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Abstract — Optical wave reflection from a layered half-space
with regular and random inhomogeneities where the regular
perturbations correspond to a linear waveguide near the half-
space boundary. Random inhomogeneities are simulated in
the frame of the white noise model. The problem is solved
analytically in a framework of the embedding method which
reduces a boundary problem to the problem with initial values
considering the field as a function of the half-space boundary
coordinate and obtaining then its solution as a steady-state
probability density of the reflection coefficient phase. Numer-
ical calculations revealed some features of the field behaviour
under the combined influence of regular and random inho-
mogeneities such as the reflection coefficient phase increasing
inhomogeneity from uniform distribution for small regular
inhomogeneities toward a strong peak at the phase equal to
π/2 for increasing ones, and some fine effects which are still
greater then the calculation accuracy.
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Introduction

Dielectric layered media are widely used as optical field
transformers and reflectors. Particularly, artificial layered
media can serve as 1D PBG structure whose transmission
properties exhibit frequency bands where the propagation
is forbidden, or a frequency filter in a case of periodic
disturbance of the structure periodicity. Such structures
were usually considered as regularly inhomogeneous media.
There are two reasons for consideration of random inhomo-
geneities together with regular ones in such structures. The
first one is that on experimental graphical results one can
usually see irregular oscillations imposing on theoretically
estimated characteristics which suggests the idea of statis-
tical behaviour in addition to the regular one. The second
one follows from the well known fact that for 1D half-
space with random refraction index is ideal reflector for a
wave of any frequency. It allows to assume that considera-
tion of random inhomogeneities together with regular ones
can expose new possibilities of creation of structures with
properties of PBG crystals.
Random inhomogeneity in high-permittivity media can take
place due to interaction processes near the media layers
joints as well as the media internal properties appearing in
certain external conditions, particularly for nonlinear media
one can select a parameters area where its behaviour is
chaotic being applicable for a statistic description.

In this work, we consider a model of a stationary problem
of wave propagation in a layered half-space with regular and
random inhomogeneities with regular perturbations corre-
sponding to a linear waveguide near the half-space bound-
ary. Random inhomogeneities are simulated in the frame of
the white noise model. We analyze an influence of regular
and random inhomogeneities on probability distribution of
the reflection coefficient phase and the wavefield average
intensity at the boundary of the half-space.

Mathematical formulation of the
problem

We consider a randomly inhomogeneous slab occupying
the region L0 ≤ x≤ L. An incident field is assumed as a
plane harmonic wave E(t,x) = U0(x)e

iωt , U0(x) = eik(l−x) ,
propagating from the region x> L of a homogeneous space.
Inside the inhomogeneous slab the field amplitude U(x) is
described by Helmholtz equation

d2

dx2 U(x)+k2(x)U(x) = 0, (1)

where function k(x) characterizes regular and statistical in-
homogeneities of the medium. Boundary conditions for this
equation follows from continuity of U(x) and ∂U(x)/∂x on
the slab boundaries:

i
k

dU(x)
dx

+U(x)|x=L = 2

i
k

dU(x)
dx

−U(x)|x=L0
= 0.

(2)

For the problem (1), (2) we are interested in the statistical
characteristics of the wavefield when k(x) contains regular
and random components.
In previous works [1,2] we had shown that for a spectral
parameter comparable with a wave number, a reflection co-
efficient phase distribution is non-uniform. It can touch the
condition for average method applicability leading to false
results. So, it is important to investigate the influence of
the reflection coefficient phase distribution on field statis-
tical characteristics for determination and expansion of the
statistical theory frames.
The problem is solved analytically in a framework of the
embedding method which reduces a boundary problem to
the problem with initial values considering the field as a
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function of the half-space boundary coordinate and obtain-
ing then its solution as a steady-state probability density
of the reflection coefficient phase. Numerical calculation
is carried out then to reveal some features of the field be-
haviour.

Dynamical equations solution

Wavefield effects for the considered problem are determined
by scattering on inhomogeneities inside the medium and on
spatial jumps of k(L0) and k(L). We exclude the bound-
aries influence supposing that the medium occupies the
half-space x < L(L0 → ∞) and that the right boundary is
adjusted: k2 = k2(L) = k2

L.
Suppose that the wavefield U(x) = U(x,L) is a function of
the parameter L. Then in the framework of the embedding
method the boundary problem (1), (2) is reduced [3] to
the problem with initial values with respect to L, and the
equation for the reflection coefficient has the form:

dRL

dL
= 2ikLRL +

k′L
2kL

(
1−R2

L

)
, RL0

= 0 , (3)

where k′L /kL = ∂ lnkL/∂L.
After substitution the representation for the reflection co-
efficient as RL = ρLeiφL into (3) and taking into account
that the quantity ρL = 1 with probability equal to unit in
a case when the wave is incident on a random half-space
(L0 → ∞), the following differential equation for φL is ob-
tained:

dφL

dL
= 2kL−

k′L
kL

sinφL . (4)

Combined influence of regular and random inhomo-
geneities on reflection coefficient is considered for the ve-
locity profile as c(l) = c0 (1+αL+ ε(L)). It is linked with
k(L) by the relation k(L) = ω/c(L), where ω is a cyclic
frequency. Function ε(x) is supposed to be homogeneous
mean zero Gaussian process, that is 〈ε(x)〉 = 0; correla-
tion function B determined as Bεε(x,x′) = 〈ε(x)ε(x′)〉 =
σ2

ε B
(
|x−x′|/l0

)
, parameter σ2

ε characterizes the intensity
of fluctuations and l0 denotes a correlation radius. Regular
and random inhomogeneities are considered under a con-
dition that σ = |α/p| < 2, p = ω/c0. Assuming that the
fluctuations are small

(
σ2

ε << 1
)

and the regular profile is
a slow function of L, Eq. (4) can be written in a shortcut
form as follows:

dφL

dL
= 2p+(α +ξ (L))sinφL , ξ (L) =

∂ε(L)
∂L

. (5)

Function ξ (x) is the Gaussian process with the following
parameters:

〈ξ (x)〉= 0, Bξ ξ (x,x′) = 〈ξ (x)ξ (x′)〉=− ∂ 2

∂x2 Bξ ξ (x−x′).

Statistical analysis of Eq. (5) is carried out in the frame-
work of the approach of the works [1,2]. Its main ideas
are the follows: we introduce the variable zL = tanφL/2

instead of the phase; to simplify the further solution we
assume that ε(L) is the Gaussian random delta-correlated
process (conditions for applicability of this approximation
are considered in [3]). Then the steady-state probability
density P(z) of this value has the form

P(z) = h(z)P+(z)+h(−z)P−(z), (6)

where

P+(z) = h(z−−z)P1(z)+h(z−z−)h(z+−z)P2(z)+

+h(z−z+)P3(z), z> 0,

P1(z) = CA(z)
∫ z

0
dz1

(
z1−z−
z1−z+

)k
√

d

zk
√

d+4−1
1 ,

P2(z) = CA(z)
∫ z+

z
dz1

(
z1−z−
z1−z+

)k
√

d

zk
√

d+4−1
1 ,

P3(z) = CA(z)
∫ z

z+
dz1

(
z1−z−
z1−z+

)k
√

d

zk
√

d+4−1
1 ,

P−(z) = P1(z), z< 0,

A(z) =
1√

d+4

(z−z+)k
√

d−1(
z1−z+

)k
√

d+1
zk
√

d+4 ,

h is the Heaviside step-function and parameters are the fol-
lows: d = 16/σ2−4. The constant value C ≡ C(k,d) is
defined from the condition with the parameters k = p/8D
and D = p2 σ2

ε l0/2. The correspondent steady-state proba-
bility distribution of the phase φL defined within the interval
(−π,+π) can be obtained from (6) by the formula

P(φ) =
(
1+z2) P(z)/2 |z=tanφ/2 .

Discussion

We had shown that for a spectral parameter comparable
with a wave number, a reflection coefficient phase distribu-
tion is non-uniform. It can touch the condition for average
method applicability leading to false results. So it is impor-
tant to investigate the influence of the reflection coefficient
phase distribution on field statistical characteristics for de-
termination and expansion of the statistical theory frames.
Rigorous restriction for applicability of formula (6) is de-
fined by the condition α/D << 1. It makes possible to use
the shortcut Eq. (5) to describe the wavefield behaviour in a
medium with random and regular inhomogeneities. For the
limit cases as 1) k >> 1 and | σ |<< 1 and 2) | σ |→ 2 the
phase has the uniform distribution or fluctuates near the
deterministic solution φ∞ = π/2, correspondingly, which
agrees with the known results.
Computer analysis of P(z) behaviour was carried out for
three sufficiently different cases: (A) k = −3.13,σ = 0.1;
(B) k = −3.13,σ = 1.0 and (C) k = −3.13,σ = 1.9. It is
shown that the case A corresponds to the phase uniform
distribution. The case C describes the situation when the
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phase tends to the deterministic value π/2. To extract an
influence of the regular inhomogeneity on the probability
distribution it was calculated in absence of the inhomogene-
ity for different values of k. P(φ) maximum occured to be
displaced to the right when the parameter σ increases.
Calculation of the wavefield intensity on the boundary as
a function of σ for different values of k showed that the
results can be approximated by a linear function.
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