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Abstract—Trajectory optimization problems with black-box

represented objective functions are often solved with the use

of some meta-heuristic algorithms. The aim of this paper is to

show that gradient-based algorithms, when applied correctly,

can be effective for such problems as well. One of the key as-

pects of successful application is choosing, in the search space,

a basis appropriate for the problem. In an experiment to

demonstrate this, three simple adaptations of gradient-based

algorithms were executed in the forty-dimensional search

space to solve the brachistochrone problem having a black-

box represented mathematical model. This experiment was

repeated for two different bases spanning the search space.

The best of the algorithms, despite its very basic implementa-

tion, needed only about 100 iterations to find very accurate so-

lutions. 100 iterations means about 2000 objective functional

evaluations (simulations). This corresponds to about 20 iter-

ations of a typical evolutionary algorithm, e.g. ESESES(µ,λµ,λµ,λ ).

Keywords—black-box optimization, brachistochrone problem,

optimal control, trajectory optimization.

1. Introduction

The brachistochrone (i.e. the curve of fastest descent) prob-

lem was posed by Johann Bernoulli in Acta Eruditorum in

June 1696. Its original wording was, “Given two points

A and B in a vertical plane, what is the curve traced out

by a point acted on only by gravity, which starts at A and

reaches B in the shortest time”. The first who found the

solution were: Johann Bernoulli, Johan’s brother Jakob,

Newton, Leibniz and l’Hôspital [1]. Since then the prob-

lem has been studied by mathematicians, physicists and

engineers. This is a consequence of the fact that apart

form being a classic problem in the calculus of variations

it also plays an important role in the trajectory optimization,

mainly because some of minimum-time trajectory plan-

ning tasks can be reduced to one of generalizations of the

brachistochrone problem.

The original problem, which assumes that the particle is

falling on a vertical plane in a uniform gravitational field,

has an analytical solution, e.g. [2]. So do some of the orig-

inal problem generalizations – for instance, an introduction

of the Coulomb friction force [3]–[6] or the drag force

proportional to velocity [5], taking into account a nonuni-

form gravitational field [7], a motion on surfaces different

from a vertical plane [8] or relativistic effects [9]–[11].

Yet many engineering problems (related to trajectory op-

timization) are too complex to be solved analytically –

either by the use of classic calculus of variations meth-

ods or, when the problem is put into the optimal control

context, the Pontryagin maximum principle [2], [12]–[14].

In such cases other methods have to be used [15]–[19].

At the implementation level, each of these methods is

usually based on non-linear programming (the family of

gradient/sub-gradient methods [15]), dynamic program-

ming [20] or some meta-heuristics, e.g., evolutionary algo-

rithms, simulated annealing, particle swarm optimization,

tabu search.

A special group of trajectory optimization problems con-

sists of those with black-box represented objective func-

tions [21], [22]. This is the case, for instance, when val-

ues of the objective function (performance measure) are

received from simulation. In such situation most of the

classic optimization methods cannot be used (at least not

directly) and a common practice is to base the optimization

process on one of the meta-heuristics1 [23]–[26]. Although

this approach has some drawbacks, e.g. [15], [25], espe-

cially when applied to trajectory optimization problems,

only a few studies of alternative methods have been carried

out, e.g. [27]).

This paper addresses this by showing that gradient-based

methods, when applied correctly, can also be effective for

trajectory optimization problems having black-box repre-

sented mathematical models. An important aspect of the

successful application is choosing, in the search space, a ba-

sis appropriate for the problem. In an experiment to demon-

strate this, three simple adaptations of gradient-based algo-

rithms were executed to solve the brachistochrone problem

in search spaces spanned by two different bases. The first

one – the natural basis in R
n – was selected to demon-

strate some pitfalls of overly direct application of gradient-

based methods to variational problems. This knowledge can

be useful both while implementing custom-made trajectory

1Because they are usually “derivative-free”, i.e. do not use derivatives

of the objective function.
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optimization software2 and while using any of the trajec-

tory optimization tools available on the market (MATLAB,

OTIS or libraries Trajopt or NTG [28]).

This paper is organized as follows. In Section 2 the op-

timization problem is presented. Section 3 describes the

solution methods proposed – six algorithms derived from

non-linear programming. In Section 4 optimization results

are discussed. Section 5 contains conclusions of the study.

In the last part, which is Appendix, the simulation-based

trajectory evaluator used in the experiments is described.

2. Problem Formulation

A black-box optimization occurs when the explicit formula

of the objective function (performance measure) is un-

known, i.e. it is “opaque” or black-boxed to the optimiza-

tion routine. A typical example of this situation is when

objective function values are taken from a computer simula-

tion. In such problems, derivative-related information is not

available and, as a consequence, gradient-based algorithms

cannot be applied. What is commonly used instead, is one

of the derivative-free (DFO) algorithms (e.g. [22], [27]) or

(meta-)heuristics. Another possible approach, which is pre-

sented in this paper, is to use approximate values of partial

derivatives, e.g. by finite differences in a gradient-based al-

gorithm and, in case of non-convex problems, combine it

with a multi-start method.

(?)x J

Fig. 1. A black-box functional – the value of J that corresponds

to the input can be found only through simulation.

The brachistochrone problem analyzed in this paper covers

cases with arbitrarily complex but continuous, black-box

represented mathematical models. In this context, the per-

formance measure is expressed by a black-box functional

shown in Fig. 1. The input vector xxx represents a trajec-

tory (encoded in some way) and J – the time of the cor-

responding displacement. The optimization task is to find

x∗ corresponding to the minimum value of J, or more

formally:

minimize
xxx

J(xxx), subject to: x0 = A and xn+1 = B. (1)

A given trajectory represented as a sequence of points

(x0,x1, . . . ,xn+1) = (P(0)
,P(1)

, . . . ,P(n+1))

in coordinate system ξ1− ξ2 is shown in Fig. 2.

2It can be necessary e.g. because of some missing functionality in the

available tools, their license constrains or the target platform limitations.
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Fig. 2. Trajectory representation.

Note that this representation does not assume anything

about the shape of trajectory segments, i.e.
⌢

P(i−1)P(i), i =
1, . . . , n + 1.

3. Solution Methods

The optimization algorithms presented in this section are

simulation-based. The simulation is represented by func-

tion Evaluate, which is shown as Algorithm 1. This func-

tion is referenced in the algorithms’ pseudo-code.

Algorithm 1 Trajectory evaluation

1: function Evaluate(ξξξ )

2: //...evaluate (through simulation) ξξξ , i.e. calc. J (ξξξ )
3: return J (ξξξ )
4: end function

The optimization process was based on a series of evalua-

tions of subsequent (admissible) trajectories represented as

a series of points (Fig. 2)

ξξξ =
((

ξ
(0)
1 ,ξ

(0)
2

)

,

(

ξ
(1)
1 ,ξ

(1)
2

)

, . . . ,

(

ξ
(n+1)
1 ,ξ

(n+1)
2

))⊤
,

(2)

where
(

ξ
(0)
1 ,ξ

(0)
2

)

= A(ξ1A,ξ2A) (3)

and
(

ξ
(n+1)
1 ,ξ

(n+1)
2

)

= B(ξ1B,ξ2B) . (4)

The optimization assumed that only ξ2 components were

variated (perturbed) and ξ1 were fixed in the following reg-

ular mesh

ξ
(i)
1 = ξ1A + i

ξ1B− ξ1A

n + 1
, i = 0,1, . . . ,n + 1. (5)

33



Roman Dębski

Taking into account the boundary conditions and Eqs. 3–4,

only points with indexes 1 . . .n were variated (see also

Figs. 3–4).

The algorithms discussed in the next subsections contain

references to the following symbols:

ξ0ξ0ξ0 – initial guess trajectory, ξ0ξ0ξ0 = ξ20ξ20ξ20 =
(

ξ
(1)
2 , . . . ,ξ

(n)
2

)⊤
,

e – step size multiplier (assumed to be constant),

δ0 – stop condition parameter.

In all these algorithms a finite difference based approxima-

tion of partial derivatives and gradients was applied. The

approximation formulas will be given in each case sepa-

rately.

3.1. Algorithms in the Search Space Spanned by the

Natural Basis

The natural basis in R
n is usually the first candidate consid-

ered in gradient-based optimization tasks. This basis, put

into the trajectory optimization context, is shown in Fig. 3

(note the way of representing a n-dimensional space).
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Fig. 3. ψsc-basis.

In this paper this basis is defined in the following way3

{

ψψψ
( j)
sc , j = 1, . . . ,n

}

, (6)

where

ψψψ
( j)
sc [i] = δi j i, j = 1, . . . ,n (7)

and δi j is the Kronecker delta.

In the next part of this section the algorithms defined in

this search space are discussed.

3Letters (.)sc in the lower index were taken from single component.

Algorithm SC-FD-SimpGrad

This algorithm uses a forward finite difference ( f d) approx-

imation of directional derivative (in the direction of ψ
( j)
sc ),

expressed in the following way

∆
( f d)

ψ
( j)
sc

J =
J

(

ξ2ξ2ξ2 + εψψψ
( j)
sc

)

− J (ξ2ξ2ξ2)

ε
, j = 1, . . . ,n. (8)

Having defined the formula for directional derivatives can

be calculated the approximation of the gradient vector

∇̂∇∇
( f d)
ψsc

J =

(

∆
( f d)

ψ
(1)
sc

J, . . . ,∆
( f d)

ψ
( j)
sc

J, . . . ,∆
( f d)

ψ
(n)
sc

J

)⊤

. (9)

The algorithm pseudo-code, shown as Algorithm 2, is di-

vided into two parts, with function Grad-Approx being

a helper method used to calculate the approximation of

the gradient vector.

Algorithm 2 Forward difference based (simple) gradient

descent (ψsc-Basis)

1: function Grad-Approx(ξξξ,Jξ )

2: for j← 1,n do

3: Jξ+ε ← Evaluate(ξξξ + εψψψ
( j)
sc )

4: ∇̂∇∇
( f d)
ψsc

J[ j]←
Jξ+ε−Jξ

ε ⊲ see Eq. (8)

5: end for

6: return ∇̂∇∇
( f d)

ψsc
J

7: end function

8: function SC-FD-SimpGrad(ξ0ξ0ξ0,e,δ0)

9: J0← Evaluate(ξ0ξ0ξ0)
10: ĝ0ĝ0ĝ0←Grad-Approx(ξ0ξ0ξ0,J0)
11: while true do

12: h0h0h0 =−ĝ0ĝ0ĝ0

13: ξ1ξ1ξ1← ξ0ξ0ξ0 + e h0h0h0

14: J1← Evaluate(ξ1ξ1ξ1)
15: ĝ1ĝ1ĝ1← Grad-Approx(ξ1ξ1ξ1,J1)
16: if J1 > J0 then ⊲ check stop conditions

17: return (ξ0ξ0ξ0,J0)

18: else if
|J0−J1|

J0
< δ0 then

19: return (ξ1ξ1ξ1,J1)
20: end if

21: ξ0ξ0ξ0← ξ1ξ1ξ1

22: J0← J1

23: ĝ0ĝ0ĝ0← ĝ1ĝ1ĝ1

24: end while

25: end function

The algorithm performs (k+1)(n+1) simulations and uses

Θ(n) memory, where k is the total number of iterations in

the main optimization routine, and n is the size of the vector

representing a trajectory.
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Algorithm SC-CD-SimpGrad

This algorithm uses a central finite difference (cd) approx-

imation of directional derivative (in the direction of ψ
( j)
sc ),

expressed in the following way

∆
(cd)

ψ
( j)
sc

J =
J
(

ξ2ξ2ξ2 + εψψψ
( j)
sc

)

− J
(

ξ2ξ2ξ2− εψψψ
( j)
sc

)

2ε
, j = 1, . . . ,n.

(10)

The approximation of the gradient vector is equal to

∇̂∇∇
(cd)

ψsc
J =

(

∆
(cd)

ψ
(1)
sc

J, . . . ,∆
(cd)

ψ
( j)
sc

J, . . . ,∆
(cd)

ψ
(n)
sc

J

)⊤

. (11)

The algorithm pseudo-code, shown as Algorithm 3, is again

divided into two parts. The main optimization routine is

the same as in Algorithm 2, so is not repeated here.

Algorithm 3 Central difference based (simple) gradient

descent (ψsc-Basis)

1: function Grad-Approx(ξξξ)

2: for j← 1,n do

3: Jξ+ε ← Evaluate(ξξξ + εψψψ
( j)
sc )

4: Jξ−ε ← Evaluate(ξξξ − εψψψ
( j)
sc )

5: ∇̂∇∇
(cd)
ψsc

J[ j]←
Jξ+ε−Jξ−ε

2ε ⊲ see Eq. (10)

6: end for

7: return ∇̂∇∇
(cd)

ψsc
J

8: end function

9: function SC-CD-SimpGrad(ξ0ξ0ξ0,e,δ0)

10: //... ⊲ see Algorithm 2

11: end function

This algorithm performs (k + 1)(2n + 1) simulations and

uses Θ(n) memory, where k and n are defined in the same

way as in Algorithm 2.

3.2. Algorithms in the Search Space Spanned by the

Modified Basis

The basis introduced in this section is more complex and

non-orthogonal. It was chosen as an example of a non-

standard basis. Its definition4 is as follows (see Fig. 4, note

the way of representing an n-dimensional space)

{

ψψψ
( j)
mc , j = 1, . . . ,n

}

, (12)

where

ψψψ
( j)
mc [i] =







ξ1[i]−ξ1A

ξ1[ j]−ξ1A
, 1≤ i≤ j,

ξ1B−ξ1[i]
ξ1B−ξ1[ j]

, j < i≤ n.

(13)

In the next paragraphs the algorithms defined in the search

space spanned by ψψψmc basis are discussed.

4Letters (.)mc in the lower index were taken from multi component.
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Fig. 4. ψmc-basis.

Algorithm MC-FD-SimpGrad

In the new basis a forward finite difference ( f d) approxi-

mation of directional derivative (in the direction of ψ
( j)
mc ) is

defined as follows

∆
( f d)

ψ
( j)
mc

J =
J
(

ξ2ξ2ξ2 + εψψψ
( j)
mc

)

− J (ξ2ξ2ξ2)

ε‖ψψψ
( j)
mc‖

, j = 1, . . . ,n , (14)

whilst the approximation of the gradient vector is equal to

∇̂∇∇
( f d)

ψmc
J =

(

∆
( f d)

ψ
(1)
mc

J, . . . ,∆
( f d)

ψ
( j)
mc

J, . . . ,∆
( f d)

ψ
(n)
mc

J

)⊤

. (15)

Note: ‖.‖ in the denominator is the L2-norm.

Algorithm 4 Forward difference based (simple) gradient

descent (ψmc-Basis)

1: function Grad-Approx(ξξξ,Jξ )

2: for j← 1,n do

3: Jξ+ε ← evaluate(ξξξ + εψψψ
( j)
mc)

4: ∇̂∇∇
( f d)

ψmc
J[ j]←

Jξ+ε−Jξ

ε‖ψψψ
( j)
mc‖

⊲ see Eq. (14)

5: end for

6: return ∇̂∇∇
( f d)

ψmc
J

7: end function

8: function MC-FD-SimpGrad(ξ0ξ0ξ0,e,δ0)

9: //... ⊲ see Algorithm 2

10: end function

MC-FD-SimpGrad algorithm pseudo-code is shown as

Algorithm 4 and again, the main optimization routine

is the same as in Algorithm 2. This algorithm performs
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(k + 1)(n + 1) simulations and uses Θ(n) memory, where

k and n are defined in the same way as in Algorithm 2.

Central finite difference approximation based

algorithms

In the new basis the central finite difference (cd) approxi-

mation of directional derivative in the direction of ψ
( j)
mc can

be written as follows:

∆
(cd)

ψ
( j)
mc

J =
J
(

ξ2ξ2ξ2 + εψψψ
( j)
mc

)

− J
(

ξ2ξ2ξ2− εψψψ
( j)
mc

)

2ε‖ψψψ
( j)
mc‖

, j = 1, . . . ,n

(16)

and, as a consequence, the approximation of the gradient

vector is equal to

∇̂∇∇
(cd)

ψmc
J =

(

∆
(cd)

ψ
(1)
mc

J, . . . ,∆
(cd)

ψ
( j)
mc

J, . . . ,∆
(cd)

ψ
(n)
mc

J

)⊤

. (17)

The above formulas remain the same for the three algo-

rithms presented below.

Algorithm MC-CD-SimpGrad

The algorithm pseudo-code is shown as Algorithm 5 (as

before, the main optimization routine is the same as in Al-

gorithm 2). This algorithm performs (k +1)(2n+1) simu-

lations and uses Θ(n) memory (k and n are defined in the

same way as in Algorithm 2).

Algorithm 5 Central difference based (simple) gradient

descent (ψmc-Basis)

1: function Grad-Approx(ξξξ)

2: for j← 1,n do

3: Jξ+ε ← Evaluate(ξξξ + εψψψ
( j)
mc)

4: Jξ−ε ← Evaluate(ξξξ − εψψψ
( j)
mc)

5: ∇̂∇∇
(cd)

ψmc
J[ j]←

Jξ+ε−Jξ−ε

2ε‖ψψψ
( j)
mc‖

⊲ see Eq. (16)

6: end for

7: return ∇̂∇∇
(cd)

ψmc
J

8: end function

9: function MC-CD-SimpGrad(ξ0ξ0ξ0,e,δ0)

10: //... ⊲ see Algorithm 2

11: end function

Algorithm MC-CD-SteepDsc

The adaptation of steepest descent algorithm [29] to the

brachistochrone problem is shown as Algorithm 6.

This algorithm in each iteration of its main loop performs

a minimization along the line

λmin← argmin
λ>0

Evaluate(ξ0ξ0ξ0 + λh0h0h0) (18)

extending from point ξ0 in the direction of h0h0h0 = −ĝ0ĝ0ĝ0 (i.e.

minus the local gradient approximate).

Algorithm 6 Central difference based steepest descent

(ψmc-Basis)

1: function Grad-Approx(ξξξ)

2: //... ⊲ see Algorithm 5

3: end function

4: function MC-CD-SteepDsc(ξ0ξ0ξ0,δ0)

5: J0← Evaluate(ξ0ξ0ξ0)
6: ĝ0ĝ0ĝ0←Grad-Approx(ξ0ξ0ξ0)
7: while true do

8: h0h0h0 =−ĝ0ĝ0ĝ0

9: λmin← argmin
λ>0

Evaluate(ξ0ξ0ξ0 + λh0h0h0)

10: ξ1ξ1ξ1← ξ0ξ0ξ0 + λmin h0h0h0

11: J1← Evaluate(ξ1ξ1ξ1)
12: ĝ1ĝ1ĝ1← Grad-Approx(ξ1ξ1ξ1)
13: if J1 > J0 then ⊲ check stop conditions

14: return (ξ0ξ0ξ0,J0)

15: else if
|J0−J1|

J0
< δ0 then

16: return (ξ1ξ1ξ1,J1)
17: end if

18: ξ0ξ0ξ0← ξ1ξ1ξ1

19: J0← J1

20: ĝ0ĝ0ĝ0← ĝ1ĝ1ĝ1

21: end while

22: end function

The steepest descent algorithm (see Algorithm 6) performs

(k + 1)(2n + 1) + l simulations and uses Θ(n) memory,

where l is the total number of simulations corresponding

to the solution of Eq. (18) and k and n are defined in the

same way as in Algorithm 2.

Algorithm MC-CD-ConjGrad

A simple adaptation of the conjugate gradient algo-

rithm [30] to the brachistochrone problem is shown as

Algorithm 7. It is one of the most popular and efficient

methods in non-linear programming.

The algorithm performs (1 + kn)(1 + 2n) + l simulations

and uses Θ(n) memory, where l, k and n are defined in the

same way as in Algorithm 6.

From the simple analysis of Algorithm 7 one can see that

the calculation of the approximate gradient is performed at

least n times (see the external and internal loops) and there-

fore this single calculation performs 2n simulations. This

total number of simulations can seem unexpected, because

of the n2 term, when compared to the previous algorithms,

but in the conjugate gradient algorithm k is expected to be

very small, often equals 1.

4. Experimental Results

The algorithms discussed in Section 3 were executed us-

ing the simulator described in Appendix 1, with combi-

nations of the coefficients µ and k (see Eqs. (20)–(21) in
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Algorithm 7 Central difference based conjugated gradient

(ψmc-Basis)

1: function Grad-Approx(ξξξ)

2: //... ⊲ see Algorithm 5

3: end function

4: function MC-CD-ConjGrad(ξ0ξ0ξ0,δ0) ⊲ (see [30])

5: J0← Evaluate(ξ0ξ0ξ0)
6: ĝ0ĝ0ĝ0← Grad-Approx(ξ0ξ0ξ0)
7: while true do

8: h0h0h0 =−ĝ0ĝ0ĝ0

9: for j← 1,n do

10: λmin← argmin
λ>0

Evaluate(ξ0ξ0ξ0 + λh0h0h0)

11: ξ1ξ1ξ1← ξ0ξ0ξ0 + λmin h0h0h0

12: J1← Evaluate(ξ1ξ1ξ1)
13: ĝ1ĝ1ĝ1← Grad-Approx(ξ1ξ1ξ1)
14: if J1 > J0 then ⊲ check stop conditions

15: return (ξ0ξ0ξ0,J0)

16: else if
|J0−J1|

J0
< δ0 then

17: return (ξ1ξ1ξ1,J1)
18: end if

19: β ← ĝ1ĝ1ĝ1 ĝ1ĝ1ĝ1
ĝ0ĝ0ĝ0 ĝ0ĝ0ĝ0

20: h1h1h1 =−ĝ1ĝ1ĝ1 + βh0h0h0

21: ξ0ξ0ξ0← ξ1ξ1ξ1

22: J0← J1

23: ĝ0ĝ0ĝ0← ĝ1ĝ1ĝ1

24: h0h0h0← h1h1h1

25: end for

26: end while

27: end function

the Appendix) listed in Table 1. In all cases the initial

guess trajectory ξ0ξ0ξ0 was the straight line between points

A and B. The arc AB was approximated by a piecewise-

linear function with forty linear segments, so the search

space was forty-dimensional. ξ1−ξ2 axes were on the sur-

face of the ski slope and the slope angle was assumed to

be α . The first experiment setup corresponds to the classic

brachistochrone problem. This experiment was performed

as a test to check the accuracy of the final solutions ob-

tained from all six algorithms by comparison to the exact

solution. These solutions are shown from two perspectives

in Figs. 5–6.

Table 1

Experiment setups

Exper. no. Point A Point B α µµµ kkk

1

(0,0) (10,10) 15◦

0.00 0.00

2 0.12 0.00

3 0.00 0.05

4 0.12 0.05

Figure 5 shows six trajectories received as a result of the

experiment and also, for reference, the straight line AB (as

A

B

Straight line
SC-FD-SimpGrad

SC-CD-SimpGrad

MC-FD-SimpGrad

MC-CD-SimpGrad

MC-CD-ConjGrad

MC-CD-SteepDsc

Brachistochrone~~

2

1

Fig. 5. Simulation results (trajectories) for the classic brachis-

tochrone problem (no friction and no drag, i.e. µ = 0.00,k = 0.00).

the initial guess trajectory, i.e., the start point of each al-

gorithm) and the brachistochrone (i.e. the exact solution).

Three results, obtained from MC-CD-SimpGrad, MC-CD-

SteepDsc and MC-CD-ConjGrad, were very close to the

exact solution. Errors related to the final times were smaller

than 0.1% (Fig. 6) and so they are drawn as a single line.

On the other hand, the trajectories obtained from SC-FD-

SimpGrad and SC-CD-SimpGrad, were very far from the

exact solution. The search space for these two algorithms

was spanned by ψψψsc basis (Fig. 3). These two algorithms

will be referenced in this section as sc-algorithms, whilst

the other four, defined in the context of ψmc basis (Fig. 4),

as mc-algorithms.
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SC-FD-SimpGrad
SC-CD-SimpGrad
MC-FD-SimpGrad
MC-CD-SimpGrad

MC-CD-ConjGrad
MC-CD-SteepDsc

Brachistochrone

1000

4.00

3.95

3.90

3.85

3.80

3.75

3.70

3.65

3.60

Fig. 6. Simulation results for µ = 0.00,k = 0.00.

Figure 6 shows the experimental results from a different

point of view – the algorithms’ efficiency and accuracy.

Each point represents the final result as a pair of num-

ber of evaluated trajectories, and t f is the final time (to-
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tal time of displacement) corresponding to the optimal

trajectory. All mc-algorithms performed much better than

sc-algorithms. The best of the mc-algorithms was MC-

CD-SteepDsc. It needed 1776 evaluations (of different tra-

jectories) to find the solution with the total time of dis-

pacement equal to t f = 3.6238 seconds. The relative er-

ror was smaller than 0.01%. MC-CD-ConjGrad performed

7050 evaluations because it did not converge during the

first iteration of its external loop as it is often expected

to and the algorithm time complexity depends on n2, see

Algorithm 7. Both sc-algorithms performed significantly

worse. They were able to improve the initial guess trajec-

tory only by about 3%.
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Fig. 7. Simulation results for µ = 0.12,k = 0.00.

Figure 7 presents the results of the second experiment (mo-

tion with friction but no drag, i.e. µ = 0.12, k = 0.00).

Again, the mc-algorithms performed much better than the

sc-algorithms and the most efficient was MC-CD-SteepDsc,

but this time its advantage was not so significant.
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Fig. 8. Simulation results for µ = 0.00,k = 0.05.
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Fig. 9. Simulation results for µ = 0.12,k = 0.05.

Figures 8 and 9 show results from the last two experiments

for µ = 0.00, k = 0.05 and µ = 0.12, k = 0.05. The same

pattern can be seen – the most efficient algorithm was again

MC-CD-SteepDsc and, in general, the mc-algorithms per-

formed much better than the sc-algorithms.

5. Conclusion

The application of six gradient-based algorithms to the

brachistochrone problem having a black-box represented

mathematical model has been studied. The main part of this

model was a simulation-based trajectory evaluator. As an

example of this problem, trajectory optimization in alpine

ski racing was chosen.

Each of the six algorithms has been presented in detail

(pseudo-code, time and memory complexity). These algo-

rithms were divided into two groups depending on the basis

used for spanning their search spaces.

The experimental results have shown that gradient-based

algorithms, when applied correctly, can be effective for

simulation-based (continuous) trajectory optimization prob-

lems. The best of the algorithms, despite its very basic im-

plementation, needed only about 100 iterations correspond-

ing to about 2000 objective function evaluations to find very

accurate solutions in a 40-dimensional search space.

Future work could concentrate on experimenting with

different bases for the search space. For instance, an or-

thogonal versus non-orthogonal bases comparison could be

carried out. Another area of research could be related to

combining the methods presented in this paper with multi-

start or memetic algorithms. And finally, the presented al-

gorithms could be verified in an augmented cloud environ-

ment [31]–[33].

It is worth noting that the presented approach could also be

applied to more general variational problems like ”piece-

wise optimization” of complex trajectories or optimal shape

design.
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Appendix 1

Simulation-based Trajectory Evaluator

(the Black-box Simulator)

Let’s consider a skier (modeled as a material point of

mass m) going down a slope with angle α from point A to

point B. The arc AB is approximated by a piecewise-linear

function. This modification simplifies the problem signif-

icantly – instead of one (complex) two-dimensional prob-

lem, we have a series of (simple) one-dimensional ones.

Each of the sub-problems is related to one segment only

(Fig.10, note a local coordinate system ζη , set for each

segment).

A

B

2

1

The -th (linear)i

segment (s )i
of the skier’s
trajectory

Fig. 10. The forces acting on a skier going down a slope with

angle α (one-dimensional approximation model). All forces are

reduced to the skier’s center of mass and to the surface of the ski

slope (i.e. ξ1−ξ2).

Equations of motion

The equations of motion for each segment can be written

in the following way

{

mζ̈ = mgred− (Ff + Fd)

0 =−Frη −mgsinα sinβ
, (19)

where:

Ff = µmgcosα , (20)

Fd = k1v2 = mkζ̇ 2
, (21)

represent snow resistance (friction) and air resistance

(drag), respectively, and

gred = gsinα cosβ , (22)

can be considered as “reduced gravitational acceleration” to

the slope plane (gsinα) and to the current linear segment

direction (gsinα cosβ ). Only the first equation is important

in the simulation; the second one expresses the condition

of equilibrium in the normal direction to the trajectory.

After dividing both sides of the first of the Eq. (19) by m

and simplifying the expression, for the ith segment we get

ζ̈i + kζ̇i
2
= g(sinα cosβi− µ cosα) . (23)

Boundary conditions

The arc
⌢

AB is approximated by a piecewise-linear function.

We assume that its first segment starts at A(ξ1A,ξ2A), and

the last one ends at B(ξ1B,ξ2B) (Fig. 10). The boundary

conditions have to be written now for each segment. An

additional assumption has to be introduced into the model –

the speed remains constant at the boundary of each pair of

subsequent segments, i.e.

|vvv
(i)
s |= |vvv

(i−1)
f |, (24)

where vvv
(i)
s is the initial speed for the (i)th segment, and

vvv
(i−1)
f is the final speed for the (i−1)th segment.

Performance measure

In order to find the total time of displacement a series of

simulations (one for each segment – s) has to be performed

J = t f = ∑
s

t
(s)
f . (25)
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