
Paper Data and Task Scheduling

in Distributed Computing Environments
Magdalena Szmajduch

Department of Computer Science, Cracow University of Technology, Cracow, Poland

Abstract—Data-aware scheduling in today’s large-scale het-

erogeneous environments has become a major research and

engineering issue. Data Grids (DGs), Data Clouds (DCs)

and Data Centers are designed for supporting the process-

ing and analysis of massive data, which can be generated

by distributed users, devices and computing centers. Data

scheduling must be considered jointly with the application

scheduling process. It generates a wide family of global opti-

mization problems with the new scheduling criteria including

data transmission time, data access and processing times, re-

liability of the data servers, security in the data processing

and data access processes. In this paper, a new version of

the Expected Time to Compute Matrix (ETC Matrix) model

is defined for independent batch scheduling in physical net-

work in DG and DC environments. In this model, the com-

pletion times of the computing nodes are estimated based on

the standard ETC Matrix and data transmission times. The

proposed model has been empirically evaluated on the static

grid scheduling benchmark by using the simple genetic-based

schedulers. A simple comparison of the achieved results for

two basic scheduling metrics, namely makespan and average

flowtime, with the results generated in the case of ignoring the

data scheduling phase show the significant impact of the data

processing model on the schedule execution times.

Keywords—data cloud, data grid, data processing, data schedul-

ing, ETC Matrix.

1. Introduction

In the recent decade, we witness an explosive growth in

the volume, velocity, and variety of the data available on

the Internet. Pethabythes of data were created on a daily

basis. The data is generated by the highly distributed users

and various types sources like the mobile devices, sensors,

individual archives, social networks, Internet of Things de-

vices, enterprise, cameras, software logs, etc. Such data

explosions has led to one of the most challenging research

issues of the current Information and Communication Tech-

nology (ICT) era: how to effectively and optimally manage

and schedule such large data for unlocking information?

Scheduling problems in the distributed computing envi-

ronments are mainly defined based on the task processing

CPU-related criteria, namely makespan, flowtime, resource

utilization, energy consumption and many others [1]. In

such cases, all data-related criteria, like the data transmis-

sion time, data access rights, data availability (replication)

and security in data access issues are mostly ignored. Usu-

ally it is assumed, that transmission is very fast, data ac-

cess rights are granted, due to the single domain of LANs

and clusters (even if the whole infrastructure is highly dis-

tributed), so there is no need for special data access man-

agement. Obviously, the situation is very different in cur-

rent large scale setting, where data sources needed for task

completion can be located at different sites under different

administrative domains.

Data-aware scheduling has been explored already in many

research in cluster, grid and recently cloud comput-

ing [2], [3]. Most of the current efforts are focused on

the data processing optimization, storage (loads of the data

servers) in the data centers or scheduling of data trans-

mission and data location [4] for efficient resource/storage

utilization or energy-effective scheduling in large-scale data

centers [5], [6]. A recent example is that of GridBatch [7]

for large scale data-intensive problems on cloud infrastruc-

tures. However, the large amount of data to be efficiently

processed remains a real research challenge, especially in

the recent Big Data era. One of the key issues contributing

to the massive processing efficiency is the scheduling with

data transmission requirements.

In this paper, a new data-aware Expected Time to Compute

Matrix (ETC Matrix) scheduling model is defined for com-

putational grids and physical layers of the cloud systems,

which takes into account new criteria such as data trans-

mission and decoupling of data from processing [8]–[10].

The main aim of this work is to integrate the above cri-

teria into a multi-objective optimization model in a sim-

ilar way that it has been provided for computational grid

scheduling with ETC Matrix [11]. However, the grid sched-

ulers in presented model must take into account the features

of both Computational Grid (CG) and Data Grid (DG) in

order to achieve desired performance of grid-enabled ap-

plications [12], [13]. Therefore, in this paper a general

data-aware independent batch task scheduling problem is

considered.

The remainder of the paper is structured as follows.

The data-aware ECT Matix model for independent batch

scheduling and main scheduling criteria are defined in

Section 2. The empirical results are analyzed in Section 3.

The paper is summarized in Section 4.

2. Data-aware Expected Time to

Compute (ETC) Matrix Model

Let’s consider a simple batch scheduling problem in com-

putational physical infrastructure (big distributed cluster,

grid or physical layer of the cloud system), where the tasks

71

Magdalena Szmajduch

U1

U2

Un

CC

Cloud cluster

Cloud cluster

CC

CC

Cluster cloud manager
Cloud local scheduler

CH CH

CH

CH

DH

DH DH

DH
DH

DHDH

DH

DH DH

Data center

Data host Computational host

Fig. 1. Data-aware meta-task grid scheduling problem.

are processed independently and require multiple data sets

from different heterogeneous data hosts. These data sets

may be replicated at various locations and can be trans-

ferred to the computational grid through the networks of

various capabilities. A possible variant of this scenario is

presented in Fig. 1.

The components of the whole system, task and data struc-

tures in such scenario can be defined as follows:

– a batch of tasks N = {t1, . . . ,tn} is defined as a meta-

task structure,

– a set of computing grid nodes M = {m1, . . . ,mm}
available for a given batch;

– a set of data-files F = { f1, . . . , fr} needed for the

batch execution,

– a set of data-hosts D = {dh1, . . . ,dhs} dedicated for

the data storage purposes, having the necessary data

services capabilities.

The computational load of the meta-task is defined as

a tasks workload vector WLbatch = [wl1, . . . ,wln], where wl j

is the estimated computational load of task t j (expressed in

millions of instructions (MI). Each task t j requires for its ex-

ecution the following set of data files Fj = { f(1, j), . . . , f(r, j)}
(Fj ⊆ Fbatch), which is replicated and allocated at the fol-

lowing data servers DH j.
1

The computing capacity of computational servers available

for a given batch is defined by a computing capacity vector

CCbatch = [cc1, . . . ,ccm], where cci denotes the computing

1DH j is a subset of DH. Each file f(p, j) ∈Fj (p∈{1, . . . ,r}) is replicated

on the servers from DH j . It is assumed that each data host can serve

multiple data files at a time and data replication is a priori defined as

a separate replication process.

capacity of the server i expressed in million instructions

per second (MIPS). The estimation of the prior load of

each machine from Mbatch can be represented by a ready

times vector ready times(batch) = [ready1, . . . ,readym].
An Expected Time to Compute (ETC) matrix model [11]

is used for estimation of the completion times of tasks as-

signed to a given computational server. Usually, the ele-

ments of the ETC matrix can be computed as the ratio of

the coordinates of WL and CC vectors, namely:

ETC[i][j] =
wl j

cci

. (1)

The values of ETC[j][i] for each pair machine mi and task

t j in Eq. (1) depend mainly on the processing speeds of the

machines, but need also express the heterogeneity of tasks

and resources in the system. Therefore, in this approach the

Gaussian distribution for generating the coordinates of both

W L and CC vectors is used. Additionally, in data-aware

scheduling, there is a need to estimate the data transfer time.

For each data file fc j ∈ F (c ∈ {1, . . . ,r}) necessary for the

execution of the task t j, the time required to transfer this

file from the data host dhd ∈ D to the server mi is denoted

T Ti j[c][d] and can be calculated in the following way:

TTi j[c][d] = RES[c][d]+
Size [fc j]

B [dhd , i]
, (2)

where RES[c][d] is a response time of the data server dhd

and is defined as a difference between the request time to

dhd and the time when the first byte of the data file fc is

received at the computational server mi for computing the

task t j (note, that the values of i and j are fixed here).

The Size [fc, j] denotes the size (in Mbits) of the data file

fc needed for execution of the task t j, and by B [dhd, i] the

72

Data and Task Scheduling in Distributed Computing Environments

bandwidth of logical link (in Mbits/time unit) between dhd

and mi.

RES[c][d] are the elements of the Data Response Times

Matrix RESs×r. In presented approach, the Gamma distri-

bution [14] for generating those data response times is used.

This method is widely used for estimation of the data trans-

fer times [15]. It is similar to the Coefficient-of-Variation

(CVB) [16] method used for generating the stochastic ma-

trices with highly distributed two-dimensional random vari-

ables. It may be used also for generation ETC matrices [1].

The key parameters for this method are defined as follows:

– the cumulative estimated response times of all data

servers while transferring an “average” data file,

resave,

– the variance in the response times of data server,

svardh,

– the variance in the heterogeneity of data files, rvar f .

The parameters resave and svardh are used for estimating

the response times RES[ĉ][d] of the data servers for the

file fĉ with the “average” data server speed in the systems.

The times RES[ĉ][d] are generated by using the gamma

distribution with the shape and scale parameters denoted

by αs and βs respectively. That is:

RES[ĉ][d] = Gamma(αs,βs), (3)

where:

αs =
1

svar2
dh

, (4)

βs =
resave

αs

. (5)

The generated vector of RES[ĉ][d] parameters (dhd ∈ D)

defines one row (indexed by ĉ) of the RES matrix. Each

element of this row is then used for generating one column

of the RES matrix, that is:

RES[c][d] = Gamma(αr,βr), (6)

where:

αr =
1

rvar2
f

, (7)

βr =
RES[ĉ][d]

αr

. (8)

and fc ∈ F , c 6= ĉ.

The resources completion times are the main scheduling

parameters in the ETC matrix model. It is denoted by

completion[j][i] estimated completion time for the task t j

on machine mi. It is defined as the wall-clock time taken

for the task from its submission till completion. In data-

aware scheduling, it depends on computing and transmis-

sion times specified in Eqs. (1) and (2). The impact of the

data transfer time on the task completion time depends on

Tf()k,j

Tf()k,j

Tf(2),j Tf(2),j

Tf(1),j Tf(1),j

Tf(3),j

ETC[i][j]

ETC[i][j]

(a) (b)

Time Time

Fig. 2. Two variants of task completion times estimation assigned

to the machine mi with k data files needed for the task execution.

the mode, in which the data files are processed by the task.

Figure 2 presents two such scenarios (see also [17]).

In the “a” scenario, data files needed for the execution of

task t j are transferred to the computational server before

the calculation of all tasks assigned to this server, includ-

ing task t j. The number of simultaneous data transfers

determines the bandwidth available for each transfer. The

completion time of the task t j on machine mi in this case

is defined as follows:

completiona[i][j] = max
fc j∈F ;dhd∈D

TTi j[[c][d]+ ETC[i][j] . (9)

In the “b” scenario, some of the data files are transferred

as in scenario “a”, but the major data needed for the execu-

tion of each task assigned to the server mi (also task t j) is

transferred during the execution of the tasks. In this case,

the transfer times of the streamed data files are masked by

the computation times of the tasks. The completion time

of the task t j on machine mi in this scenario is defined in

the following way:

completionb[i][j] = max
fc j∈F̂j

TTi j[c][d]

+ ∑
fl j∈[F\F̂j]

(T Ti j[l][d]+ ETC[i][j]) (10)

where F̂j denotes a set of data files which are transferred

prior the execution of the task t j and in fact all tasks as-

signed to this server.

In this paper the data hosts as the data storage centers are

considered, which are separated from the computing re-

sources.

2.1. Scheduling Criteria

A general data-aware batch scheduling process is realized

in the following steps:

• get the information on available resources,

• get the information on pending tasks,

• get the information on data hosts where data files for

tasks completion are required,

73

Magdalena Szmajduch

• prepare a batch of tasks and compute a schedule for

that batch on available machines and data hosts,

• allocate tasks,

• monitor (failed tasks are re-scheduled).

These steps can be graphically represented as in Fig. 3.

Grid
app.

Grid
scheduler

Scheduling of the
tasks’ batch

Failed tasks
(rescheduling)

Task launching
and

monitoring

Grid information
service

Data
servers

Tasks
batch

Dataservers
pool

Machines

Internet

Fig. 3. Phases of the data-aware batch scheduler.

The main objectives in data-aware scheduling are similar

to the objectives formulated for conventional scheduling

in distributed computational systems without data files [1]

and include minimization of completion time, makespan

and average flowtime, namely:

• Minimizing completion time of the task batch defined

in the following way:

completionbatch = ∑
t j∈Nbatch;mi∈Mbatch

completion[i][j] , (11)

where completion[i][j] is defined as in Eq. 9 or Eq. 10

depending on considered data transfer scenario;

• Minimizing makespan Cmax:

Cmax = max
mi∈Mbatch

completion[i] , (12)

where completion[i] is computed as the sum of com-

pletion times of tasks assigned to machine mi calcu-

lated by using Eq. 9 or Eq. 10;

• Minimizing average flowtime F̃ . A flowtime for a ma-

chine mi can be calculated as a workflow of the tasks

sequence on a given machine mi, that is to say:

F [i] = completion[i] . (13)

The cumulative flowtime in the whole system is de-

fined as the sum of F[i] parameters, that is:

F = ∑
i∈M

F [i] . (14)

Finally, the scheduling objective is to minimize the

average flowtime F̃ for one machine defined as fol-

lows:

F̃ =
F

m
. (15)

In the above equations the ETC matrix model is used

which is very useful for the formal definition of all

main scheduling criteria. The completion[i] parameters are

the coordinates of the completion vector completion =
[completion[1], . . . ,completion[m]]T . The extended list of

the scheduling criteria defined in terms of completion times

and by using the ETC matrix model can be found in [1].

3. Experiments

The main aim of the experiments is to illustrate the impact

of the data transfer times on the completion times of the

physical resources in the system. The values of makespan

and average flowtime calculated by using Eqs. 12 and 15

are compared with the case of conventional scheduling,

where data transfer times are ignored. In such a case it

is assumed that all necessary data is stored at computa-

tional nodes and ready for use, which is unrealistic. For

the analysis both data transfer scenarios specified in Sec-

tion 2, namely scenario “a” and scenario “b” are considered.

Therefore, the completion times in Eq. 12 are estimated by

using Eq. 9 in the first scenario, and Eq. 10 in the second

scenario.

The experiments were provided with simple genetic-based

scheduler defined in Subsection 3.2, which has been used

already as grid batch scheduler by many researchers in the

domain (see [18], [19] and [20]). There are many other

genetic grid and cloud schedulers that are more effective

in the optimization of the makespan and flowtime crite-

ria [1]. However, such effectiveness is not the main aim of

this analysis. All those schedulers are also quite complex

methods from the implementation and scaling perspectives.

Therefore, a simple scheduler was used to show, how much

the data transfer may delay the execution of schedules.

3.1. Data Grid Simulator

For the experiments the Sim-G-Batch simulator defined

in [1] is used. The basic set of the input data for the

simulator includes:

– the workload vector of tasks,

– the computing capacity vector of machines,

– the vector of prior loads of machines, and

– the ETC matrix of estimated execution times of tasks

on machines.

The Sim-G-Batch simulator is highly parametrized to re-

flect the various realistic scheduling scenarios. In this

74

Data and Task Scheduling in Distributed Computing Environments

paper, the author limited the experiments to the static

batch scheduling benchmarks. Fig. 4 presents the selected

modules of Sim-G-Batch, which are active in performed

experiments.

Simulator

Scheduler

Static ETC
generator

Scheduling
event

Scheduling
problem instance

Resource
allocation

Selected
schedulers

Task-resource
mapping

Fig. 4. Selected components of Sim-G-Batch simulator for the

experiments on static benchmarks.

The benchmark for small static grid was generated by the

Static ETC Generator module of the simulator. The in-

stances in this benchmark are classified into 12 types of

ETC matrix, according to task heterogeneity, machine het-

erogeneity and consistency of computing. These instances

are labeled by the following parameters [1]:

Gauss xx yyzz.0 (16)

where:

– Gauss is the Gaussian distributions used in generat-

ing the WL and CC vectors,

– xx denotes the type of consistency of ETC matrix

(ĉ – consistent, ˜̂i – inconsistent, and ŝ – semi-con-

sistent),

– yy indicates the heterogeneity of tasks (hi – high het-

erogeneity, and lo – low heterogeneity),

– zz expresses the heterogeneity of the resources (hi –

high, and lo – low).

The ETC matrix is consistent if for each pair of the re-

sources mi and mî the following condition is satisfied: if

the completion time of some task t j is shorter at resource

mi than at resource mî, then all tasks can be executed (and

finalized) faster at mi than at mî. The inconsistency of the

matrix ETC means that there no consistency relation among

resources. Semi-consistent ETC matrices are inconsistent

matrices having a consistent sub-matrix.

The following probability distributions have been used

in the experiments: N(1000;175) for resources and

N(250000000;43750000) for tasks, where N(α,σ) denotes

the Gaussian distribution with mean α and standard devi-

ation σ . The computing cluster network is composed of

64 nodes (machines) and there are 1024 tasks submitted

for scheduling. In addition, 32 data servers and 2048 data

files for a given batch is assumed. The data hosts response

times are generated by using the Gamma distribution ac-

cording to the description in Section 2 with the following

parameters resave = 10, and 0.1 ≤ svardh , rvar f ≤ 0.35.

The sizes of data files and the bandwidth are generated by

the uniform distributions defined for the following intervals

[2;1600] and [10;100] respectively.

3.2. Genetic-based Scheduler

Genetic-based meta-heuristics have shown great potential

to solve multi-criteria grid or cloud scheduling problems

by trading-off various preferences and goals of the system

users and managers [21], [22]. Simple single-population

genetic schedulers can be promoted as the effective meth-

ods for solving small-scale static scheduling problems. In

the experiments a simple (µ + λ)-like evolutionary sched-

uler is used similar to those used for solving classical com-

binatorial optimization problems [23]. The general schema

of this scheduler is presented in Fig. 5.

In the implementation of the scheduler two schedules’

representations are used, namely direct representation

and permutation-based encoding. In the direct represen-

tation, each schedule is defined as the schedule vector

x = [x1, . . . ,xn]
T , where xi ∈ {1, . . . ,m} are the labels of

the computational resources, to which the particular tasks

labeled by 1, . . . ,n are assigned. In permutation-based rep-

resentation, for each resource a sequence of tasks assigned

to that resource is defined. The tasks in the sequence are

increasingly sorted with respect to their completion times.

In this representation, some additional information about

the numbers of tasks assigned to each machine is required.

In this work the direct representation for the encoding of

the individuals in the base populations denoted by Pt and

Pt+1 in Fig. 5 is used. The permutation-based representa-

tion is necessary for the implementation of the specialized

genetic operators. Based on the results of tuning process

provided in [18], [20] and [21], the optimal configuration

of genetic operators for considered scheduler is defined as

follows:

– selection – Linear Ranking,

– crossover – Cycle Crossover,

– mutation – Rebalancing,

– replacement – Steady State.

All those genetic operators are commonly used in solving

the large-scale combinatorial problems [23]. The main idea

of the Cycle Crossover (CX) is identification of the cycle

of alleles (positions). The existing cycles (of tasks) are

kept unchanged. The remaining fragments in the parental

strings are exchanged, and the resulting permutation strings

are repaired if some task labels are duplicated. In rebal-

ancing mutation, first the most overloaded machine mi is

selected. Then two tasks t j and t ĵ are identified as follows:

t ĵ is assigned to another machine mî ,t j is assigned to mi

and ETC[î][ĵ]≤ ETC[i][j]. Then the assignments for tasks

t j and t ĵ are interchanged. In Steady State replacement

75

Magdalena Szmajduch

Generate initial population

of size : = 0p t0 m

Evaluate p0

Not
termination-condition

Return best found
individual as solution

Select parental pool of size ;T
t

l

:= Select ();T P
t t

Crossover proc. on pair of individuals

in with prob. : = ();T P ; P Cross T
t t t

c c

Mutation proc. on individuals

in with prob. ; : = ();P P P Mutate Pc m
t t t

m c

Evaluate ;Pm

t

Create z new pop of size fromp
t+1

and ; : = Replace (;);p p p p Pt t t+1 t t
m m

t = t + 1;

Fig. 5. General template of the GA-scheduler implementation.

method, the set of the highest quality offsprings replaces

the similar set (of the same cardinality) of the solutions of

the worst quality in the old base population.

Table 1

Key parameters of the GA-scheduler

(n – the number of tasks in the batch)

Parameter Value

µ 4 · (log2 n−1)

λ µ/3

mut prob 0.15

cross prob 0.9

nb of epochs 20 ·n

max time to spend 25 s

The values of the control parameters for the genetic sched-

uler are presented in Table 1. The number of individuals in

base populations shown as Pt and Pt+1 in Fig. 5 is denoted

by µ , λ is the number of individuals in offspring popula-

tions T t , Pt
c and Pt

m. The parameters cross prob, mut prob

are used for the notation of of the crossover and muta-

tion probabilities. The nb o f epochs denotes the maximal

number of main loop executions of the algorithm. Each

loop execution is interpreted as genetic epoch. The maxi-

mal number of such epochs is defined as the main global

stopping criterion for the scheduler. However, if the execu-

tion of those epochs will take much time, the algorithm is

stopped after 25 s (max time to spend).

3.2.1. Results

Tables 2 and 3 present the average values of makespan

and average flowtime achieved in the scenarios “a” and “b”

(see Section 2) and No data transfer case. Each experiment

has been executed 30 times under the same configuration

of all input parameters and data for simulator and sched-

uler. Both tables present the results averaged over 30 in-

dependent runs of the simulator with [±s.d.] s.d-standard

deviation values.

Both makespan and average flowtime are expressed in ar-

bitrary (but not concrete) time units.

In makespan optimization, scenario “b” is the case, where

most of the achieved results are better than for the prior load

of all data files before the task execution (scenario “a”). In

the case of average flowtime optimization, the impact of

the consistency of ETC matrix on the mode of the data

transfer is even better illustrated. In all cases for consistent

and semi-consistent matrices and for inconsistent matrices

with high heterogeneity of computing resources, it is better

to request just necessary data files during the computation

(scenario “b”). The differences in the flowtime values in

scenario “a” and scenario “b” are more significant than in

the makespan case. However, in both makespan and flow-

time optimizations, it is observed that the flowtime values

are much higher in the case of additional data transfer times,

than in the “data transfer-free” scheduling. In the case of

inconsistent and semi-consistent ETC matrices, it is almost

doubled.

76

Data and Task Scheduling in Distributed Computing Environments

Table 2

Makespan values in three scheduling scenarios

Instance Scenario “a” Scenario “b” No data transfer

Gauss c hihi
10020355.256 9621178.557 7506387.215

[±801234.852] [±998911.259] [±631202.153]

Gauss c hilo
226250.310 213490.536 139974.423

[±19936.993] [±19343.184] [±10846.362]

Gauss c lohi
459987.880 468466.775 238839.338

[±19323.273] [±22765.627] [±18892.634]

Gauss c lolo
6761.231 6926.864 5109.783

[±770.132] [±240.019] [±258.635]

Gauss i hihi
6093651.564 5866694.694 3069945.734

[±702187.019] [±1191799.837] [±877534.287]

Gauss i hilo
146705.432 145813.231 75588.928

[±4451.987] [±4062.978] [±3184.872]

Gauss i lohi
198611.123 187170.435 109343.652

[±20873.994] [±19351.412] [±25636.425]

Gauss i lolo
5194.763 5117.546 2616.643

[±122.543] [±138.321] [±156.792]

Gauss s hihi
8085209.000 7961402.628 4254421.785

[±578839.375] [±663325.239] [±853673.523]

Gauss s hilo
186281.400 167445.544 99009.537

[±14746.582] [±10831.231] [±8763.471]

Gauss s lohi
215692.530 220844.573 126822.639

[±64353.500] [±53473.637] [±98723.537]

Gauss s lolo
6856.982 6554.654 3498.623

[±453.321] [±643.308] [±764.364]

4. Conclusions and Research

Directions

In this paper the new version of ETC Matrix model for

batch scheduling in the physical clusters was defined, where

separate computing and data servers are located. In this

model, the completion times of all tasks assigned to the

computing nodes of the network have included the data

transmission times. Two data transmission scenarios were

considered with prior load of all files necessary for the ex-

ecution of assigned tasks, and with the ad-hoc delivery of

just requested (necessary) data files during the task execu-

tion. The results of the performed experiments show that

omitting the data transfer phase in the scheduling process

may lead to the bad estimations of the scheduling times,

and more general scheduling costs.

The performed analysis in its early stage. The author plans

to extend it to the virtual resources and databases and the

extended cloud infrastructures, where the mobile devices

(smartphones, tablets, laptops, etc.) are considered as the

computational nodes of the physical cloud layer and can

additionally store and generate the data. This will allow

to validate proposed model in much more realistic cloud

scheduling scenarios, but also will increase the complexity

of the scheduling problem.

References

[1] J. Kołodziej, Evolutionary Hierarchical Multi-Criteria Metaheuris-

tics for Scheduling in Large-Scale Grid Systems. Studies in Com-

putational Intelligence Serie, vol. 419. Berlin-Heidelberg: Springer,

2012.

[2] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS

parameter sweep template: user-level middleware for the grid”, in

Proc. 2000 ACM/IEEE Conf. on Supercomputing SC 2000), Dallas,

TX, USA, 2000.

[3] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal, “Schedul-

ing parameter sweep applications on global Grids: a deadline and

budget constrained cost-time optimization algorithm”, Softw. Pract.

Exper., vol. 35, no. 5, pp. 491–512, 2005.

[4] T. Kosar and M. Balman, “A new paradigm: Data-aware schedul-

ing in grid computing”, Future Gener. Comp. Syst., vol. 25, no. 4,

pp. 406–413, 2009.

[5] J. Kołodziej, S. U. Khan, and F. Xhafa, “Genetic algorithms for

energy-aware scheduling in computational grids”, in Proc. 6th IEEE

Int. Conf. P2P, Parallel, Grid, Cloud, and Internet Comput. 3PGCIC,

Barcelona, Spain, 2011, pp. 17–24.

[6] G. L. Valentini et al., “An overview of energy efficiency techniques

in cluster computing systems”, Cluster Comput., vol. 16, no. 1,

pp. 3–15, 2011.

[7] H. Liu and D. Orban, “GridBatch: Cloud Computing for Large-

Scale Data-Intensive Batch Applications”, in Proc. 8th IEEE Int.

Symp. Cluster Comput. and the Grid CCGRID 2008, Lyon, France,

2008, pp. 295–305.

[8] J. Kołodziej and F. Xhafa, “A game-theoretic and hybrid genetic

meta-heuristic model for security-assured scheduling of independent

jobs in computational grids”, in Proc. Int. Conf. Complex, Intell.

Softw. Inten. Syst. CISIS 2010, Krakow, Poland, 2010, pp. 93–100.

77

Magdalena Szmajduch

Table 3

Flowtime values in three scheduling scenarios

Instance Scenario “a” Scenario “b” No data transfer

Gauss c hihi
1865377511.523 1739118543.763 1039888902.5391

[±62551800.572] [±108789000.698] [±87276600.974]

Gauss c hilo
38856381.645 37530920.723 26758471.974

[±1855790.927] [±1572700.673] [±1761150.029]

Gauss c lohi
45736995.532 44536681.673 33480185.582

[±1662420.635] [±4060500.216] [±4362160.982]

Gauss c lolo
130462.627 1233817.453 891295.864

[±51414.523] [±56050.981] [±34862.735]

Gauss i hihi
629477886.653 578364926.537 349268315.516

[±121534968.473] [±2075608399.845] [±147994960.873]

Gauss i hilo
23654208.787 23615230.173 12427872.618

[±894854.731] [±749330.642] [±680981.333]

Gauss i lohi
23344908.394 23417596.793 12718274.271

[±2909746.766] [±3324080.433] [±4395729.934]

Gauss i lolo
826185.831 829731.985 450123.843

[±25385.445] [±34978.732] [±32745.674]

Gauss s hihi
1048266515.861 994973664.431 522894137.524

[±103674264.922] [±90143000.322] [±107532000.119]

Gauss s hilo
29959243.952 28415261.227 16871684.228

[±1173072.427] [±1556320.435] [±2152640.536]

Gauss s lohi
22655131.553 21648611.228 14923174.777

[±4981350.195] [±6657510.587] [±7907100.555]

Gauss s lolo
1005375.388 998332.695 582565.111

[±66981.229] [±67459.762] [±44452.203]

[9] L. Wang and S. U. Khan, “Review of performance metrics for green

data centers: a taxonomy study”, J. Supercomput., vol. 63, no. 3,

pp. 639–656, 2013.

[10] S. Zeadally, S. U. Khan, and N. Chilamkurti, “Energy-efficient net-

working: past, present, and future”, J. Supercomput., vol. 62,

no. 3, pp. 1093–1118, 2012.

[11] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Task execu-

tion time modeling for heterogeneous computing systems”, in Proc.

9th Heterogen. Comput. Worksh. HCW 2000, Cancun, Mexico, 2000,

pp. 185–199.

[12] J. Kołodziej and F. Xhafa, “Meeting security and user behaviour

requirements in grid scheduling”, Simul. Model. Pract. Theory,

vol. 19, no. 1, pp. 213–226, 2011.

[13] J. Kołodziej and F. Xhafa, “Integration of task abortion and security

requirements in GA-based meta-heuristics for independent batch grid

scheduling”, Comp. Mathem. Appl., vol. 63, no. 2, pp. 350–364,

2011.

[14] L. L. Lapin, Probability and Statistics for Modern Engineering,

2nd ed. Long Grove, USA: Waveland Pr. Inc., 1998.

[15] A. Deshpande, Z. G. Ives, and V. Raman, “Adaptive query process-

ing”, Foundation and Trends in Databases, vol. 1, no. 1, pp. 1–140,

2007.

[16] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Represent-

ing task and machine heterogeneities for heterogeneous computing

systems”, Tamkang J. Sci. Engin., vol. 3, no. 3, pp. 195–207, 2000.

[17] S. Venugopal and R. Buyya, “An SCP-based heuristic approach for

scheduling distributed data-intensive applications on global grids”,

J. Parallel Distrib. Comp., vol. 68, pp. 471–487, 2008.

[18] F. Xhafa, L. Barolli, and A. Durresi, “Batch mode schedulers for

grid systems”, Int. J. Web and Grid Serv., vol. 3, no. 1, pp. 19–37,

2007.

[19] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan, “A two-phase

heuristic for the scheduling of independent tasks on computational

grids”, in Proc. of ACM/IEEE/IFIP Int. Conf. High Perform. Comput.

Simul. HPCS 2011, Istanbul, Turkey, 2011, pp. 471–477.

[20] J. Kołodziej and F. Xhafa, “Enhancing the genetic-based schedul-

ing in computational grids by a structured hierarchical population”,

Future Gener. Comp. Syst., vol. 27, pp. 1035–1046, 2011.

[21] F. Xhafa and A. Abraham, “Computational models and heuristic

methods for grid scheduling problems”, Future Gener. Comp. Syst.,

vol. 26, pp. 608–621, 2010.

[22] J. Kołodziej and S. U. Khan, “Multi-level hierarchic genetic-based

scheduling of independent jobs in dynamic heterogeneous grid en-

vironment”, Inform. Sci., vol. 214, pp. 1–19, 2012.

[23] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Berlin: Springer, 1992.

Magdalena Szmajduch is a

Ph.D. student of computer sci-

ence in the Interdisciplinary

Ph.D. Programme managed

jointly by the Jagiellonian

University in Cracow, Polish

Academy of Science in Warsaw

and Cracow University of Tech-

nology. She is also the assistant

professor at the Department of

Computer Science of Cracow

University of Technology. The main topic of her interest is

data processing in large scale distributed dynamic systems.

E-mail: mszmajduch@pk.edu.pl

Department of Computer Science

Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

78

