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Abstract — A possibility of light pulse transformation by
transient reflecting medium is investigated theoretically. Af-
ter solving 1D problem of such a reflection one estimates
such a transformation in a plane optical waveguide with time-
dependent conductivity of one of the reflected media. Three
types of the conductivity time-dependences are considered:
harmonic, Bessel-like and splash-like ones. Obtained results
show a possibility of pulse splitting under an influence of time-
harmonic conductivity and pulse collapse vy the other consid-
ered nonstationarities.
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Motivation and common formulation
of the problem

In optics a transformation of electromagnetic field of light
has two reasons to be one of the basic problem. The first
one is that light sources could not radiate all types of re-
quired fields, laser sources radiate fields of a finite num-
ber of frequencies. The second one is, as in radio range
electromagnetics, a necessity to modulate field for infor-
mation transmission. Optical waverange field modulation
is usually made based on electro-optical Pokker’s effect,
magneto-optical Faradey’s or Kerr’s effects and on acousto-
optical effect. In all these methods the field is modulated
during the transmission through the correspondent mod-
ulating media, which is connected with additional losses
and additional element of transmission tract. For informa-
tion transmission it is not convenient to use frequency or
phase light modulation, because in the existing light sources
for optical communication there is not enough coherence.
Besides, such a modulation techniques are well-developed
only for harmonic initial fields.
The present work has a goal to find a possibility to trans-
form light pulses by transient reflecting medium and to
estimate such a transformation in a plane optical waveg-
uide where one of the reflecting media has time-dependent
conductivity.
One has chosen the conductivity as a transient parameter
because it can be more easily changed than permittivity
whose change besides can leads to destructuring of the full
reflection in optical waveguide.
To estimate pulse transformation in a plane optical waveg-
uide with time-dependent conductivity of one of the reflect-
ing media (Fig. 1) one firstly solves rigorously one-space

Fig. 1. Plane waveguide with nonstationary reflecting medium

dimensional problem of pulses reflection from a transient
conductive half-space for an initial pulse propagating nor-
mally to the reflection boarder (Fig. 2).

Fig. 2. Formulation of 1D problem

For the conductivity time-dependences considered in 1D
case two-space-dimensional problem is investigated. It is
solved approximately for the initial pulse falling angle pro-
viding a full reflection, in assumption of constant polarisa-
tion of the initial and scattered fields (Fig. 9). Then one
estimates multiply re-reflection of the transformed pulse
from the transient and stationary media forming a plane
light waveguide.

One-space-dimensional problem

Problem formulation

The formulation of one-space-dimensional problem is in
determination of the reflected field by the reflected field
and the initial one and by time-dependence of the relected
medium conductivity.
It is considered that the conductivity change starts after the
moment t = 0 (Fig. 2). Before and after this moment the
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fields are called the initial and scattered fields, correspond-
ingly. The fields are assumed to have only those compo-
nents, which are normal to the x-axis and independent on
the y- and z-coordinates.
Mathematically, the problem is formulated in terms of the
Volterra integral equation for the electrical component of
electromagnetic field [6], which has the following form for
the internal field (inside the transient region) for t > 0,
x > 0:

Ein(t,x) = A(t,x)+

−2π
εv

Θ(vt−x)
∫ t

t−x/v
dt ′σ(t ′)Ein

(
t ′,x−v(t− t ′)

)
+

−2π
εv

Θ(x−vt)
∫ t

0
dt ′σ(t ′)Ein

(
t ′,x−v(t− t ′)

)
+

−2π
εv

∫ t

0
dt′σ(t ′)Ein

(
t ′,x+v(t− t ′)

)
(1)

where A(t,x) is known because it is determined by the ini-
tial field and prehistory of its interaction with the medium:

A(t,x) = E0(t,x)+

−Θ(x−vt)
2π
εv

∫ 0

t−x/v
dt ′σ(t ′)E1

(
t ′,x−v(t− t ′)

)
+

−2π
εv

∫ 0

−∞
dt ′σ(t ′)E1

(
t ′,x+v(t− t ′)

)
and for the external field for t > 0, x < 0:

Eex(t,x) = B(t,x)+

−2π
εv

Θ(vt+x)
∫ t+x/v

0
dt ′σ(t ′)Ein

(
t ′,v(t− t ′)+x

) (2)

where

B(t,x) = E0(t,x)+

−2π
εv

Θ(vt+x)
∫ 0

−∞
dt ′σ(t ′)E1

(
t ′,v(t− t ′)+x

)
+

−2π
εv

Θ(x+vt)
∫ t+x/v

−∞
dt ′σ(t ′)E1

(
t ′,v(t− t ′)+x

)
where ε is the dielectric permittivity, v= c/

√
ε is the light

velocity in considered medium and the conductivity time-
dependence (or time-spatial dependence) Eex(t,x) is a func-
tion to be found.

Analytical solution of the problem

To obtain an equation for the external field, we firstly solve
the equations (1) and (2) jointly to express the initial field
after the external one.
As one can see from (2), the external field is determined
by the sum of the known function B and a function of one
variable t − x/v. This fact, which is due to the assumed
homogeneity and losslessness of the external half-space,
makes impossible to express the internal field through the

external one directly from this expression. However, it al-
lows to obtain a non-integral formula for the external field
determined by the internal field on the boundary x = 0.
For this purpose we introduce a new function F of one
variable as:

F(t) =− 2π
εv

∫ t

0
dt ′σ

(
t ′,v(t− t ′)

)
Ein

(
t ′,v(t− t ′)

)
, (3)

which determines the external field in the external region
−vt < x < 0 by the expression

Eex(t,x)−B(t,x) = F(t +x/v).

From (1) we can obtain that the internal field on the bound-
ary is determined by the same function F :

Ein(t,0)−A(t,0) = F(t).

Considering this expression for shifted time moment t +
y/v, −vt < y < 0, we have

Ein(t +y/v,0)−A(t +y/v,0) = F(t +y/v).

After comparing this formula with (2) we obtain the fol-
lowing expression for the external field:

Eex(t,x) = B(t,x)+Ein(t +x/v,0)−A(t +x/v,0),
−vt < x < 0.

(4)

Introduce another new function

Φ(t,x)≡ Ein(t−x/v,x)−A(t−x/v,x) (5)

for 0 < x < vt, satisfying the following equation obtained
from (1):

Φ′
x(t,x)+

2
v

Φ′
t(t,x) =

−4π
εv

∂
∂ t

∫ t−x/v

0
dt ′σ

(
t ′,v(t−t ′)

)
Ein

(
t ′,v(t−t ′)

) (6)

with the boundary and initial conditions:

Φ(t,0) = F(t), and Φ(x/v,x) = Ein(0,x)−A(0,x) = 0 .

Knowing the external field at any point, the field in the
whole external region can be determined, including the re-
gion close to the boundary:

Eex(t,x)−B(t,x) = Eex(t−x1/v,x+x1)+

−B(t−x1/v,x+x1) = F(t +x/v)
(7)

So it would be enough to obtain the solution for external
field close to the boundary at the points where |x| � vt.
Under this approximation, we can solve Eq. (6), hence ex-
pressing the internal field through the external one, because
the integral at the right-hand part of (6) will be equal to
F(t):

Φ′
x(t,x)+

2
v

Φ′
t(t,x)≈ 2F ′(t) . (8)
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After substitution of this equation solution into (3) we ob-
tain the conductivity time-dependence in the half-space de-
termined by the scattered field:

σ(t)
(

Eex(t−x/v,x)−E0(t−x/v,x)+E0(t,0)
)

=

= σ0A(0,0) ,
(9)

where σ0 = σ(0) is the known value of initial conductivity,
and x means an arbitrary point coordinate (not only |x| �
vt) inside the external region −vt < x < 0.

Pulse splitting with amplification by time-harmonic
conductivity of the reflecting half-space

For the rectangular pulse E0 = Θ(t−x/v)−Θ(t−x/v−
t0) scattering on the homogeneous half-space with time-
harmonic conductivity, computer analysis revealed the scat-
tered pulse features dependence on the conductivity fre-
quency. When it is comparable with reverse incident pulse
duration then the pulse of scattered field just changes a little
in its shape under the same duration.
When the conductivity frequency is more then four times as
much as reverse pulse duration, the scattered pulse has deep
valleys (Fig. 2). Their number grows with the frequency
increasing. Thus, it becomes a consequence of pulses with
joint duration less then that of the initial pulse. These
pulses amplitude can be more then ten times as much as that
of the initial pulse. The more is the conductivity frequency
(Fig. 3(a)), the more is the number of reflected field pulses
(Fig. 3(b)).

Fig. 3. Time-harmonic conductivity of the reflecting half-space
leading to (b) pulse splitting with amplification by

Pulse transformation by reflecting half-space with
conductivity changing with time as Bessel function

Bessel-type conductivity time-dependence provides the ini-
tial rectangular pulse transformation into a pulse with dura-
tion 10−3 as much as the initial one, following by reducing
oscillating tail (Fig. 4).
Such a pulse collapse can be also followed by the reflected
pulse amplification, as Fig. 5 shows.
Consider the same pulse scattering on the half-space with
time-splashing conductivity (Fig. 6(a)) with its time depen-
dence described by a difference of reducing exponents.
For the time less then a pulse duration after it began its
interaction with the half-space. Figure 6(b) shows the re-
flected pulse front which then will save its shape and size,

Fig. 4. Reflected pulse amplitude time-dependence for different
amplitudes of Bessel-type conductivity change(initial pulse length
=1 cm)

Fig. 5. Reflected pulse amplitude time-dependence for Bessel-
type conductivity change (initial pulse length = 0.5 cm)

moving with the correspondent to the medium light veloc-
ity (circle incision in Fig. 7). With time this pulse of a
small amplitude moving away from the boundary leaves a
field trace of a high amplitude (Fig.7). After the end of the
conductivity splash the trace amplitude decreases forming
so a splash-like pulse. The front of this pulse moves with a
velocity lower then that of light for the considered medium.
This trace evolution with time leads to its transformation

Fig. 6. Conductivity splash (a) and initial stage of the pulse
reflection (b)

Fig. 7. Reflected field front and trace
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Fig. 8. Short pulse formed from the reflected field trace

into a shot pulse of a very high amplitude which is like to
Dirac delta function as Fig. 8 shows.
Obtained solutions enable one to analyse a large number of
scattering on the transient conductive half-space problems.
Results for the special cases can be useful, for example, for
creation short pulses of high amplitude.
The obtained results demonstrate different possibilities of
initial pulse splitting or time-compression by time variation
of the reflecting medium.
They also show possibilities of the reflected pulse amplifi-
cation.
For the case of time-harmonic conductivity in the reflecting
half-space one can obtain an easy read information when
the modulated signal amplitude and frequency are trans-
lated into amplitudes and a number of pulses which are the
result of the initial pulse subdivision.

2D Problem

In 3D nonstationary media an integral equation for electro-
magnetic field is [5]:

EEE(t,rrr) = EEE1(t,rrr)−
2πσ
εv

(
graddiv− ∂ 2

∂ t2

)
×

×
∫ t

0
dt ′
∫ ∞

−∞
drrr ′σ(t ′,rrr ′)

Θ
(
t− t ′−|rrr−rrr ′|/v

)
|rrr−rrr ′|

EEE(t ′,rrr ′),

(10)

where rrr ≡ (x,y,z) and
|r−rrr ′|=

√
(x−x′)2 +(y−y′)2 +(z−z′)2.

For the considered 2D problem we assume σ(t, r) ≡
σ(t)Θ(x) and EEE = Ezkkk. In this case we have the following
scalar integral equation inside the transient region:
x≥ 0

Ein(t,x,y) = E1(t,x,y)+

−Θ(vt−x)
∫ t

t−x/v
dt ′σ(t ′)

∫ x+v(t−t ′)

x−v(t−t ′)
dx′G+

−Θ(x−vt)
∫ ∞

0
dt ′σ(t ′)

∫ x+v(t−t ′)

x−v(t−t ′)
dx′G+

−Θ(vt−x)
∫ t−x/v

0
dt ′σ(t ′)

∫ x+v(t−t ′)

0
dx′G (11)

where

G≡ 2π
εv

∫ y+
√

v2(t−t ′)−(x−x′)2

y−
√

v2(t−t ′)−(x−x′)2
dy′

ln
v(t− t ′)+

√
v2(t− t ′)2− (x−x′)2− (y−y′)2

v(t− t ′)−
√

v2(t− t ′)2− (x−x′)2− (y−y′)2
Ein(t

′,x′,y′)

and the following formula which expresses the external field
after the internal one:
x < 0

Ein(t,x,y) = E1(t,x,y)+

−Θ(vt+x)
∫ t+x/v

0
dt ′σ(t ′)

∫ v(t−t ′)−x

0
dx′G.

(12)

We are interested in the external field for which we also
can obtain a usual wave equation with constant coefficients
directly from Maxwell’s equations or from (12):(

∆− 1
v2

0

∂ 2

∂ t2

)
Eex(t,x,y) = 0. (13)

However, boundary conditions here will contain the un-
known internal field.
Carrying out the procedures analogous with those in 1D
problem solution, the following approximate integral equa-
tion for the function F determining the field on the bound-
ary as

E(t,0,y) = E1(t,0,y)+F(t,y)

can be obtained:

F(t,y) =
2π
εv

∫ t

0
dt ′

σ(t ′)
∫ y+v(t−t ′)

y−v(t−t ′)
dy′

F(t ′,y′)(y−y′)
v2(t− t ′)2− (y−y′)2 .

(14)

This equation can be solved numerically for concrete types
of the conductivity time-dependence using standard proce-
dures. After obtaining the field on the boundary, we can
estimate the reflected field by solving the wave equation
(13).
Estimating solution of this 2D problem has shown that there
will be the same effects of pulse splitting, compression and
amplification as in 1D problem.
These effects are not influenced later by multiply re-
reflection, because the obtained pulses of short duration
already does not feel the conductivity nonstationarity of
correspondingly low frequency. It means that for pulse
transformation by nonstationarity of the reflecting medium
in optical waveguide a homogeneous simultaneous change
of the conductivity is not necessary, but it is enough to
create local nonstationarity.
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