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Abstract—In the paper a proposal for the improvement of
performance for the TETRA Enhanced Data System (TEDS)
employing transmit diversity based on two antennas in the
downlink is described. The key idea of the considerations
relies on using the space-frequency coding algorithm. The
proposal described required some relatively simple changes to
the existing TEDS’s Single Input Single Output (SISO) inter-
face but the original number of payload and signaling symbols
in the normal downlink burst is preserved. The simulation
results obtained indicate a significant improvement in perfor-
mance. The Eb/No parameter could be reduced from 5 to
8 dB with respect to Frame Error Rate (FER), compared to
a single antenna transmission for the same FER = 1073,

Keywords—multiple input multiple output (MIMO), TETRA En-
hanced Data System.

1. Introduction

For more than two decades worldwide huge development in
mobile digital communication systems with continually im-
proving performance can be observed, increasing through-
put and an enlarging pool of services available for users.
One of the known techniques employed in this progress is
Multiple Input Multiple Output (MIMO) due to its ability
to form different routes for the transmission of signals over
the radio fading channel.

The TETRA Enhanced Data System (TEDS) [1]-[3] with
its radio interface based on filtered multitone modulation
(FMT) [4] is suitable for the implementation of MIMO.
However, due to the relatively small dimensions of a mo-
bile terminal, the simple version of MIMO - called Multi-
ple Input Single Output (MISO) — is reasonable for TEDS
with two transmit antennas at the base station and a single
receive antenna at the mobile terminal.

Furthermore, such a MISO technique is simple and does
not require significant changes in the radio interface.

2. Implementation of MISO
in the TEDS Radio Interface

In the following, the implementation of MISO based on the
Alamouti algorithm [5], [6], for the TEDS radio interface,
is described. With FMT modulation the baseband time-
continuous signal in TEDS is given by [1], [2]:

N-1K-1 .
st)= Y Y alg(t —nT)e/CR/ Tk (1)
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where n is the generic symbol within the burst, k is the
index of the subcarrier, and K and N are the number of
subcarriers and the transmitted (multicarrier) symbols, re-
spectively.

Moreover, the impulse response of the square-root raised
cosine filter has roll-off o = 0.2, the signaling interval is
T = 1/2400 s and the subcarrier spacing is Af = {/T =
2700 Hz, Thus, { = Af-T = 1.125 is the measure of inter-
ference between neighboring subcarriers. This means that
the frequency occupancy of each subcarrier is (14 @) /T =
2880 s. As is known, the TEDS interface can be used for
channels having the bandwidths: 25 kHz, 50 kHz, 100 kHz
and 150 kHz. In order to explain the Double Input Single
Output (DISO) for the downlink in the TEDS interface,
the structure of Normal Downlink Burst (NDB), for each
of the channels should be considered. As an example, in
the following the NDB with K = 16 subcarriers (50 kHz
channel) is described (see Fig. 1a). The burst contains the
payload symbols (D marks), the header symbols (H marks),
the pilot symbols (P marks) and the synchronization sym-
bols (S marks).

To allow for the reception of signals transmitted by two an-
tennas it is necessary to adequately locate the payload, pilot
and synchronization symbols in the two symbol streams.
Now, the pilot symbols should enable the receiver to carry
out the estimation of channel characteristics for each of the
symbol streams, and the synchronization symbols should
provide efficient receiver synchronization. Of course, the
number of payload and signaling symbols in the DISO and
SISO schemes must remain identical.

Thus, it is not an easy task to comply with these require-
ments. A proposal for NDB burst adapted for DISO in
the downlink is shown in Fig. 1b [7]. The pilot and syn-
chronization symbols transmitted by the first and second
antenna are marked by R and L, respectively. In the orig-
inal Alamouti algorithm two symbols representing a pair
are transmitted in two consecutive symbol times. Since the
symbol time is small compared to the coherence time of the
channel, the authors assume that, in practice, the channel
characteristics are almost the same for both symbols.

Of course, in the multicarrier system the channel charac-
teristic is a function of time and frequency [8]. However,
if the channel characteristic is quasi-stationary in the small
time interval (for two symbols), it is also quasi-stationary
in the small frequency spacing concerning two neighboring
subcarriers. As a result, a pair of symbols in the Alamouti
algorithm may be represented either in frequency or time
domain. The Alamouti algorithm in the proposal consid-
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D333 D349 D365 D381 D401 D417
D334 D350 D366 D382 D402 D418
D335 D351 D367 D383 D403 D419
D336 D352 D368 D384 D404 D420
D337 D353 D369 D385 D405 D421
D338 D354 D370 D386 D406 D422
D339 D355 D371 D387 D407 D423
D340 D356 D372 D388 D408 D424 D436

D327 D341 D357 D373 D389 D395 D409 D425 D437
Bl D312 D3ss D374 D3oo Bl D410 D426 D438
D328 D343 D359 D375 D391 D396 D41l D427 D439

Bl 0344 D360 D376 D392 [EEER D412 D428 D440
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D31 D47 D83 D99 DI15
D32 D48 |PL3 D68 D84 D100 D116

D33 D49 D55 D69 D85S DIOL DI17
D34 D50 [l Ds6 D102 Duis
D35 D51 DS6 D71 D87 DI03 DIL9
D36 D52 [PL4 D72 D88 DI04 DI20

SL8 D20

PL17 D320 D345 D361 D377 |RRBEID397 D413 D429
D325 D330 D346 D362 D378 D393 D398 D414 D430
Blln:31 D347 D363 D379 [PL21 D399 D415 D431
D326 D332 D348 D364 D380 D394 D400 D416 D432
PLIS D333 D349 D365 D381 D401 D417 D433
D334 D350 D366 D382 D402 D418 D434
D335 D351 D367 D383 [PL22 D403 D419
D336 D352 D368 D384 -D404 D420
D337 D353 D369 D385 D405 D421
D338 D354 D370 D386 |PL23 D406 D422
D339 D355 D371 D387 D407 D423 D435
PL19 D340 D356 D372 D3s8 D408 D424 D436
D327 D341 D357 D373 D389 D395 D409 D425 D437
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PL20 D344 D360 D376 D392 [ERBEID412 D428 D440

Fig. 1. Burst structures in the downlink for: (a) SISO and (b) DISO.

ered has been adapted to the format of the transmitted signal
in such way that the time-dependent variable in the origi-
nal algorithm has been replaced with frequency-dependent
variable. In this way a space-frequency coding has been
achieved and the dependence on the speed of changes in
channel characteristics has been minimized. Figure 2 shows
the fragment of the burst in which the data symbols a,gk)
presented in Eq. (1) are assigned to the suitable antennas
and subcarriers [7].

As can be seen in Fig. 2, it is possible to separate

(aﬁlk),aff;])), (a£1$2),agf33)) etc., which appear in both

a5 af
@)’ @,y
a3 a3
(@)’ (GHEDY
a(fii) Antenna L a(ﬁ? Antenna R
(@) @)’
a'yq a5
@) @)’

Fig. 2. Assignment of successive data symbols (indicated by the
subscripts) in the burst to the subcarriers (indicated by the super-
scripts) and antennas, where symbol ()* is the complex conjugate
of the argument.
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channels on the subcarriers having the same index. Further-
more, the symbols in each pair are assigned to neighbor-
ing subcarriers. Since the frequency spacing between the
neighboring subcarriers is small, one can assume that each
channel associated with a given antenna produces almost
the same effect on both symbols of a pair.

The received pair of symbols can be written as the sum
of transmitted symbols multiplied by the corresponding
channels’ frequency responses (channel coefficients) and
the noise samples:

k kk+1) (k kk+1) (k
A= B L 6l 4z
. . (@)
k+1 kk+1) [ (k kj+1) [ (k
bt = —HD (@) D (@) 2
where rflkr)l ‘1 r,(,k;r H represent the combination of both sym-

bols n and n+ 1 received on the subcarriers k and k+ 1,
respectively, while HL(k’kH) and ngk’kH) are the channels’
coeflicients associated with the first and second antenna and
evaluated jointly for both neighboring subcarriers, whereas
71 and z; are the noise samples. The symbols are evaluated
as mean values separately for a real part and an imaginary
part of each of the channel coefficients on both neighboring
subcarriers.

However, as can be seen in Fig. 1b, some payload sym-
bols do not appear on neighboring subcarriers and they
are separated by synchronization or pilot symbols. In such
cases the authors assume a channel coefficient for a pair
of symbols corresponding to the synchronization or pilot
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Fig. 3. Block schematic of the simulated system.

symbol. To improve the reception performance, the num-
ber of these events is reduced by the adequate distribu-
tion of payload, pilot and synchronization symbols within
the burst.

The reception rule is based on Maximum-Ratio-Combining
(MRC) [5], [6]:

= ()
)

k+1 kk+1)\* (k kk+1) (k+1

R = () A

In the Eqgs. given by (3), a soft value for each received bit b;
of each symbol is calculated provided that a given bit b was
transmitted. To obtain the likelihood of this bit such symbol
af’(m):x, x € {0,1}, must be found in the constellation of
symbols for QAM modulation which takes on the value x
in the m-th position of a group of bits representing that

symbol and minimizes the function

—log (p(bs | B =) ~

ki 2 ekt 12) )’
min (ﬂ,")—(]H,’?“'\ + | )aﬁ-’( “‘) @

L

This approach is employed for each bit of each symbol in
the received sequence of symbols.
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3. Simulator for the Transmit Diversity
of the TEDS Interface and Simulation
Results

To investigate the performance of the above described trans-
mit diversity method in the downlink the simulator shown
in Fig. 3 has been developed [7]. The FMT modulator and
demodulator used in the investigations are based on the
overlap-add algorithm [9]. The rate 1/3 turbo encoder is
formed by two recursive systematic convolutional encoders
with 8 states each, separated by an interleaver [10]. The
code rates 1/2 or 2/3 can be obtained by adequately punctur-
ing the turbo code sequence. In the iterative turbo decoder
the Max-Log-Map algorithm [6], [11] was used and the
number of iterations is 10.

The selected results of simulations are shown in Figs. 4-7.
They represent the relationships between FER and Eb/No
for the system identified by: 16 subcarriers (50 kHz band-
width), 1/2 code rate, 4QAM modulation on each subcar-
rier, the downlink transmission on 400 MHz in the typ-
ical urban (TU) and hilly terrain (HT) propagation pro-
files [3] and terminal speed of 50 km/h and 200 km/h, res-
pectively.

The curves in the figures denoted by 7D represent the re-
sults obtained when transmit diversity is employed, and
the curves with that denotation missing correspond to
the SISO operation. It can be seen from the figures that
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Fig. 4. Curves of FER versus Eb/No in the downlink over TUS50
with 4QAM.

Fig. 6. Curves of FER versus Eb/No in the downlink over HT50
with 4QAM.
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Fig. 5. Curves of FER versus Eb/No in the downlink over TU200
with 4QAM.

the proposed method provides a significant advantage. The
Eb/No for the DISO configuration is reduced by 5-8 dB
for FER = 1073 as compared to the SISO. This transmit
diversity gain is achieved irrespective of the propagation
profile (TU or HT). Moreover, in both cases (with and with-
out 7D) one can notice that performance improves when
terminal speed increases. This effect is obtained due to the
decreased correlation time of fading, particularly as packet
interleaving is not used. The results of the investigations
also show that halving the number of symbols used for
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Fig. 7. Curves of FER versus Eb/No in the downlink over HT200
with 4QAM.

estimation of each channel characteristic with 7D, provides
sufficiently accurate channel characteristics. However, the
transmit diversity gain was reduced to 5 dB for high termi-
nal speed where the fluctuations in channel characteristics
are greater. One of the reasons for this reduced gain is
the reduced number of symbols used for the estimation of
channel characteristics. Nevertheless, the proposed trans-
mit diversity provides a significant improvement in sys-
tem performance at the cost of an acceptable increase in
complexity.
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The approach presented in this paper can easily be em-
ployed for channels with other bandwidths of the TEDS
radio interface.
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