “seman-

tic gap” between TTCN-3 and Java, and the effort to inte-

grate a TTCN-3 interpreter into the MTRS outweighs the

benefits of using this standardized language. For instance,

TTCN-3 provides its own data model, which does not sup-

port object-orientation. A lot of development would have

been necessary for the mapping of Java classes and methods

onto suitable TTCN-3 constructs and vice versa.

4.1. The MTRS test language

For the MTRS, we have defined a test language that is

mainly based on Java but borrows some concepts from

JUnit and TTCN-3 (Java with “syntactic sugar”). A sample

MTRS test case is shown in Fig. 5.

In order to facilitate the instantiation of a component, the

new operator of Java was complemented by a create oper-

ator. It does not only instantiate the respective component,

but also creates proxy objects that automatically intercept

all method calls of that component. Furthermore, the life

cycle of a component that was instantiated using the cre-

ate operator is tightly coupled with the execution of the test

case. Thus, when the test case finishes, the component is

stopped and disposed.

4See http://www.junit.org

Components can be linked via dependency injection.

Whenever two components are linked, a proxy object is

used to intercept the communication between them. For

each intercepted invocation, the method’s signature, the pa-

rameters provided, and information on the caller of that

method are added to the respective test case’s event queue.

To stimulate a component, the [!] operator was added. Its

syntax is:

[!] <method call> to <component>;

While the [!] operator only introduces a minor improve-

ment concerning the ability to write and comprehend a test

case, the addition of the operator [?] significantly simpli-

fies test case specification in comparison to plain Java. The

[?] operator checks for whether a specific method is called

within a given time. The syntax of the [?] operator is:

[?] [<called component>.] <method signature>

[from <calling component>]

[in <duration>] <block>

It is used to express the expectation that a method with the

provided signature is invoked. Each [?] operator within

a test case is translated into Java code, which checks the

event queue of the respective test case for communication

between the called and calling component. If a proxy ob-

ject has logged communication between the components,

the test runner checks whether the logged method signature

matches the one of the [?] operator. If it does, all parame-

ters are assigned to variables and the preceding code block

is executed; otherwise, an exception is thrown. If com-

munication between the two components has not yet taken

place, the test execution waits until this event is intercepted

or a timeout occurs.

Additionally, the alt and interleave statements can be used

to group several [?] operators. The alt block is left, if one

of the [?] operators was triggered, whereas the interleave

operator waits until all [?] operators were processed. This

allows for waiting for multiple events that may occur in an

arbitrary order.

Within the code block of the [?] operator, the new re-

peat statement can be used to leave the current block and

to continue execution at the outer alt or interleave state-

ment, thus effectively ignoring the event that has occurred.

A single [?] operator without a surrounding alt or inter-

leave is treated as being the only [?] operation inside an

alt statement.

Finally, a test .. handle statement was modeled similarly

to Java’s try .. catch. The handle part lists an arbitrary

number of [?] operators that are implicitly added to all

alt statements within the test body. test .. handle allows

to specify the reaction to unexpected or exceptional events

separately from the expected test events.

The sample test case shown in Fig. 5 makes use of some

of the new operators. It tests whether the SUT is able

to receive and process a DEM connection information

sent by the test system, and is able to send its own con-

nection information back to the test system. Afterwards,

10

Ensuring interoperability of command and control information systems – new ways to test conformance to the MIP solution

1 testgroup MIP.SLT_1.MSLT.Initialisation {
2

3 /∗∗
4 ∗ @Id 170
5 ∗ @Version 1.3
6 ∗ @Purpose Verify the establishment of a TMAN connection as a result of UDP based DEM connection information.
7 ∗ The test shall pass with a TMAN connection between the two DEMs to prove the connection information
8 ∗ was handled correctly.
9 ∗ @SelectionCriteria Low

10 ∗ @Keywords TMan DCI
11 ∗/
12 testcase MSLT1DEM_104 {
13 request("Please start your C2IS and expect to receive a DEM Connection Information via UDP.");
14

15 // set up test configuration:
16 Component udpMan = create UDPMan(getSut().getIpAddress(), getSut().getUdpPort());
17 Component connection = create FilteringConnection(getSut().getNodeId());
18 Component tcpMan = create TCPMan(getSut().getTcpPortGateway1());
19 Component tMan = create TMan();
20

21 link(udpMan, connection, "ConnectionInfoXML");
22 link(connection, udpMan, "ConnectionInfoXML");
23 link(connection, tMan, "TOpenIndAcceptDeny");
24 link(tMan, connection, "TOpenInd");
25 link(tcpMan, tMan, "PMessageInd");
26 link(tMan, tcpMan, "PMessageReq");
27

28 cm.start();
29

30 OwnConnectionInfo ownDCI = getOwnConnectionInformation("449000001", "BLK3 SLT1 REP ORG A",
31 getSut().getTcpPortGateway1());
32 ownDCI.setScope(Scope.ANNOUNCE);
33 ownDCI.setReceiverIp(getSut().getIpAddress());
34 [!] send(ownDCI) to connection;
35

36 // now we want to receive a reply:
37 [?] receive(ConnectionInfoAcceptDeny ind) from connection {
38 ConnectionInfo info = ind.getConnectionInfo();
39 assertEquals("nodeId", getSut().getNodeId(), info.getNodeId());
40 assertEquals("ipAddress", getSut().getIpAddress(), info.getIpAddress());
41 assertEquals("tcpPort", getSut().getTcpPort(), info.getTcpPort());
42 assertEquals("scope", Scope.REPLY, info.getScope());
43 }
44

45 request("The MTRS successfully received your DEM Connection Information. It will open a TMan connection now.");
46

47 TOpenReq openRequest = new TOpenReq(this, RoleDescriptor.RECEIVER, getSut().getNodeId(),
48 ownDCI.getNodeId(), getSut().getIpAddress(), getSut().getTcpPort());
49 [!] send(openRequest) to tMan;
50

51 [?] receive(TOpenInd ind) from tMan;
52

53 // check that the connection is open for at least 5 sec
54 Timer timer = create Timer(5000);
55 alt {
56 [?] tMan.receive(PCloseInd ind) from tcpMan {
57 return Verdict.Fail;
58 }
59 [?] tMan.receive(PDataInd ind) from tcpMan {
60 repeat;
61 }
62 [?] receive(Timeout t) from timer;
63 }
64

65 return Verdict.Pass;
66 }
67 }

Fig. 5. The MTRS test script.

11

Nico Bau, Michael Gerz, and Michael Glauer

the MTRS opens a connection to the C2IS in order to

check whether the C2IS accepts connections from the node

ID and TCP port provided in the DEM connection in-

formation.

4.2. Test script processing

Test scripts can be updated on the MTRS server at run

time without having to shut down and restart the server.

For that purpose, the server administrator connects to the

MTRS server via a special administration tool and uploads

the scripts. On the server, the test scripts are parsed for

syntactical correctness. Then, the test suite, test group,

and test case meta information (given in JavaDoc for-

mat) is extracted and stored in the server database. Next,

the test scripts are transformed into pure Java classes by

rewriting all test language-specific extensions and short-

cuts. Finally, the Java compiler produces the correspond-

ing Java byte code. By exploiting the class loader fea-

tures of Java, it is possible to reload a Java class defi-

nition at run time or even to keep different implementa-

tions of the same class. Thus, whenever a new test run is

started, the latest byte code based on the latest test script is

loaded into the Java virtual machine without affecting other

test runs.

5. Summary and outlook

The MIP Test Reference System introduces new ways to

test the conformance of national MIP implementations to

the MIP baseline 3 specifications. The MTRS aims at

improving the quality of national MIP implementations

(in terms of reliability, availability, and robustness), while

reducing the overall testing effort (in terms of cost and

time). The MTRS performs functional black box tests,

i.e., it sends some stimuli to the C2IS under test and com-

pares its responses with the expected results. In doing

so, it does not rely on any specific C2IS interfaces other

than those required by the MIP specifications.

The test system allows for the execution of tests on different

layers and with varying test configurations. The architec-

ture of the test server permits its simultaneous use by mul-

tiple nations without interference. Each nation performs its

tests against one or two MIP gateways, exclusively set up

at run time for a single test case or a group of consecutive

test cases. Detailed protocol logs allow for simplified test

evaluation. In particular, error diagnosis is supported by

unveiling the information flow inside the test server gate-

way(s). Moreover, the MTRS provides powerful export

features to generate MIP test reports for national use and

for the MIP test controllers.

The MIP system level tests have started in September 2007.

As stated in the MIP test and evaluation master plan

(MTEMP) [7], “each system will test with the MTRS be-

fore testing with another system”. Many new SLT test cases

have been standardized within MIP that can only be run

with the help of a test system, as they cover scenarios not

reproducible by a regular C2IS.

All official MIP SLT 1 test cases have been formalized,

resulting in more than 100 MTRS test scripts. In addition,

the MTRS offers a special test case that starts a MIP gate-

way with some default behavior. It can be used to perform

interoperability tests over a longer period without focusing

on one particular test objective. By the end of Decem-

ber 2007, more than 9,000 SLT 1 tests have been executed

with the MTRS. For SLT 2, the MIP community has de-

fined more than 150 test cases. Corresponding MTRS test

scripts will be available in January 2008.

The early adoption of the MIP solution made it possible to

gain experience with the draft standards while the specifica-

tions were written. Various corrections and improvements

found their way back into the specifications. Among others,

faulty entries were fixed in the MIRD and the DEM PDU

grammar was simplified. The state transition tables for the

DataMan protocol have been redesigned in order to enhance

error handling and reporting and to formalize those aspects

that were only described in textual form before. The price

to pay was that significant parts of the MTRS MIP gateway

implementation had to be rewritten during the specification

process.

In addition to the MTRS server, the FKIE hosts a sep-

arate web server with a project management envi-

ronment based on Trac [1] and Subversion [8]. At

https://trac.	ie.fgan.de/MTRS, MIP nations can download

the MTRS client as well as a stand-alone DEM protocol an-

alyzer tool. All test-related MIP documents as well as the

MTRS test scripts are put under version control in a Subver-

sion repository. The Wiki documentation includes several

animated tutorials for the MTRS client based on Adobe

Flash technology. Furthermore, a built-in ticketing system

can be used to report defects, ask questions, etc.

Our current work opens the door for many future enhance-

ments. First, MIP tests are still specified in an ad hoc

manner. Since large parts of the MIP specifications are

given in a formal representation, it is possible to apply au-

tomatic test generation algorithms. For SLT 2, some of the

JC3IEDM test data have already been generated automati-

cally based on the MIP information resource dictionary.

Where such algorithms cannot be applied (due to time con-

straints or technical complexity), it is beneficial to get at

least some information on the coverage of the existing tests.

For instance, it would be interesting to know which parts

of the JC3IEDM are actually covered during the final MIP

operational level test (MOLT).

Another interesting testing aspect is the validation of the

data exchange between two C2IS during the MOLT by net-

work sniffing (passive testing).

Finally, our findings and tools can be generalized beyond

the scope of MIP, such that they become applicable to

other interoperability programs and to other Java compo-

nent frameworks in general. In particular, the test language

extensions may be useful for a larger software development

community.

12

Ensuring interoperability of command and control information systems – new ways to test conformance to the MIP solution

References

[1] Trac – integrated SCM and project management, Edgewall Software,

2007, http://trac.edgewall.org/

[2] “Information Technology – Open Systems Interconnection – Con-

formance testing methodology and framework”, Parts 1 to 7,

ISO/IEC 9646:1994.

[3] MIP – Multilateral Interoperability Programme. Statement of intent

for the Multilateral Interoperability Programme (MIP), (the anzio

agreement), Nov. 2003, http://www.mip-site.org/

[4] MIP – Multilateral Interoperability Programme. MIP standard brief-

ing, Dec. 2006, http://www.mip-site.org

[5] MIP – Multilateral Interoperability Programme. MIP home page,

2007, http://www.mip-site.org/

[6] MIP – Multilateral Interoperability Programme. The joint C3 infor-

mation exchange data model (JC3IEDM main), ed. 3.1b, Dec. 2007,

http://www.mip-site.org

[7] MIP – Multilateral Interoperability Programme. The MIP test and

evaluation master plan (MTEMP), ed. 3.1, May 2007,

http://www.mip-site.org

[8] Subversion: version control system, Tigris.org, 2007,

http://subversion.tigris.org/

[9] FindBugsTM – Find Bugs in Java programs, University of Maryland,

2007, http://findbugs.sourceforge.net/

[10] T. Walter, I. Schieferdecker, and J. Grabowski, “Test architectures

for distributed systems – state of the art and beyond”, in Test.

Commun. Syst. IFIP TC6 11th Int. Worksh. Test. Commun. Syst.

IWTCS, A. Petrenko and N. Yevtushenko, Eds., Tomsk, Russia,

1998, vol. 131, pp. 149–174.

Nico Bau studied computer sci-

ence at the Bonn-Rhein-Sieg

University of Applied Sciences,

Germany. In 1999, he founded

his own company, in which he

worked as a software engineer

and consultant. In May 2006,

he joined the Research Insti-

tute for Communications, In-

formation Processing, and Er-

gonomics (FKIE) of the Re-

search Establishment for Applied Science (FGAN) in

Wachtberg, contributing more than seven years of expe-

rience in Java programming to the development and design

of the Multilateral Interoperability Programme Test Refer-

ence System.

e-mail: bau@fgan.de

Research Institute for Communications,

Information Processing, and Ergonomics (FKIE)

Department ITF

Research Establishment for Applied Science (FGAN)

Neuenahrer st 20

D-53343 Wachtberg-Werthhoven, Germany

Michael Gerz studied com-

puter science with focus on

computational linguistics at the

University of Koblenz, Ger-

many. He worked as a Research

Assistant at the University of

Lübeck and at the Institute for

Telematics in Trier, Germany.

In 2003, he received his Ph.D.

from the University of Göttin-

gen. His dissertation deals with

automatic test generation based on formal specifications.

Since 2004, he is a Senior Researcher at the Research In-

stitute for Communications, Information Processing, and

Ergonomics (FKIE) of the Research Establishment for Ap-

plied Science (FGAN) in Wachtberg. Currently, he is the

project manager for the Multilateral Interoperability Pro-

gramme Test Reference System.

e-mail: gerz@fgan.de

Research Institute for Communications,

Information Processing, and Ergonomics (FKIE)

Department ITF

Research Establishment for Applied Science (FGAN)

Neuenahrer st 20

D-53343 Wachtberg-Werthhoven, Germany

Michael Glauer received the

information systems degree

with distinction from the Uni-

versity of Applied Sciences

of Hof/Saale, Germany, in

2004. Since July 2006, he is

a Research Associate at the

Research Institute for Commu-

nications, Information Process-

ing, and Ergonomics (FKIE)

of the Research Establishment

for Applied Science (FGAN) in Wachtberg and participates

in the Multilateral Interoperability Programme. Prior, he

was an independent IT consultant and software developer

for mobile computing. His current research interests

include software testing, distributed systems, and virtual

object databases.

e-mail: glauer@fgan.de

Research Institute for Communications,

Information Processing, and Ergonomics (FKIE)

Department ITF

Research Establishment for Applied Science (FGAN)

Neuenahrer st 20

D-53343 Wachtberg-Werthhoven, Germany

13

