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Abstract—To study cooperation evolution in populations, it is

common to use games to model the individuals interactions.

When these games are nnn-player it might be difficult to assign

defection responsibility to any particular individual. In this

paper the authors present an agent based model where each

agent maintains reputation information of other agents. This

information is used for partner selection before each game.

Any agent collects information from the successive games it

plays and updates a private reputation estimate of its candi-

date partners. This approach is integrated with an approach

of variable sized population where agents are born, interact,

reproduce and die, thus presenting a possibility of extinction.

The results now obtained, for cooperation evolution in a pop-

ulation, show an improvement over previous models where

partner selection did not use any reputation information. Pop-

ulations are able to survive longer by selecting partners taking

merely into account an estimate of others’ reputations.

Keywords—evolution of cooperation, multi-agent systems,

n-player games, partner selection, reputation.

1. Introduction

Modeling of cooperation evolution in populations has fre-

quently used games with cooperative and coordination

dilemmas [1], [2]. However real cases frequently do not

match model predictions and therefore research tried to ex-

plain these results [3]–[9]. A common denominator in the

majority of these works is either infinite population or fi-

nite but constant size population. Taking into account that

these features are unrealistic, a recent line of research [10]

has developed a model where populations may fluctuate,

and therefore, in extreme cases, may extinguish, which in

nature may happen as internal or external influences con-

sequence. In this model the choice of partners is made in

groups and does not take into account individual coopera-

tion assessment.

In n-player games used in cooperation models a player usu-

ally does not have any information about other players.

However it is known that the ability to select partners based

on previous interactions knowledge can explain the preva-

lence of cooperation in many cooperative dilemmas [8]. An

approach in which an agent estimates reputation of others

from previous interactions [11] has revealed to be efficient

towards an extended survival of populations [12].

In this work the authors investigate a combined approach

where a population whose individuals can be born, re-

produce and die, interact through a n-player game where

each agent maintains an estimate other individuals repu-

tation based on its own previous interactions. The model

is general enough to encompass any scenario modeled by

a n-player game.

2. Related Work

The replicator equation or the Moran process [13] are the

most common models to study cooperation. There are a set

of assumptions behind the replicator equation [14]. One

assumes a considerably large or infinite population. An-

other assumes a well mixed-population such that everybody

plays with everybody else. A similar approach is randomly

pairing players. These are unrealistic assumptions and

have led to alternative proposals. Among them are struc-

tured populations where players are placed in the nodes of

some graph and interactions are restricted to links between

nodes [15], [16]. In structured populations, agents have

the possibility of selecting their partners [5]. Other ap-

proaches include finite but constant size population whose

dynamics are modeled by a Moran process. Despite not

allowing varying population size, they have been used to

model scenarios that may cause extinctions such as climate

change [17].

In models that allow variable population size most use

Agent Based Models (ABM) [18], or are artificial ecosys-

tems [19], [20]. ABM address the difficulties of creating

a formal model of a complex system [21]. There are ABMs

that analyze the extinctions possibility but they do that in

specific contexts such as modeling population growth of

endangered species [22], tree mortality [23], impact of log-

ging activities in bird species [24].

McLane et al. provide in [25] a review of ABM used in

the literature of ecology to address the issues of manag-

ing ecosystems. They presented a set of behaviors that

individuals can choose in their life cycle: habitat selection,

foraging, reproduction, and dispersal. In the papers that

they reviewed, some used all the behaviors in the set while

others used just one. Such behaviors could constitute the set

of actions of some generic game played by animals. More-

over we can roughly divide them in two sets, one where

an animal obtains energy (foraging) and a second where an

animal spends energy, e.g., habitat selection, reproduction,

and dispersal.
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Some of these models are characterized by using specific

differential equations or operate at higher level than the in-

dividual. Often they are specific to their case study and

their methods are not directly transferable to another sce-

nario. The Energy Based Evolutionary Algorithm (EnBEA)

model [10] with variable population size came up as a solu-

tion that can be applied to any scenario modeled by a game.

In that model agents are born, they interact with each

other, reproduce and die. When that model is applied to

a set of cooperative and coordination dilemmas, extinction

may occur.

Partner selection is one of the possible explanations for the

prevalence of cooperation [26], [27]. This characteristic

is also combined with the possibility of refusing an inter-

action. The selection mechanism is usually dependent on

the game: in Prisoner’s Dilemma (PD) it depends on the

partner defecting or not [8], in trading networks it depends

on the trading offer [28]. However, there has been little

concern to generalize the mechanism to be applied to any

game, which is a problem that this work tackles.

In presented approach a player obtains a reputation repre-

sentation of other players from results of games he played

with them. Reputation is then used by a focal player to

choose partners whenever needed. If a player chooses part-

ners with higher reputation he should benefit his outcome

in the game. Similar approaches have been followed to

study evolution of cooperation [29], [30], sometimes com-

bined with other features such as punishment [31] that favor

emergence of cooperation.

Previous work [32] has investigated partner choice based

on binary reputation of players, in the PD game. How-

ever, a binary reputation is too coarse and does not allow

a gradation of reputation. This gradation seems to better

correspond to real situations where a binary classification

is seldom realistic.

When players assess their peers, this information may be

shared with others. This is used in artificial markets where

sellers and buyers rate each other [33], [34]. Sabater and

Sierra [35] review some models of computational reputa-

tion management. They present models where reputation

is built from direct interactions or from information given

by others. These, as well as other works on player reputa-

tion [36], [37] require perfect identification of players.

Kreps and Wilson [38] study the effect of imperfect infor-

mation about players payoffs in building a reputation about

opponents strategies. This is applied to firms competing

for a market, in a scenario with a dominant firm and others

that, one at a time, may challenge the dominance. Brandts

and colleagues [39] made a similar study in loan decision

making.

However all these cases use two player games. In [40]

a Public Good Provision (PGP) game of three players is

used with reputation. A focal player gets perfect knowl-

edge of his neighbors actions in a network of contacts and,

for each round, he can choose two partners based on their

reputation. The measure of reputation is the number of co-

operative actions a player has performed. A similar mea-

sure is also used in [41] in a 5-player PGP, also with perfect

reputation information.

In the case we are addressing a player does not obtain direct

information about individual actions of his partners. We

consider that a player only obtains information from his

own payoff. This means that he cannot directly identify

partners that have not cooperated, nor obtain some kind of

signal from them. This is a situation that often occurs in

human interaction. In a group of people sometimes is not

possible to pinpoint who shirked from contributing. We

find that for instance in a n-player snow-drift type game.

Suppose a bus that has to be pushed by several individuals.

No one knows exactly if a specific individual is cooperating.

One can only assess the global outcome in the form of the

progress of the bus.

The work in [12] has seemingly been the first to deal with

imperfect reputation information in n-player games. This

happens for instance in a PGP game when only the player’s

own payoff is known without access to the individual ac-

tions of the players. In such a case, the only situation with

perfect information is when all players cooperate. Other-

wise each player has an uncertainty about the other n− 1
players’ actions. One or more of them may have defected.

That work takes two ways to solve the problem from the

point of view of the focal player. One is to have the player

using imperfect reputation knowledge to choose his suc-

cessive partnerships, and the other is to have him gathering

individual reputation information from the result of a PGP

type game. A private reputation model is used. A player

associates to each potential partner a single value that mea-

sures his utility. This value is updated from direct inter-

actions with partners, considering all partners in a game

as equally responsible for the outcome. The authors clas-

sification system is independent of the game being played,

which contrasts with others [31] that are game specific.

3. Dynamic Population Model

In this section a formal description of EnBEA is given.

It is a population model where agents are born, interact,

reproduce and die. Agent interaction is mediated by some

game. Interaction is essential because agents acquire or

lose energy when playing games and energy is necessary

to reproduce. Agents can die because of old age, starvation

(lack of energy) and overcrowding.

The games are used as an energy transfer process. This

means a redefinition of the payoff function. A game G is

a tuple (N,A,E) where N is a set of n players, A =
{A1, . . . ,An} and each Ai a set of actions for player i,
and E = {e1, . . . ,en} is a set of energy functions, with

ei : A1× . . .×An→ R being the energy obtained by player

i given the actions of the n players.

An agent α is characterized by a strategy s which he uses

to play game G, an energy level e and an age. We thus have

α = (s,e,a). In each iteration t of EnBEA a population of

agents, P = {α1, . . .} is updated through three phases:
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• play – in this phase all agents play the game and up-

date their energy. Partners can be randomly selected

or agents can choose them;

• reproduction – in this phase the agents whose en-

ergy is above some threshold produce one offspring

by cloning and mutation, and their energy is decre-

mented by some value;

• death – in this phase the entire population goes

through death events that depend on population size,

on agent’s age and agent’s energy. Age of surviving

agents is incremented by one.

In the play phase, the game is used as energy transfer.

Regarding the relation between the payoff function and the

energy function, the authors have extended the approach

followed in [42] and considered the case where the obtained

energy is scaled and translated to the interval [−1,1]:

e← e+
π

max(π , |π|)
, (1)

where π represents the payoff obtained by an agent, and

π and π are the highest and lowest payoffs obtainable in

game G.

Scaling allows to compare the evolutionary dynamics of

games with different payoff functions, e.g. comparing the

number of offspring per iteration or the number of iterations

until an extinction occurred. We could remove scaling, if

we made energy range equal to payoff range.

With Eq. (1) the possibility of an agent dying through star-

vation is introduced when the energy drops below zero,

thus augmenting the risk of extinction. Instead of zero, we

could have used another energy threshold in the decision

to remove agents, which would only amount to one more

parameter in the model. This case is more realistic as the

payoff value reflects gains and costs of an agent. Consider

for instance, the costs of providing in the PGP game or of

being exploited in the PD game.

When an agent’s energy reaches the reproduction thresh-

old eg, it is decremented by this value, and a new offspring

is inserted in the population. Moreover, we have to deal

with the possibility of an agent’s energy dropping below

zero. Similarly to [8] an agent is removed when its energy

drops below zero. The energy of newborns could be zero,

but this puts pressure on the first played games to obtain

positive energy, otherwise infancy mortality may be high.

Instead we opt for providing each newborn with eB units

of energy. Therefore, the dynamics of an agent’s energy

depends on two parameters, namely eR and eB.

In order to avoid exponential growth, in each iteration of

the algorithm all agents go through death events. The two

events are considered: one depends on population size and

a second that depends on agent’s age. The probability of

an agent dying due to overcrowding is:

P(death population size) =
1

1+ e6 K−|P|
K

, (2)

where |P | is the current population size and K is a param-

eter called carrying capacity. This probability is a sigmoid

function. The exponent was chosen because the logistic

curve outside the interval [−6,6] is approximately either

zero or one. In the event of the entire population doubling

size, it will not go from a zero probability of dying to cer-

tain extinction. This assumes that each agent has at most

one offspring per simulation iteration.

The probability of an agent dying because of old age is:

P(death agent’s age) =
1

1+ e
L−a
V

, (3)

where L is agents’ life expectancy and V controls the vari-

ance in the age at which agents die through old age.

4. Reputation Model

The reputation model is based on partner selection starting

from a random partner selection model that served as base.

First the main features of the random model are described

and then the reputation mechanism is presented.

4.1. Random Partner Selection

Whenever a focal player needs to play a game, he selects

one of the combinations of partners stored in vector c. Each

combination has a probability of being selected. This prob-

ability is stored in vector p. The length of these vectors is

represented by pool size parameter l. In this model, when

a focal player selects his game partners, they cannot refuse

playing.

After a player has played the game with partner combi-

nation ck, he compares the utility obtained u with utility

threshold uT . If the utility is higher or equal than the

threshold, no changes occur. If the utility is lower than

the threshold, the corresponding probability is decreased

by factor δ , and the combination is replaced. The follow-

ing equation represents the probability update policy for the

used combination k:

pt+1
k =

{

δ pt
k if u < uT

pt
k if u≥ uT

. (4)

The probabilities of other combinations are updated as fol-

lows (to maintain unit sum):

pt+1
i =







pt
i +

(1−δ )pt
k

l−1
if u < uT

pt
i if u≥ uT

. (5)

The used combination is replaced by a new one if the utility

is lower than uT :

ct+1
k =

{

rnd(C ) if u < uT

ct
k if u≥ uT

. (6)

If a new combination is to be added, it is previously checked

against the ones in the combination vector. If it is identi-

cal to any of those, a new one is drawn until it is unique.
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The overall behavior of this model is that good combina-

tions remain in the probability vector because they are not

replaced and absorb the probabilities of bad combinations.

4.2. Partner Selection with Reputation

In the new model, reputation is used only when a new

combination must be drawn in order to replace a combina-

tion deemed unacceptable. To represent reputation, a focal

player assigns a weight to each possible partner. These

weights are stored in vector w. When a new combination

is drawn, the probability of partner i being selected is pro-

portional to his weight:

P(X = i) =
wi

∑ j w j
. (7)

Therefore a weight represents the desire to choose the cor-

responding player as a partner. It can be considered as

his reputation. Higher values mean a partner has a higher

reputation and thus should be chosen more often.

We consider that the n-player game does not allow the focal

player to identify the partner that has done a particular

action. In light of Eq. (7), the model assumes that a player

can correctly identify the partners in a combination.

Weights are updated after knowing the result of playing

a game with selected combination ck according to:

wt+1
j = wt

j(1− pt
k)+(u−u)pt

k , (8)

where j ∈ ck and u is the lowest utility obtainable by the

player.

The initial value of the weight vector may depend on the

game. An optimistic approach is to define every initial

weight to be the utility obtained by a player using a strat-

egy belonging to a Pareto Optimum profile. This is tan-

tamount to consider that all players are cooperative until

shown otherwise.

Weight domain is the domain of the utility, but translated

by u in order to always have positive weights even when the

game has negative values. The dynamics of Eq. (8) could

be interpreted as assigning to any partner the utility the

focal player obtained while playing with him, discounted

by probability pk associated to the combination ck where

the partner is.

Algorithm 1 shows the details the partner selection based on

reputation. The parameters of the algorithm are the strat-

egy s used by the player, his set of candidate partners N ,

the game he is going to play, G , and the parameters of

the partner selection model: pool size l, probability update

factor δ , utility threshold uT , and d that is a boolean in-

dicating whether combinations in the vector are all distinct

or repetitions are allowed.

Figure 1 lists the parameters of the model and sketches the

player architecture.

5. Experimental Analysis

In this section a simulation experiments are described that

were conducted to show the capability to support cooper-

Algorithm 1 . Partner selection with reputation model al-

gorithm

Require: s, N , G , l, δ , uT , d
w0← f (G )
p1←{p1

i : p1
i = 1/l∧1≤ i≤ l}

c1←{c1
i : c1

i = rnd(C )∧1≤ i≤ l}
w1←{w1

α : w1
α = w0∧α ∈N }

for t = 1 to NI do

select combination of partners from ct using pt

play game G and obtain u
compute pt+1 using Eqs. (4) and (5) with δ , uT and u
compute ct+1 using Eq. (6) with wt , uT , u and d
compute wt+1 using Eq. (8)

end for

Environment

n - player game

Set of candidate partners

Player

Strategy for game
Pool size
Probability update factor
Utility threshold
Distinct combinations flag

s

s

l

uT

uT

d

d

Probability vector
Combination vector
Weight vector

p

p

c

c

w

w
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(b)
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...i1 i2 in-1 cl

pl0.1
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Player Partners

Fig. 1. Player description: (a) the parameters that effect the

player, (b) the player architecture.

ation of the composed model of dynamic populations and

reputation based partner selection. The authors selected

Public Good Provision (PGP) game, a n-player game to test

the model. In this game each iteration involves n players

and it does only provide an overall payoff, without identifi-

cation of whether each player cooperated or defected. This

poses the most demanding scenario for an individual repu-

tation maintenance mechanism and that is the reason why

such a game was chosen. Besides a description of PGP,

this section also identifies the parameter values used for

the dynamic population model and the parameter values of

the partner selection model using individual reputation.

5.1. Public Good Provision

The authors have performed simulations using the PGP

game [43], [44]. This game is commonly studied to anal-
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yze cooperative dilemmas. It is considered a generaliza-

tion of PD to n players. In the PGP game, a player that

contributes to the good, incurs a cost c. The good is worth

g for each player. The good value was fixed to g = 1 and

varied the other game parameters n and c. To handle PGP

we need to add a single gene, the probability to provide

pp to the agent’s chromosome. The mutation operator adds

to pp a random value from a Gaussian distribution with

mean zero and standard deviation 0.1. The resulting value

is truncated to remain in interval [0,1].
In this game, we have varied the number of players in the

game, and the provision cost. Table 1 summarizes the pa-

rameters tested in the simulations.

Table 1

Game specific parameters used in the experiments

Parameters used in PGP

n Number players {3,4,5, . . . ,8}
c Provision cost {0.1, 0.2, . . . , 0.9}
pc Provision probability 1
|P0| Size of initial population 10

5.2. Partner Selection Parameters

The two scenarios have been considered: one with Normal

Partner Selection (NPS) – and a second with Reputation

based Partner Selection (RPS). The partner selection model

adds to the agent’s chromosome three more genes. One for

the vector size, l, one for payoff threshold πT and a third

for the probability update factor, δ . Whenever the mutation

operator is applied to any of these genes, the first gene is

perturbed by a discrete Gaussian distribution with mean

zero and standard deviation one, while the second and third

genes are perturbed by a Gaussian distribution with mean

zero and deviation 0.1. In any case, the resulting value is

truncated to a valid value. In these simulations, the values

of these genes in the initial population were the following:

l = 4, δ = 0.5 and πT = 0.5.

5.3. EnBEA Parameters

In the experiments that were performed a panmictic popu-

lation was used. Although unrealistic, given that we used

a carrying capacity, K, of 100, it is reasonable to as-

sume that all agents can potentially interact with each other.

When agents are capable of choosing with whom they will

play, networks of agents can be formed. The initial popu-

lation size was 10.

In this work we are interested in analysing different versions

of the games we have used and to measure the occurrence

of extinctions. With reproduction energy, eR , set to 50, an

agent that obtains per game the highest payoff, reproduces

in less than 50 iterations. Since life expectancy, L, is set

to 150, such agent can produce on average three offspring

during its lifetime. Offspring were subject to a single-gene

mutation with 10% probability. This is an evolutionary

model with clonal reproduction subject to mutation.

Table 2

Common parameters used in all scenarios

K Carrying capacity 100
eR Reproduction energy 50

Energy birth 10
L Old age 150

Mutation probability 10%
Number of iterations 10000

Number or runs 30

The number of iterations was set to 100000, three orders of

magnitude higher than an agent’s average lifetime, in order

to have a duration enough to observe an extinction or not.

In order to obtain statistical results, we performed thirty

runs for each parameter combination. Table 2 shows the

values of these parameters.

6. Results

For each simulation run we recorded the number of iter-

ations it lasted1. This measure is sufficient to assess the

impact of weighted partner selection on players survivabil-

ity. The authors assume that if a simulation reaches the

maximum number of iterations (10000) players have suc-

cessfully gained a foothold in the population.
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Fig. 2. Average number of iterations in: (a) RPS and (b) NPS

scenarios. The lighter is the point, the longer is the corresponding

set of simulations.

Figure 2 shows the average number of iterations in both

scenarios. Although the fact that parameter values of the

partner selection model were set to proper values there are

still extinctions compared to previous work [10]. They are

more frequent when the game has a higher number of play-

ers and higher provision cost. A higher number of players

1The simulation was implemented in Mercury, a declarative language,

and is available at https://github.com/plsm/EBEA/releases/tag/v2.0.
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means a single defector does not impair the payoff of all the

other cooperators. It also means that he was more chances

of being selected when a new combination is drawn. A high

provision cost is beneficial for defectors as there is a higher

payoff difference between defectors and cooperators. We

also observed simulations where no extinction occurred,

namely with low provision cost.

To better analyze the impact of partner selection with rep-

utation, Fig. 3 shows the average number of iterations ra-

tio between RPS and Normal Partner Selection (NPS) sce-

narios for all parameter combinations of the tested games.

In thirteen parameter combinations (triangles pointing up-

ward) the ratio is higher than one, meaning RPS simulations

last longer than NPS simulations, while in seven conditions

(triangles pointing downward) the ratio is lower than one,

meaning NPS simulations last longer.
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Fig. 3. Average number of iterations ratio between RPS and NPS

scenarios: the lighter the point, the longer is the corresponding

set of RPS simulations.

The authors have applied a Kolmogorow-Smirnov statisti-

cal test between two sets of number of iterations, one for

each scenario. The results show that only in one param-

eter combination (n = 6∧ c = 0.7) the two sets are from

different distributions. In this parameter combination rep-

utation increased the number of iterations. Although there

are more parameter combinations with a ratio higher than

one, the impact of reputation is not statistical significant

(p-value less than 0.1).

Compared to previous work [10], the results reported in

this paper are better because agents do not need to evolve

the capability to select partners.

7. Conclusions

It is known that simulations with partner selection last

longer than simulations with random partners. The im-

provement is noticeable in PGP although population dy-

namics are sensitive to initial conditions. If agents in the

initial population cannot gain any energy because they are

pure exploiters, the population is condemned from the start.

However, previous models chose partner groups and not in-

dividual partners [10] to create a team of n-players. Also,

in that work, the parameter values of the partner selection

model of agents in the initial population was set to random

selection. Therefore, agents had to evolve the capability of

selecting partners. This requires a combination of muta-

tions in the genes that encode partner selection. However,

mutation may introduce a defector that exploits existing co-

operators thus leading the population to extinction. Here

we used as control a model where the initial population

starts with the right combination of partner selection pa-

rameter values. This means that these results are better

than in [10] and this constitutes a more demanding chal-

lenge to the new model that uses partner selection based

on individual reputation.

In n-player cooperation it is not always possible to identify

individual behaviors. This causes an indetermination in

case some player fails to cooperate. However even in such

a stringent situation it may possible for a focal player to

gather information about other players’ strategies, by grad-

ually forming their reputations. To model this problem

a PGP type game is considered: when all players coop-

erate the payoff is one, otherwise it is zero. Reputation

for each game partner is obtained from the payoff obtained

in successive games where he participates. This results in

a pessimistic approach with all players from a group of

n−1 being penalized in case at least one of them defects.

When the focal player needs to choose a new partner com-

bination, the probability of choosing a player as partner is

proportional to his reputation.

The reputation model is therefore characterized by a weight

update policy that does not add any new parameter to the

previous partner selection model. It only depends on the

payoff obtained by the player, the partner weight, and the

probability of selecting the combination where the partner

is. This greatly reduces the complexity of the model. The

results showed that the reputation model improved the pay-

off obtained by the focal player. Even when there are not

enough acceptable players, the reputation model favored the

best n− 1 partners. As for the parameters of the partner

selection algorithm, the best results were observed when

the probability update factor was higher and when repeti-

tions were allowed in the combination vector. When all

combinations had to be distinct, there could be some bad

partner combinations in a larger combination vector.

Results show that this reputation information, for slight it

might be, enables higher payoffs for the focal player. Payoff

differences between experiments using the reputation model

and control experiments decrease with increasing number

of partners n. This is consistent with an increased diffi-

culty in assigning responsibility of defection to individual

partners. In spite of the more stringent control experiment

(with pre-evolved initial parameter values) the reputation

model produced slightly better results in terms of number

of iterations. Notice that the initial parameter values were

chosen based on results of the choice of groups of part-

ners. The reputation model may prove to have even better

results with other set of initial values. This is an aspect to

investigate further.
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In future work, we will also investigate what type of net-

work connections arise with partner selection, how sta-

ble a population is, and additional features that delay or

avoid extinctions. There are many societal problems such

as resource management [45] that can be better analyzed

with EnBEA. This can be implemented if a fourth step in

EnBEA that given agents’ actions is introduced, current

game parameters and common parameters such as car-

rying capacity, returns the set of parameters to be used

in the following iteration of EnBEA. One can investigate

how agents could be organized, what norms they should

follow, which institutions should exist in order to avoid

a collapse in the resource base. High game payoffs or carry-

ing capacity values can be interpreted as a stable resource.

Lower values can be interpreted as a polluted or depleted

resource.

In terms of the reputation model, future work will focus

on experimenting different reputation assignments and on

other partner selection procedures. The number n of players

in a game should influence the modifications to the current

reputation. With higher n the modification of an individual

reputation should be lower than with smaller n given that

the uncertainty about individual responsibility in a negative

result is higher. Partner selection taking into account rep-

utation values can me made more or less greedy and this

may have significant influence in the results.
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