
Paper Model-Based Availability

Evaluation of Composed Web Services

Mauro Iacono1 and Stefano Marrone2

1 Dipartimento di Scienze Politiche, Seconda Università degli Studi di Napoli, Caserta, Italy
2 Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, Caserta, Italy

Abstract—Web services composition is an emerging software

development paradigm for the implementation of distributed

computing systems, the impact of which is very relevant both

in research and industry. When a complex functionality has

to be delivered on the Internet, a service integrator can pro-

duce added value by delivering more abstract and complex

services obtained by composition of existing ones. But while

isolated services availability can be improved by tuning and

reconfiguring their hosting servers, with Composed Web Ser-

vices (CWS) basic services must be taken as they are. In this

case, it is necessary to evaluate the composition effects. The

authors propose a high-level analysis methodology, supported

by a tool, based on the transformation of BPEL descriptions

of CWS into models based on the fault tree availability eval-

uation formalism that enables a modeler, unfamiliar with the

underlying combinatorial probabilistic mathematics, to evalu-

ate the availability of CWS, given components availability and

expected execution behavior.

Keywords—automatic model generation, Composed Web Ser-

vices, fault tree, model composition, service availability.

1. Introduction

Quantitative evaluation of characteristics of distributed

systems is a difficult task, due to the complexity of the

systems and to the need for efficient models evaluation. In

many fields, classical mathematical evaluation frameworks

have been structured into higher level methods that hide the

complexity of the mathematical approach by encapsulating

it into graphical (or other kinds of) formalisms, easier to

manage, with the aim of enabling the use by non-expert

users.

Two classical examples of such high level methods are

given by Fault Trees and Stochastic Petri Nets. Fault

Trees1 (FT) is a graphical formalism to model the com-

bined probability of a complex event (called fault, since the

technique is typical in reliability/availability engineering),

given the interrelation of (statistically independent) basic

events, that are characterized by a known (fault) probabil-

ity, specified by a number of intermediate events that result

by elementary conjunctions or disjunction of basic events.

Such a high-level method allows an expert in system engi-

neering to exploit the benefits of probability computation

in large systems, without the need for explicit knowledge

in the field and with the additional benefit that, whatever

1Fault Trees can also be used for a qualitative analysis of the relevance

of the role of basic events with respect to the complex event.

the model complexity, the modeling process is less error-

prone than writing the actual equations and scales better.

Stochastic Petri Nets (SPN) [1] is a graphical formalism

to model the dynamic behavior of concurrent systems that

can be evaluated by Markov chains. In SPN the system is

modeled by places, characterized by a marking in terms of

tokens that represent a part of the system state, and transi-

tions that modify the markings of the places to which they

are connected according to exponentially distributed firing

rates. Such a method allows a modeler that has a very good

knowledge about the system to represent and evaluate it by

Markov chains without the need for being familiar with

them. Analogously, other methods can be found in litera-

ture enabling different ways the use of complex mathemat-

ical tools while hiding their details behind a user-friendly

framework.

The stratification and the articulation of modern distributed

systems, that are built after a system-of-systems logic, pose

a second level complexity problem, that consists in mod-

eling such systems by aggregating (sub-)models in order

to cope with the explosion of their extension by exploiting

the same compositional logic. The availability of higher

level methods is not sufficient to enable efficient model-

ing processes, so additional conceptual tools are needed

to supply proper approaches that can scale to more com-

plex and extended system architectures. In this paper we

propose a structured approach for the construction of high

level probabilistic availability models (based on exponen-

tially distributed variables) for a very common and spread

class of distributed systems, such as Service Oriented Ar-

chitecture (SOA) compliant systems, that are based on the

Service Oriented Computing (SOC) paradigm.

The paper is organized as follows. Section 2 presents a brief

introduction to FT and their evaluation; Section 3 intro-

duces the SOA and related problems. Section 4 introduces

service composition; Section 5 shows the general approach

to obtain availability models from BPEL (Business Process

Execution Language) documents and is complemented by

the description of supporting tool and an example in Sec-

tion 6 and Section 7. Final considerations and future works

complete the paper.

2. Fault Trees

FT is based on the idea that independent undesired events

influence the general behavior of a complex system accord-

ing to its structure. Events effects combinations are repre-

5

Mauro Iacono and Stefano Marrone

sented by two operations, analogous to OR and AND op-

erators of Boolean algebra and logic networks. Two events

are combined by an OR operator if each of their single in-

dividual contributions is effective on the system, while they

are combined by an AND if their contribution is effective

only if they happen both at the same time.

Let A1 . . . An, n ∈ N be n events, statistically indepen-

dent and with probabilities P1 = P(A1) . . . Pn = P(An),
Pi << 1∀i ∈ 1 . . . n (due to the nature of the application

field). From a quantitative point of view, the probability P
of the event A = Ai OR A j, i, j ∈ 1 . . . n, i 6= j, represents the

probability of the case in which Ai or Ai happens, eventu-

ally simultaneously with the other. Such a probability can

be computed as Pi +PjPi j, in which Pi j is the probability of

having Ai and A j simultaneously. If Ai and A j are mutually

exclusive, Pi j = 0, but generally, being Ai and A j indepen-

dent and Pi,Pi << 1,Pi j << Pi + Pj and P ≈ Pi + Pj (rare

events approximation). The probability of the event A = Ai
AND A j, i, j ∈ 1 . . . n, i 6= j, represents the probability of

the case in which Ai and A j happen simultaneously. Such

a probability can be computed as Pi ·Pj, being Ai and A j
independent.

Both operators can be generalized to any number of

operands. The reader will find the analysis of the gen-

eralized AND and OR operations and a more thorough in-

troduction to FT in [2]. For the goals of this paper, it is

sufficient to consider that, in the given hypotheses, by prop-

erly using the operators to aggregate together basic (and/or

non basic) events to obtain non-basic events it is possible to

form the different levels of a FT, until a single event (top

event) is described as complex event aggregation. Given

a complete FT, the analysis of its structure gives the ana-

lytical expression of the probability of the top event that can

be easily obtained by mechanical substitutions whatever the

complexity of the tree.

The possibility or representing as logical operations the

combination of events allows for the application of boolean

algebra to fault trees. Given a FT, it can be described in

terms of a Boolean equation that can be transformed apply-

ing the theorems of Boolean algebra. Such transformation

can result into a reduction of the model, or can be ex-

ploited, as in the following, to extend the use of FT to in-

clude fictitious events that enable for the expression of more

complicated conditions. Besides AND and OR, Boolean

algebra defines the NOT operator, that is not present in

the description given in this section for FT. The interpre-

tation of the NOT operator applied to an event (A, with

probability P) results in the definition of the complemen-

tary event (A′, with probability 1−P), that can be used

in the FT.

3. Service Oriented Computing

The Service Oriented Computing paradigm provides

a methodological foundation for the design of complex dis-

tributed applications by integrating existing components,

namely services.

A service is a software component capable of interacting

with other services with a loose coupling logic to provide a

functionality that is performed by it in complete autonomy.

A service is accessible independently from its implemen-

tation details and is designed to be reused. Services are

commonly implemented by Web service technology that

allows services to be discovered, integrated and used on

the Internet, by running them on a server (that can run

simultaneously more Web services).

Services are meant to be integrated, knowing their inter-

faces, in Business Processes (BP) or Workflows (WF).

Among the several techniques available for such integra-

tion, BPEL [3] is the most spread solution and took the

role of standard language for services orchestration. Or-

chestration is one of the two main strategies for service

integration and is based on the idea that an application

consists in a centrally specified BP or WF that operates all

services involved and is run by a specific executor.

BPEL is a language for the specification of orchestrations,

based on Extensible Markup Language (XML). A BPEL

document can be assumed as the formal description of the

desired service orchestration. The integration of services by

a service integrator can produce a significant added value if

the composed, more abstract, complex service is designed

to provide a well defined Quality of Service (QoS), even-

tually better than the one offered by isolated services. Iso-

lated services can be fine-tuned by reconfiguring their host-

ing servers to increase performances or availability, but in

the case of Composed Web Services (CWS) basic services

have to be taken as they are. In this case a reasonable

measure is to evaluate the effects of the composition. In

order to perform such evaluation, a quantitative analysis is

needed. In the next section an analysis methodology that al-

lows availability evaluation of CWS by transforming BPEL

descriptions into FT models exploiting proper patterns is

proposed.

BPEL definition of a CWS intrinsically describes the rela-

tions by which the availability of component basic services

influences the availability of the composed one. System-

atic analysis of BPEL language elements allows the defini-

tion of equivalent FT patterns that represent their compo-

sition effects. With this premises, it is possible to obtain

an evaluation method for the availability of a CWS given

components availability and the expected execution CWS

behavior. Such an approach offers a decision support tool

for integrators.

Literature shows a great interest in formal verification of

BPEL programs, mainly oriented to correctness verifica-

tion. The most spread approaches are based on high-level

analysis methods (both for quantitative and qualitative eval-

uation) to ease the understanding of such systems. An im-

portant contribution is provided by van der Aalst’s transfor-

mations from BPEL to Petri Nets (PN) to perform liveness

verification [4]–[6]. Studies of non-functional properties of

BPEL WFs [7]–[10] by means of formal models are mainly

oriented to performance and security rather than reliability

and availability. The use of FT for reliability and avail-

6

Model-Based Availability Evaluation of Composed Web Services

ability models generation is consolidated [11]–[15]. In FT

models have been generated from system descriptions while

in a UML system model is used for automatic generation

of Dynamic FT.

Recent research trends explore the applications of these

techniques to the wider topic of the cloud computing. Some

scientific works related to this aspect are [16]–[19].

4. Proposed Approach

Following literature general orientation, a high-level mod-

eling approach to the stated availability modeling problem

has been chosen, founded onto Fault Trees as a basic high-

level probabilistic tool. According to this choice, the low-

level mathematical details (related to FT) will not be con-

sidered in the following and the work will focus on high-

level transformations and compositions.

The main aim of this paper is the definition of a relation-

ship between BPEL language constructs and fault tree pat-

terns. CWS availability must be assured in order to provide

a sustainable level of QoS. A failure is an event that occurs

when the delivered service deviates from correct service in

value or time [20]. In this paper a CWS failing is consid-

ered if it does not reply at all to requests (delays are not

relevant).

The authors apply model-driven techniques to generate for-

mal models of critical services. In particular model-to-

model transformations are applied in order to automate the

generation of availability models of CWS. The composi-

tional approach that will be used is supported by the main

results of compositional failure analysis [21], [22], accord-

ing to which system failure models can be constructed from

component failure models using a process of composition,

For a further introduction to automated safety analysis and

reuse the reader can refer to [23].

The main problem in evaluating CWS availability is due to

distribution and heterogeneity. Assumed the CWSs as bug-

free software components, here we only consider faults due

to their distributed nature and the dependence of provided

service from requested ones, i.e. hosting hardware, mes-

sages delivery, timeout, network faults. Thus, faults mainly

come from invoked services that run on remote servers.

These faults can be reasonably represented by stochastic

models. Assuming that remote services can fail and local

ones generally cannot, not every fault occurrence brings

CWS to a failure since BPEL can mask faults by means

of Fault Handlers (FHs) and offers choice constructs. The

effective contributions of faults to CWS availability are de-

termined by the WF business logic, that describes the in-

vocation patterns, and by its workload profile (that gives

e.g. the estimated branching probability in a choice or av-

erage number of activations in a loop). Note that while for

components embedded in a system nature and frequency of

their failures are known or at least estimable, components

of a CWS are remote services that cannot be examined or

stress tested, since they do not belong to the same organi-

zation. Anyway, a coarse grain stochastic model of remote

service failures can be obtained by logs or tests combined

with QoS parameters declared by the providers.

In the following the authors propose FT patterns for some

BPEL elements. Since this set is not complete the proposed

approach must be considered an ongoing work. FTs have

been chosen because of their handiness and because more

complex modeling tools (multi-state variables, complex re-

pair mechanisms and dynamic issues) are not needed at

the state. For each of these constructs, the authors analyze

with a top-down perspective how faults of inner activities

propagate to construct failures.

Sequence is the simplest BPEL structured activity, and rep-

resents the execution of a temporally ordered sequence of

activities, each of which is started only if and when the pre-

vious one is completed. A Sequence fails if at least one of

the (remote) activities fails. Assuming a Sequence of A and

B activities, Fig. 1a depicts the corresponding FT model.

In this model A and B are characterized by their unavail-

ability. It is important to stress that A and B are depicted as

generic middle events since they can be recursively trans-

lated by another pattern. Moreover some of them can also

be local activities and can be considered impossible events

(unavailability equal to 0). Fig. 1b defines the translation of

If construct, that branches the execution into two mutually

exclusive activities (one of which can be an empty activity)

according to a Boolean condition. As activities in then and

else branches are mutually exclusive it can be stated that

a failure of the If is possible if A fails when A is activated

(events that occurs with probability pTH) or B fails when

the else branch is chosen (event that occurs with probabil-

ity pELSE = 1− pTH). The translation is obtained by the

introduction of two virtual events pTH and pELSE, that

account for these considerations. Figure 1c introduces the

FT pattern for Fault handler construct, that executes an ac-

tivity if the related construct fails. As the whole construct

fails if both the handled activity S and the catch process

(Catch) fail, the best way to translate it into FT is a subtree

with an AND gate between the fault events. Figure 1d de-

picts behavior of BPEL loops (Foreach, While), that repeat

a certain activity a given number of times or until a certain

condition is satisfied, from the point of view of unavail-

ability. Assuming a loop of an activity S, if we evaluate

(from CWS workload profile estimation) the mean number

of times the loop is called, loop fails if at least one of

these calls fails2. BPEL Flow describes the parallel con-

current execution of a certain number of activities. A Flow

of 1 . . . n fails in the same way as loops, so Fig. 1e rep-

resents its FT pattern. The Link construct needs a deeper

discussion. When a link is present in a flow construct,

two activities are involved: a link source and a link target.

The execution of the target activity depends on the termina-

tion condition of the source activity. While source activity

failure modes are not affected by this construct, target activ-

ity execution may change according to ingoing links status

and several conditions that characterize its behavior. Due

2This can be written under hypothesis of independence of invoked ser-

vice.

7

Mauro Iacono and Stefano Marrone

SEQ

A

A

B

B

IF

Then Else

pTH pELSE

FH

S Catch

Loop

S S....
n

Flow

S1 Sn....

TARG

f(SJF)

JC T

g(JC)

L1 LN

(a) (b) (c)

(d) (e) (f)

Fig. 1. Fault Tree patterns of relevant BPEL constructs.

to these reasons a different FT pattern must be used. It

represents the translation of activity in flows (T) that are

target of one or more links (see Fig. 1f). The parameters

that influence WF control flow and that directly affect the

nature of f and g functions in Fig. 1f, are: joinCondition

(JC) (a logic predicate based on link conditions 1 . . . n; as

this predicate can evaluate to true, target activity is allowed

to start) and suppressJoinFailure (SJF) (when this flag is

true, a failure on joinCondition is suppressed, target activ-

ity does not start and the fault does not propagate through

WF control flow). Otherwise, the target activity may fail

on joinCondition failure or on an inner failure.

Such considerations can be summarized into the following

equation (also see Table 1):

TARG = SJF ·T · JC+!SJF · (T+!JC) ,

where ! is the NOT operator, · is the AND operator, + is

the OR operator, and where SJF is the suppressJoinFailure

flag, JC is the truth of joinCondition and T is the fault

event of target activity.

According to such equation, we can state that:

• if suppressJoinFailure is true, failure of link target

can be written as the conjunction of the failure of

activity and the success of joinCondition so f is

an AND gate while g implements the joinCondition

logic predicate,

• if suppressJoinFailure is false, failure of this link tar-

get can be written as the disjunction of the failure

of activity and the failure of joinCondition so f is

an OR gate while g implements the negation of join-

Condition logic predicate.

Table 1

Truth table for link target activity

Link Target SJF JC T

0 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

0 1 0 0

1 1 0 1

0 1 1 1

In next sections these patterns are applied to evaluate and

compare two example CWS.

5. Support Tools

To support the proposed methodology a tool for the au-

tomatic translation of a BPEL file into an analyzable FT

has been developed. Moreover the tool takes into account

some information that can not be specified into the BPEL

file (e.g., probability of then-else branches in if constructs,

failure rates of Invoke activities). These data are passed to

the tool by a simple properties file. The steps implemented

by the tool are depicted in Fig. 2. The tool has been devel-

oped in Java and relies on SHARPE [24] for the analysis

of generated fault tree.

This is the workflow of the tool in presence of simple ser-

vices, i.e., where there is one single Web service. In pres-

ence of more services, during the phase of properties file

8

Model-Based Availability Evaluation of Composed Web Services

Parse BPEL
file SPEL

Properties

Results

Generate BPEL
constructs tree

Read property file

Create links
on BPEL nodes

Simply tree

Generate FT
by patterns

Translate into
analysis format

Analyse and
retrieve results

Fig. 2. Tool processing steps.

reading the BPEL constructs tree is explored. Its leaves,

that are Invokes constructs, are searched in properties file.

In case of an Invoke that is related to another BPEL im-

plemented Web service, the entire analysis process is re-

cursively repeated generating a series of Fault Trees hier-

archically organized. Moreover, during the analysis phase,

Fault Trees are solved from bottom to up in order to exploit

modular analysis of such models.

6. Case Study

In this section proposed FT patterns to the evaluation of

availability of a BPEL example WF is applied. The chosen

case study is an agri-food information and tracking sys-

tem. Agri-food information and tracking systems require

that information about goods is registered and verified for

every item that is produced or transformed in the market.

Moreover data vaults are needed in order to store historical

data about several aspects of goods, i.e., origin, storage,

transportation, composition, processing data. Such regis-

tration has to be certified by third parties, eventually au-

thorized and supervised by public authority if requested by

the law.

The system to be analyzed requests the registration and

logs every request attempt and confirmation on a central-

ized logging system that is shared with all other dedicated

information systems of the same company. The structure

of the system is shown in Fig. 3a. The system is com-

posed by a CWS that executes the described orchestra-

tion and two subsystems, Log (based on two remote log-

ging services) and Reg (based on three remote registries).

Figure 3b describes the high-level message flow performed

by the system. The CWS uses the subsystems by request-

ing a logging operation (Pre with PAck response), the reg-

istration (Save with a SAck response) and another logging

operation (End with PEnd response).

CWS
CWSReg Reg

Reg
A

B

C

Log

Log

L1 L2 L3

Pre

PAck

SAck

Save

End

EAck

(a) (b)

Fig. 3. UML description of case study.

The CWS BPEL implementation can be represented as

in Fig. 4.

receive:ReceiveInput

invoke:Log

invoke:Log

invoke:Reg

reply:CallbackClient

Fig. 4. CWS BPEL implementation.

The Reg subsystem is implemented by another CWS that

uses 3 external (geographically distributed) certification ser-

vices in parallel. Requests to services are cached locally to

minimize accesses, and are then performed when the cache

is full. Information about the requests that are ready to be

sent, cached or processed, are checked and the calculated

checksum is logged. Requests arrive in batches of 5 and it

is tolerated 1 processing problem per batch.

Processing of batches is implemented by a BPEL Foreach.

For each item, the local WS managing the cache is in-

voked to evaluate if the request can be cached (and just

the logging has to be performed) or data has to be sent to

registries (in this case, by invoking local services results of

registration operations are validated, operations are logged

9

Mauro Iacono and Stefano Marrone

and the cache is reset). The interaction with the registries

is executed by a BPEL flow.

To show the effectiveness of the approach, two versions of

the CWS are presented and examined, with slight differ-

ences. The two variants are depicted in Fig. 5 (a simple

version) and in Fig. 6 (the fault tolerant version).

invoke:A invoke:B invoke:C

receive:ReceiveInput

invoke:askCache

foreach:OnEachRequest

if:cacheHit

else:miss

flow:Flow
then:hit

invoke:resCalc

invoke:voting

invoke:resCalc

invoke:cacheUpd

reply:CallbackClient

Fig. 5. Simple version of REG service.

invoke:A invoke:B invoke:C

receive:ReceiveInput

invoke:askCache
foreach:OnEachRequest

if:cacheHit
else:miss

flow:Flow

then:hit

invoke:resCalc

fh:Cfh:Bfh:A

empty:EA empty:EB empty:EC

empty:Guard

invoke:voting

invoke:resCalc

invoke:cacheUpd

reply:CallbackClient

Fig. 6. Fault tolerant version of REG service.

In the first, a fault in one of the service invocations causes

a fault of the Flow activity and of the CWS. The second

one is designed to complete successfully if at least one of

the parallel invocations is successful3 and join failures are

not suppressed4. To obtain the same final result, in this im-

plementation failed registrations are externally rescheduled

as off-line background operations by the Fault Handlers, if

at least one external registry recorded the information so

that it becomes public and official.

The second version of the CWS is clearly designed to obtain

an improvement in the availability of the system, due to the

introduction of fault tolerance in the registration. But how

much more available is the second version?

In order to analyze availability of the two implementa-

tions, only relevant (fault prone) constructs are to be con-

sidered. The resulting FTs differ in the branch that rep-

resents the Flow construct, and are represented in Fig. 7.

The askCache, resCalc, voting and cacheUpd activities are

considered to be fault prone. The three remote invocations

(namely A, B and C) are obviously fault prone. The com-

mon part of the FT is in Fig. 7a. In the first case, the

availability of the Flow depends on the availability of A, B
and C as in Fig. 7b. In the second case, by simply applying

the patterns Fig. 7c is obtained. Anyway, some consider-

ations are useful to obtain the solution in Fig. 7d, that is

the correct solution. At first, Guard is not fault prone and

contributes with a null fault probability to the composition,

and A, B and C do not give contribution because of the

presence of their Fault Handlers. Moreover a Link Lx is

true when the related Invoke X is successful, so the proba-

bility of the event NOT(Lx is true) is the fault probability of

X and NOT(OR(La,Lb,Lc)) = AND(A,B,C), that is finally

the only contribution of the Flow to the FT.

According to considerations previously made, we assume

that: service failure rates are 10−7h−1 for askToCache,

resCalc, cacheUpdate and CallbackClient, 10−2h−1 for A
and B, 5 · 10−3h−1 for C, 10−6h−1 for voting. The au-

thors are also assuming that the probability of execution

of the hit then branch is 0.3. With these parameters, the

two variants have a CWS MTTF of 1978000 and 2017400
hours. FT models have been evaluated by the SHARPE

tool [24]. The Log subsystem is implemented by a third

CWS that uses 2 external (geographically distributed) log-

ging services in parallel. The two services are run by the

company, but in a remote data center. They are config-

3This is obtained inserting three Empty activities in sequence with the

three invocations and a fourth Empty activity, that is the destination of

three Links originating in the three Invoke activities, true if the Invoke was

successful. This activity is executed if the logical OR of the three Links

is true. Another solution without the three Empty activities is possible,

but due to ambiguities in the standard it could be not correctly supported

by all BPEL interpreters. Here sequences are used to ensure that outgoing

Links are set to false in case of faults.
4Faults generated by an Invoke activity are masked by a Fault Handler

to prevent the propagation to the Flow activity, so that it, and eventually

the CWS, will fail only if none of the three parallel Invoke activities is

successful. Moreover Links from invoked services and a central consensus

activity has been introduced in order to evaluate failures of one or more

remote activities.

10

Model-Based Availability Evaluation of Composed Web Services

On each request

KooN
1....N

Cache hit
Ask to cache

Then Else

pTH SEQ pELSE RES CALC

RES CALCFlow

Flow

Flow

Flow

Voting Cache UPD

A

A

A
B

B

B
C

C

C JCGUARD

GUARDJC

NOT(JC)

La Lb Lc

(a)

(b) (c)

(d)

Fig. 7. Generated Fault Trees of CWSs

ured as mirrors and store the same information. Requests

to services are implemented by a BPEL flow. Two ver-

sions of the CWS are presented: the first requires both the

registrations to be successful in order to have a successful

completion of the Log CWS (Fig. 8). The second is suc-

cessful if at least one of the two registrations is successful,

as a BPEL Fault Handler instructs the failed mirror to au-

tomatically retry the registration according to the other as

receive:ReceiveInput

flow:Flow

invoke:L1 invoke:L2

reply:CallbackClient

Fig. 8. Simple version of Log service.

soon as possible (Fig. 9).

receive:ReceiveInput

flow:Flow

invoke:L1 invoke:L2

reply:CallbackClient

fh:L1 fh:L2

empty:EL1 empty:EL2

empty:Guard

Fig. 9. Fault tolerant version of Log service.

The structure of the two alternative implementations is sim-

ilar to that of the cases seen for the Reg subsystem, so no

further comment will be given here.

Given the compositionality of the approach, the main CWS

availability can be obtained using the results of the analyses

performed on the other CWS. Four cases can be obtained

by combining the two alternative implementations for each

subsystem. The general FT for the CWS can be obtained

by considering that two subsequent invocations of the Log

CWS are completely independent, since they are enclosed

in a BPEL Sequence. According to the related pattern, the

CWS FT is described in Fig. 10. The complete FTs for the

four cases are omitted.

CWS

Log Reg Log

Fig. 10. Fault tolerant version of Log service.

The parameters used in our analysis are summarized in

Table 2. Numerical values are failure rates and are ex-

pressed in h−1.

According to such parameters, Table 3 describes the overall

availability (MTTF) of composed Web service according

to the four different configurations of Reg (on rows) and

Log (on columns) services.

11

Mauro Iacono and Stefano Marrone

Table 2

Processes parameters

Parameter Value

Reg service

askToCache 10−7

hit 0.8
resCalc 10−5

remoteA 5 ·10−4

remoteB 5 ·10−4

remoteC 5 ·10−4

voting 10−9

cacheUpd 10−7

callbackClient 10−8

Log service

Log1 10−7

Log2 10−7

callbackClient 10−8

Table 3

MTTF overall analysis

Log Reg Simple [h] Fault tolerant [h]

Simple 829530 1241500
Fault tolerant 836400 1256900

One can note that, since the Log process is called twice

in the overall process, its influence is stronger so passing

from a simple to a complex implementation of this process

has a great effect on overall availability. On the other hand

the adoption effect of fault tolerant version of Reg pro-

cess does not give a great advance on overall availability.

Such considerations are now not only intuitive and based

on qualitative consideration but, by means of the described

methodology and tool, can be supported by numerical data.

7. Conclusions and Future Works

In this paper a first step in the translation of a BPEL WF

into a formal model in order to evaluate its availability is

proposed. For this purpose a FT model is generated having

as basic events invoked services whose availability can be

measured by black box approaches. The structure of the

FT is given by the BPEL WF by applying FT patterns.

The effectiveness of proposed approach has been shown by

evaluating and comparing, by means of a tool prototype

that supports the translation, the availability of two similar

BPEL examples, one of which introduces fault masking

constructs.

Next steps in this activity will include a further validation

of proposed approach by experiments and/or comparisons

with models obtained by other formal tools (e.g. General-

ized Stochastic Petri Nets). On the other side the authors

will study the possibility to include quantitative informa-

tion, provided at the moment in a separate file, into BPEL,

proposing some extension of the language and providing

supporting methodologies and tools.

References

[1] G. Balbo, “Introduction to stochastic petri nets”, in European Edu-

cational Forum: School on Formal Methods and Performance Anal-

ysis, E. Brinksma, H. Hermanns, and J.-P. Katoen, Eds. LNCS,

vol. 2090 pp. 84–155. Springer, 2000.

[2] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault

Tree Handbook. U.S. Nuclear Regulatory Commission, Washington,

DC, 1981.

[3] A. Alves et al., “Web Services Business Process Execution Lan-

guage Version 2.0 (OASIS Standard)”, 2007 [Online]. Available:

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[4] W. M. P. van der Aalst, “The application of Petri nets to workflow

management”, The J. Circ. Syst. Comp., vol. 8, no. 1, pp. 21–66,

1998.

[5] W. M. P. van der Aalst, “Making work flow: On the application

of Petri nets to Business Process Management”, in Proc. 23rd Int.

Conf. Appl. Theory of Petri Nets, Adelaide, Australia, 2002. LNCS,

vol. 2360, pp. 1–22. Springer, 2002.

[6] J. Dehnert and W. M. P. van der Aalst, “Bridging the gap between

business models and workflow specifications”, Int. J. Cooper. Inform.

Sys., vol. 13, no. 3, pp. 289–332, 2004.

[7] J. Xia and C. K. Chang, “Performance-driven service selection using

stochastic cpn”, in Proc. IEEE John Vincent Atanasoff Int. Sym.

Modern Comput. JVA 2006, Sofia, Bulgaria, 2006, pp. 99–104.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verified reference

implementations of ws-security protocols”, in Proc. 3rd Int. Worksh.

Web Services and Formal Methods WS-FM 2006, Vienna, Austria,

2006, pp. 88–106.

[9] I. Kim and D. Biswas, “Application of model checking to axml

system’s security: A case study”, in Proc. 3rd Int. Worksh. Web

Services and Formal Methods WS-FM 2006, Vienna, Austria, 2006,

pp. 242–256.

[10] Web Services and Formal Methods, Third International Workshop,

WS-FM 2006 Vienna, Austria, 2006, Proceedings, M. Bravetti,

M. Núñez, and G. Zavattaro, Eds., LNCS, vol. 4184. Springer, 2006.

[11] P. Liggesmeyer and M. Rothfelder, “Improving system reliability

with automatic fault tree generation”, in Proc. 28th Ann. Int. Symp.

Fault-Tolerant Comput. FTCS ’98, Munich, Germany, 1998, p. 90.

[12] J. P. Ganesh and J. B. Dugan, “Automatic synthesis of dynamic

fault trees from uml system models”, in Proc. 13th Int. Symp. Softw.

Reliab. Engin. ISSRE 2002, Annapolis, MD, USA, 2002.

[13] A. Bobbio et al., “Comparison of methodologies for the safety and

dependability assessment of an industrial programmable logic con-

troller”, in Proc. Eur. Safety and Reliab. Conf. ESREL 2001, Turin,

Italy, 2001.

[14] F. Flammini, N. Mazzocca, M. Iacono, and S. Marrone, “Using

repairable fault trees for the evaluation of design choices for critical

repairable systems”, in Proc. 9th IEEE Int. Symp. High-Assur. Syst.

Engin. HASE 2005, Heidelberg, Germany, 2005, pp. 163–172.

[15] D. Codetta Raiteri, M. Iacono, G. Franceschinis, and V. Vittorini,

“Repairable fault tree for the automatic evaluation of repair policies”

in Proc. Int. Conf. Dependable Syst. Netw. DSN 2004, Florence, Italy,

2004, pp. 659–668.

[16] L. Wang, “Machine availability monitoring and machining process

planning towards cloud manufacturing”, CIRP J. Manufac. Sci. and

Technol., vol. 6, no. 4, pp. 263–273, 2013.

[17] R. Aoun et al., “Towards an optimized abstracted topology design

in cloud environment”, Future Gener. Comp. Syst., vol. 29, no. 1,

pp. 46–60, 2013.

[18] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient

Web service composition with end-to-end QoS constraints”, ACM

Trans. on the Web, vol. 6, no. 2, 2012.

[19] E. Barbierato, M. Iacono, and S. Marrone, “PerfBPEL: A graph-

based approach for the performance analysis of BPEL SOA appli-

cations”, in Proc. 6th Int. ICST Conf. Perform. Eval. Methodol. and

Tools, Cargese, Corsica, France, 2012, pp. 64–73.

12

Model-Based Availability Evaluation of Composed Web Services

[20] A. Avizienis, J. C. Laprie, and B. Randell, “Fundamental concepts

of dependability”, Res. Rep. no. 1145, LAAS-CNRS, Apr. 2001.

[21] C. L. Heitmeyer, J. Kirby, B. G. Labaw, M. Archer, and R. Bharad-

waj. “Using abstraction and model checking to detect safety viola-

tions in requirements specifications”, IEEE Trans. Softw. Eng., vol.

24, no. 11, pp. 927–948, 1998.

[22] J. D. Reese and N. G. Leveson, “Software engineering”, in

Proc. 19th Int. Conf. Software Engin., Boston, MA, USA, 1997,

pp. 250–260.

[23] I. Wolforth, M. Walker, Y. Papadopoulos, and L. Grunske, “Capture

and reuse of composable failure patterns”, Int. J. Critical Comp.-

Based Syst. IJCCBS, vol. 1, no. 1/2/3, pp. 128–147, 2010.

[24] C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi, “Reliability and

performability modeling using sharpe 2000”, in Proc. 11th Int. Conf.

Comp. Perform. Eval. Model. Tech. Tools TOOLS 2000, Schaum-

burg, IL, USA, 2000, pp. 345–349.

Mauro Iacono is a tenured As-

sistant Professor in Computing

Systems. He published around

50 peer reviewed scientific pa-

pers and has served as chair-

man, committee member and

referee for many conferences,

and as guest editor, editorial

board member and referee for

several journals. His research is

mainly centered on the field of

performance modeling of complex computer-based sys-

tems, with a special attention for multiformalism modeling

techniques, and applications to critical systems and infras-

tructures, Big Data architectures and dependable systems.

E-mail: mauro.iacono@unina2.it

Dipartimento di Scienze Politiche

Seconda Università degli Studi di Napoli

Viale Ellittico, 31

81100 Caserta, Italy

Stefano Marrone is an Assis-

tant Professor in Computer En-

gineering at Seconda Univer-

sità di Napoli, Italy. His inter-

ests include the definition of

model driven processes for the

design and the analysis of trans-

portation control systems, com-

plex communication networks

and critical infrastructures. He

is currently involved in research

projects with both academic and industrial partners.

E-mail: stefano.marrone@unina2.it

Dipartimento di Matematica e Fisica

Seconda Università degli Studi di Napoli

Viale Lincoln, 5

81100 Caserta, Italy

13

