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Abstract—This article concerns modeling of statistical proper-

ties of OFDM signals with the help of “normalized Gaussian”

model, proposed by Kotzer et al. In this paper there is pro-

vided an extended formulation of the model, supplemented by

an expression for probability density, extending possible ap-

plications of the model in theoretical works. Numerical results

for verification of the model are provided and a more accurate

alternative is suggested.
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1. Introduction

In nowadays world there exists a demand for novel techni-

cal solutions introducing new qualities and functionalities

into everyday life. The recent 10–20 years have led to

an enormous technical progress, in particular in the field

of electronics and telecommunications – global computer

network or mobile telephony are good examples of devel-

opments which had a great impact on the way of living.

Still, the pursuit of new technical solutions and higher per-

formance continues.

The development in telecommunications was to large ex-

tent related to practical implementation of Orthogonal Fre-

quency Division Multiplexing (OFDM) technique. It was

first proposed and examined over 40 years ago [1]–[3], but

it was impossible to use it without fast digital signal pro-

cessing circuits available today. Currently this technique is

used in, e.g., wireless LAN networks, terrestrial digital tele-

vision and optical fibre communications, so the possibility

of increasing data throughput depends largely on adapta-

tion of devices for operation with larger numbers of sub-

carriers (increased bandwidth) and higher-order modulation

schemes, i.e., with more densely populated constellations.

A relevant example is the new DVB-T2 standard, includ-

ing 256-QAM modulation, in contrast to the older DVB-T,

limited to 64-QAM. Such advancement requires the un-

derstanding and proper modeling of phenomena occurring

in signal transmission. In particular, this can be achieved

by construction of analytic models, which explicitly reveal

fundamental properties and relations in the system.

The conventional way of modeling statistical properties of

the OFDM signal is to invoke the Central Limit Theorem

and assume for the signal value x a zero-mean Gaussian

probability distribution

Gσ (x) =
1√

2πσ2
exp

(

− x2

2σ2

)

, (1)

with variance σ2 equal to the mean power of the signal.

This approach usually leads to sufficiently accurate results,

especially if a large number of subcarriers is in application.

Still, this model is obviously an approximation, since it does

not limit the signal value. It predicts non-zero probability

even for nonphysically large x (in the so-called distribution

tails). As such, it tends to become inaccurate in some

cases, where suppressing of the distribution tails is of high

importance, for example, in calculation of clipping noise

when the clipping is small. Clearly, advanced modeling

should be based on a model better resembling properties

of the signal, but such models, if known at all, are very

rarely found in the literature.

As an attempt to overcome the problem of unlimited val-

ues, Kotzer, Har-Nevo, Sodin and Litsyn have proposed

another statistical model, which they have called “nor-

malized Gaussian” model [4]. It is applicable to OFDM

signal with subcarriers modulated according to a constant

amplitude constellation (e.g. M-PSK). This model is based

on such modification of the Gaussian distribution given

by Eq. (1), which explicitly limits the values and assures

preservation of energy in the whole OFDM symbol, result-

ing in inherent confinement of signal values within a finite

range. Hence, it offers a potentially advantageous alterna-

tive to conventional Gaussian model. However, the origi-

nal formulation of the normalized Gaussian model makes it

suitable only for problems of specific kind, with limited us-

ability for analytic derivations. These issues are addressed

in this work, the aim of which is to extend or modify the

formulation of the model and examine its most important

properties.

This paper is organized as follows. Section 2 defines the no-

tation and introduces the concept of the normalized Gaus-

sian model according to formulation by Kotzer et al. [4].

Next, the model is reformulated in a more general and ana-

lytic way in Section 3. In Section 4 there is provided a nu-

merical verification of the model. Section 5 proposes an

improved model, obtained as a combination of the conven-

tional and the normalized Gaussian models. An example of
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application and comparison of all these models is presented

in Section 6, and Section 7 concludes the paper.

2. OFDM Signal and the Normalized

Gaussian Model

In a modern communication device, transmitted data are

mapped onto points ζm of a constellation, i.e. set

Ω = {ζm ∈ C; m = 1, . . . ,‖Ω‖} , (2)

where ‖Ω‖ denotes the number of elements in Ω. A signal

with Orthogonal Frequency Division Multiplexing (OFDM)

is generated by Inverse Discrete Fourier Transformation

(IDFT) of a vector AAA =
[

A1ejφ1 . . . AKejφK
]

∈ ΩK contain-

ing K complex values representing spectral components of

the signal (subcarriers), with amplitudes Ak > 0 and phases

φk ∈ [0;2π), where k = 1, . . . ,K. The result of the trans-

formation constitutes the time-domain representation of the

signal. In general, this signal is complex, but for physical

processing, e.g., for digital-to-analog conversion, it is split

into two real signals, given by its real and imaginary parts,

and each of them is processed at least in a part separately.

Here it is assumed, that these two signals have the same

statistical properties and further only the real part of the

complex time-domain signal is considered. It can be rep-

resented as a sequence of NS samples

xi ≡ x(iT ) , i = 0,1, . . . ,NS −1, (3)

of the continuous time-domain signal

x(t) =
K

∑
k=1

Ak cos(ωkt + φk) , (4)

where T is the sampling period and ωk denotes angular

frequency of the k-th subcarrier. The signal is divided into

symbols of duration TS (in practical applications extended

by guard interval, which is not relevant here and therefore

ignored), so to preserve orthogonality of subcarriers their

angular frequencies are chosen as

ωk = kω1, with ω1 =
2π

TS

. (5)

In general, for consideration of statistical properties of the

signal, amplitudes Ak are represented by a random vari-

able A with the probability distribution

fA(A) =
1

‖Ω‖ ∑
m∈Ω

δ (A−|ζm|) , (6)

and phases φk are treated as independent random variables,

distributed uniformly on a subset of the interval [0;2π).
The mean power of the OFDM symbol defined by Eqs. (3)

or (4) is equal to

σ2 = K

〈

A2
〉

2
. (7)

Here, for consideration of only M-PSK constellations, it is

assumed that each |ζm| = 1
K

. With this choice the signal is

scaled to obtain values from the range [−1;1] and its mean

power becomes σ2 = 1
2K

.

The limitation of signal values is violated in the conven-

tional model based on the Central Limit Theorem and Gaus-

sian probability distribution, what, as mentioned above,

may cause this model to be inadequate for modeling of

certain phenomena or in some cases. The problem of non-

physically large values is alleviated by proposition of Kotzer

et al., who have suggested to introduce normalization of

the Gaussian-distributed estimate, which would explicitly

impose the preservation of energy of the whole OFDM

symbol [4]. According to this approach, assuming K = NS,

the absolute value of the i-th sample of the complex signal

obtained by the IDFT is a random variable defined as

ri =
|gi|

√

∑
NS−1
k=0 |gk|2

, i = 0,1, . . . ,NS −1, (8)

where gk are independent and identically distributed ran-

dom variables with complex Gaussian distribution, gk ∼
C N

(

0,σ2
)

. This way, for each sample the value of ri re-

mains within the range from 0 to 1. Such formulated model

has been called the normalized Gaussian model. It is ap-

plicable to OFDM signals obtained for subcarriers modu-

lated according to a constant amplitude modulation scheme,

e.g. M-PSK.

In [4] it has been shown, that the normalized Gaussian

model reproduces the properties of the signal very well.

Thus, it may be advantageous to use this model instead of

the conventional Gaussian-based. However, the model as

formulated by Kotzer et al. in [4] relates to absolute val-

ues of complex signal samples, therefore is applicable only

to severely limited range of problems, not including, for

example, digital-to-analog conversion, performed sepa-

rately for real and imaginary parts. It is not defined in

terms of probability distribution for ri, hence impractical

for analytic derivations. The model assumes the number

of samples to be equal to the number of subcarriers and

as such it concerns only signal at the Nyquist limit for

the highest frequency subcarrier, i.e. without any oversam-

pling, always present in practical applications. Therefore,

for wider application, the model needs to be generalized to

describe signed values of samples, it should be reformu-

lated in terms of probability density function and apply to

the cases in which the signal is oversampled.

3. Modification of the Normalized

Gaussian Model

The absolute value of a complex OFDM signal (i.e. IDFT

output) does not depend on the phases of subcarriers per

se, but on their differences. Thus, one of the phases can

be considered to be the global phase of the signal. Hence,
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variable rie
jφi can be identified with the complex value of

the i-th sample. However, the random phase φi can be

also identified with the phase of the complex variable gi,

and therefore the variable corresponding to one of the real-

valued signals, that can be fed to a digital-to-analog con-

verter or other processing device, is

Re
{

rie
jφi

}

=
Re{gi}

√

∑
NS−1
k=0 |gk|2

. (9)

The Eq. (9) can be used for generation of random vec-

tors of samples for simulation, since it imposes the cor-

rect mean signal power for a group of samples by using

a common normalization factor, explicitly related to indi-

vidual samples of the whole vector. Obviously, |gk|2 =
Re{gk}2 + Im{gk}2

and both real and imaginary part of

gk can be considered to be independent random variables

with real-valued normal distribution, Re{gk} , Im{gk} ∼
N

(

0,σ2
)

. Therefore, for each sample, the sum in the

nominator comprises: the square of the variable Re{gi}2
,

and other 2NS − 1 independent random variables with the

same Gaussian distribution. Because statistical properties

are the same for each sample, at least to large extent the

properties of the signal can be characterized by properties

of a single sample. Focusing on just a single sample one

can treat all the samples as statistically independent, and

then the sum in nominator of Eq. (9) can be expressed as

NS−1

∑
k=0

|gk|2 = Re{gi}2 + σ2Q2NS−1, (10)

where Qn ∈ [0;∞) is defined as sum of n squares of inde-

pendent and identically distributed random variables with

standard normal distribution N (0,1). It is well known

that such Qn is distributed according to the chi-squared

distribution with n degrees of freedom, Qn ∼ χ2
n , with the

probability density function

χ2
n (q) =

q
n
2−1e−

q
2

2
n
2 Γ

(

n
2

) θ (q) , (11)

where Γ(x) denotes the gamma function and θ (q) is the

Heaviside step function. The random variable defined by

Eq. (9) can be further subjected to the following:

– substitution v = Re{gi}/σ ∼ N (0,1),

– relating the mean power to the number of subcar-

riers K, by using in sum (10) a random variable

Q2K−1 instead of Q2NS−1.

This way, each sample of considered signal is represented

by random variable

ξ =
v

√

v2 + Q2K−1

∈ [−1;1] . (12)

Because the random variables v and Q2K−1 are indepen-

dent, the probability density function fξ (ξ ) for variable ξ

can be calculated using the formula (with q ≡ Q2K−1 for

brevity):

fξ (ξ ) =

∫ ∞

0
dq χ2

2K−1(q)G1(v(q,ξ ))

∣

∣

∣

∣

∂v

∂ξ

∣

∣

∣

∣

. (13)

The variable v in function of q and ξ is given by

v(q,ξ ) = ξ

√

q

1− ξ 2
. (14)

Thus, remembering that

∫ ∞

0
dqqne−aq =

Γ(n + 1)

an+1
, where a > 0, n > −1, (15)

Γ(n + 1) = nΓ(n) and Γ
(

1
2

)

=
√

π , one obtains:

fξ (ξ ) =
1

2

(

K −1
1
2

)

(

1− ξ 2
)K− 3

2 θ (1−|ξ |) , (16)

with the generalized binomial for α,β ∈ R defined as

(

α

β

)

=
Γ(α + 1)

Γ(β + 1)Γ(α −β + 1)
. (17)

To check that this distribution is in fact normalized to 1 it

is convenient to change the integration variable to u = ξ 2

and make use of the identity

∫ 1

0
duuα (1−u)β =

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (18)

Similarly, one can easily calculate various absolute mo-

ments of this distribution

〈|ξ |n〉 =
1√
π

Γ(K)Γ
(

n+1
2

)

Γ
(

K + n
2

) , (19)

in particular the mean square value
〈

ξ 2
〉

= 1
2K

, reproducing

correctly the mean power of the signal. It is interesting to
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Fig. 1. Comparison of Gaussian probability distribution and the

distribution fξ , for K = 13.
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note, that the expression fξ (ξ ) for one subcarrier, K = 1,

leads to the arcsine distribution, what is the correct result

for a single harmonic function (sine or cosine) of a uni-

formly distributed variable.

The plot of the distribution fξ in comparison to Gaussian

is presented in Fig. 1. Both distributions are very similar

in the central portion. The Gaussian distribution has a little

higher value near 0, on the slopes is a little below fξ and

again becomes higher at the tails. The most important

difference is that the distribution fξ has a compact support,

and is zero outside the range of allowed values of the signal.

It will be seen on the next plots, which are drawn in the

logarithmic scale.

4. Numerical Verification

The correctness of the derived probability distribution fξ

has been verified by numerical simulation performed in

Octave [7]. Each numerical estimate has been obtained as

a normalized histogram of values of samples for 1 million

randomly generated discrete OFDM symbols with specified

constellation, number of subcarriers K and number of sam-

ples per symbol NS. For calculation of the histogram, full

range of signal samples (i.e. [−1;1]) has been divided into

101 “bins” of equal width, but in the presented plots, this

range has been narrowed down to the range of values ob-

served in the simulation (apparently, the other values occur

with probabilities too small to have been observed).

First, it was checked that the expression (16) for fξ correctly

reproduces the probabilities of observation of sample values

Re
{

rie
jφi

}

defined by Eq. (9). Exemplary comparisons

of the derived and numerical results are shown in Fig. 2.

The plots in the figure illustrate that the expression (16)

in fact defines the correct probability distribution for the

normalized Gaussian model.

Next, the derived probability distribution fξ has been com-

pared with numerical results for various OFDM signals and

with conventional Gaussian distribution G
1/

√
2K

with the

same variance. For each case, discrete symbols according

to expressions (3) and (4) have been generated with the help

of IDFT. The results are presented in Fig. 3 for QPSK

constellation and in Fig. 4 for other constant amplitude

constellations (8-PSK and 32-PSK). As it can be seen,

both analytic models give similar results, in general re-

producing the numerical results well. However, neither of

them predicts, that the signal samples tend to group at

particular values, especially for lower order constellations

with a low number of subcarriers K. This effect becomes

smaller with increased oversampling (the ratio NS/K) or

the order of constellation. It can be alleviated by intro-

duction of a random global phase shift in constellation

for each symbol separately, what causes “smoothing” of

the numerical results – for example, see the plot shown

in Fig. 5.
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Fig. 2. Comparison of numerically estimated probability distri-

bution of Re
{

rie
jφi

}

and the derived expression fξ for OFDM

symbols: (a) K = 6 and NS = 16, (b) K = 60 and NS = 256,

(c) K = 110 and NS = 256.

5. Geometrically Averaged Model

From the plots presented in Section 4 it is apparent that the

conventional Gaussian model overestimates the tail distri-

bution, while the distribution fξ underestimates it. There-

fore, an obvious attempt to increase the accuracy of the

modeling is to use the geometrical average of the probabil-

ity distributions in these two models, i.e.

hξ (ξ ) = NhHξ (ξ ) , (20)
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Fig. 3. Exemplary results for verification of distribution fξ for QPSK constellation: (a) K = 6 and NS = 16, (b) K = 6 and NS = 32,

(c) K = 13 and NS = 32, (d) K = 60 and NS = 256, (e) K = 110 and NS = 256, (f) K = 700 and NS = 2048.

where dependence on ξ is given by

Hξ (ξ ) =
√

G1/
√

2K(ξ ) fξ (ξ ) , (21)

and the normalization constant

Nh =

(

∫ 1

−1
dξ Hξ (ξ )

)−1

. (22)

The comparison of such defined probability distribution

with numerical results presented above is shown in Fig. 6.

It can be seen, that both results fit each other very well,

thus the distribution hξ could be used for better accu-

racy. However, it seems that analytic expression for hξ

is rather complicated and it will not be derived here any

further.

6. Clipping Noise

A commonly known problem in which tails of the

probability distribution used for modeling of the signal
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Fig. 4. Exemplary results for verification of distribution fξ for M-PSK constellations: (a) 8-PSK, K = 13, NS = 32, (b) 8-PSK, K = 110,

NS = 256, (c) 32-PSK, K = 13, NS = 32, (d) 32-PSK, K = 110, NS = 256.
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Fig. 5. Exemplary result of simulation with random global phase

shift for QPSK, K = 6, NS = 16.

have a significant impact is the calculation of clipping

noise [5], [6]. This noise usually is considered for digital-

to-analog or analog-to-digital converters and amplifiers.

Clipping occurs when a device limits the absolute value

of the output signal to a certain level Aclip. It is con-

venient to define this level in terms of a clipping

factor

γ =
Aclip

σ
, (23)

so that the signal is constrained to ±γσ . The clipped por-

tion of the signal is a distortion contributing to the total

noise. Following the simplest derivation signal with un-

correlated time-domain values or samples [5], the power of

the clipping noise is

σ2
c (γ) = 2

∫ ∞

γσ
dξ (ξ − γσ)2

p(ξ ) , (24)

where p(ξ ) denotes the probability distribution assumed

for the signal value ξ . Obviously, if the signal is already

limited below γσ no clipping occurs and any model al-

lowing the signal to have arbitrarily large values (like the

conventional Gaussian model) will lead to incorrect re-

sults. Assuming the Gaussian model, i.e p(ξ ) = Gσ (ξ ),
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Fig. 6. Exemplary results for verification of distribution hξ for

M-PSK constellations: (a) QPSK, K = 13, NS = 32, (b) 32-PSK,

K = 13, NS = 32.
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the clipping noise to signal power ratio is given by the

following expression:

(

σ2
c (γ)

σ2

)

G

=
(

1 + γ2
)

erfc

(

γ√
2

)

−
√

2γ2

π
e−

γ2

2 , (25)

wherein the complementary error function

erfc(x) =
2√
π

∫ ∞

x
dt e−t2

. (26)

Similar results for p(ξ ) = fξ (ξ ) and p(ξ ) = hξ (ξ ) are here

calculated numerically and a comparison of these three re-

sults with simulation is presented in Fig. 7. In addition to

being time-consuming, the simulation becomes inaccurate

for higher values of γ , since the probability of observing

sample value high enough to be clipped becomes too small

for occurrence of clipping within a given number of ran-

dom signal symbols (here 100,000). In particular, this re-

lates to clipping at value of γ ≈ 4, which is of practical

interest. It can be seen, that, as could be predicted from

previous results presented here, the Gaussian model overes-

timates the clipping noise, at γ ≈ 4 significantly, while the

normalized Gaussian model, based on expression for fξ ,

underestimates it, and using hξ , the geometrical average of

the Gaussian distribution and fξ , reproduces the clipping

noise very well. This illustrates well an advantage of using

proper analytic models, allowing to obtain accurate results

very quickly, except of providing a much better insight into

the physical phenomenon.

7. Conclusions

In this paper there is provided an extension, with slight

modification, of a statistical model of OFDM signal, so-

called normalized Gaussian model, originally proposed by

Kotzer et al. [4]. Treating the signal sample values as

independent random variables allows to derive their proba-

bility distribution fξ given by expression (16). It has been

shown, that this expression correctly reproduces statistical

properties of the original model. The predictions of the

extended model have been compared to results of numeri-

cal simulations and on their basis a more accurate model,

combining both conventional Gaussian model and the nor-

malized Gaussian model by means of a geometrical average,

was proposed. As an example of application, the models

were used for calculation of clipping noise.

The probability distribution fξ turns out to be accurate to

the same degree as the conventionally used Gaussian dis-

tribution, with the difference, that while Gaussian overes-

timates the probability of occurrence of the higher values,

the distribution fξ tends to underestimate it. Being ex-

pressed by a relatively simple function, distribution fξ al-

lows to calculate and obtain closed-form results for numer-

ous parameters of the signal, thus it may be particularly

useful for theoretical research. The proposed here “ge-

ometrically averaged” distribution hξ , although providing

the most accurate results of all three, seems to be more

complicated and might lead to more cumbersome expres-

sions. However, even such formulation as presented offers

the benefit of quickly obtained results by simple numerical

calculation.

Concluding, the expressions obtained in this paper provide

alternatives to conventional Gaussian model and might con-

tribute to theoretical characterization and development of

telecommunication devices, especially those using suscep-

tible to noise higher-order modulation schemes.
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