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Abstract—The main part of the information ensuring in in-

formation and communication systems (ICS) is the provision

for the development of methods for monitoring, optimization

and forecasting facilities. Accordingly, an important issue of

information security is a challenge to improve the monitor-

ing systems accuracy. One way is to restore the information

from the primary control sensors. Such sensors may be im-

plemented in the form of technical devices, and as a hard-

ware and software systems. This paper reviews and analyzes

the information recovery models using data from monitoring

systems that watch the state of information systems objects

and highlights its advantages and disadvantages. The aim of

proposed modeling is to improve the accuracy of monitoring

systems.

Keywords—accuracy, information recovery, model, monitoring.

1. Introduction

Solving direct mathematical problems require accurate

functions that will be able to describe physical phenom-

ena, e.g., sound propagation, heat distribution, seismic vi-

brations, electromagnetic waves, etc. Medium properties in

which the changes occur are described by equation coeffi-

cients. Equations coefficients are chosen to provide bound-

ary conditions for the existence of phenomena in the en-

vironment. These values describe the initial state of the

process, its properties, the boundary of data, reliability, etc.

Such indicators are considered known. The therm called

verge of reliability occurs when research area has limita-

tions or during the stationary cases study, when the lack of

dynamics does not allow to set the exact boundaries of the

measured values deviation.

Indicated provision of the data unreliability can be dis-

tributed to informational medium. It may be also extended

to those phenomena, which are investigated within them.

Information environments have high physical and informa-

tional complexity, and their properties are often unknown.

It means that there is need to formulate and solve the in-

verse problems to specify:

– the equations coefficients,

– unknown primary and/or boundary conditions,

– location, boundaries and other physical and informa-

tion spaces that include under study processes.

These tasks are improper in most cases because they dis-

rupt at least one of three common correctness properties.

At the same time, the sought equation coefficients are usu-

ally density, electrical or thermal conductivity and other

investigated medium important properties. When analyzing

information medium, there an additional coefficients can

be applied:

– data reliability as a property to preserve the semantic

meaning,

– data reliability as a property to secure the electrical

signals recovery, and so on.

The analysis of information and communication or soft-

ware and hardware systems, e.g., the monitoring informa-

tion space systems by search engines also requires the in-

verse problems solution. They arise while finding location

of a given physical or logical object, its form, structure, or

type of information impurities, defects in the information

environment, sources defects, etc.

As can be seen in this software and hardware applications

set, nowadays the theory of inverse and ill-posed problems

is rapidly evolving science area.

Total requirements for software and hardware information

and communication systems have become the basis for the

systematic development of the converged architecture ba-

sic principles. This work is based on centralized services.

Typically, services are combined into a single group (pool),

which reduces the cost of their use. On this basis, cloud

data processing technology has been developed and imple-

mented. Data processing can be done by the user through

existing network services, which are designed to serve

a wide range of queries. They provide interaction between

distributed software and hardware environment for cross-

platform. In this case, any information about the user’s

location or his hardware and software configuration is un-

known. Details are located in secure data centers. Data

comes in data centers through special monitoring system

and its reliability must be extremely high. Any distortion

leads to the need for inverse problems solutions. Lack of

data when modeling such systems also requires the inverse

problems solution. Most of these are ill-posed. Their so-

lutions have been developed over entire period of physical-

information environments existence. The appearance of the

fundamental works by A. M. Tikhonov allowed creating the

modern theory of inverse problems solution. The concept
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of a regularizing algorithm was taken as a basis for the

theory. The author observed the class of problems in which

small changes in the initial data values lead to significant

variations in the processing of measurements in physical

environments. Later, the theory was extended to the prob-

lems of:

– unstable convolution type integral equations solution,

– incoming signal restoration by the outgoing signal

values, considering the system impulse response.

Much later, the Tikhonov’s theory for solving inverse prob-

lems allowed to get solutions for:

– processes of multi-DF (Direction Finding) signal on

one frequency,

– radio emission sources identification, which was the

beginning of the monitoring systems.

Nowadays monitoring systems are a broad class of devices.

They have extensive physical and information functions and

are based on ICS. The term “monitoring” implies that it is

the observing and recording data process about phenomena

or objects, or about changing their information status. The

authors take into account that this process occurs at time

intervals that are adjacent to one another. During these

intervals the data value is not significantly changed. The

most recent observation about the irrelevance of informa-

tion changing and its consequences, is one of the major

challenges in this article.

In general, the data recovery problem in ICS can be dis-

played by an operator equation of the form [1]–[6]:

Ay = f , (1)

where A is the compact linear operator, y is the function,

which aims to solve mathematical inverse problem of re-

store information about the objects status of information-

control systems, and f stands for function, based on the

results of the experiment.

According to [7] the inverse operator A−1 may not exist

causing the problem incorrect [8], [9]. This shows that

there is not only one or unstable solution. An example

of this is degenerate or fuzzy defined System of Linear

Algebraic Equations (SLAE) (1).

Difficulties in dealing with degenerate and fuzzy defined

algebraic equations are well known in practical problems

related to digital signal processing. This is explained by the

fact that the digital processing calculations are performed

with finite precision. Naturally, in this case no one can

determine whether a given system of equations are degen-

erated or fuzzy defined. This implies that fuzzy defined

and degenerated systems can be indistinguishable within

the specified accuracy. Thus, the objectives formulation

and purpose of the article is to analyze models of problem

that solve information retrieval, information in which can

be obtained by monitoring systems that watch the state of

information systems objects in purpose to increase the data

accuracy and an overview of their advantages and disad-

vantages.

Solutions of applied tasks in information retrieval moni-

toring systems are based on the Fredholm integral type I

equation. It uses a variety of methods that providing for the

regulating parameters imposition. These include methods

mentioned in the researches and publications analysis given

below. However, existing methods for finding the regular-

ization parameter is not always ensure finding the optimal

value at which the error of solution may be minimal. The

article is devoted to the unsolved part of the overall prob-

lem. The essence of the article and it’s scientific innovation

are in the need to find a multi-criteria model for data recov-

ery, providing a choice point solutions on the Pareto set.

It is necessary to identify and take into account possible

limitations on the permissible vector criterion range, if the

Pareto set belongs to this area. Besides, it is necessary to

find and show the selected model shortcomings.

2. Analysis of Approaches that Solve

Ill-Posed Information Restoring

Problems

Nowadays there is a wide range of different approaches

to solve ill-posed problems. The basis for the research in

this area is the A. M. Tikhonov’s work, who created the

mathematical theory of ill-posed problems. These include

his method of regularization, Lavrentiev’s method of re-

placing, Ivanov’s method of selection and quasi-solution

and others. Also, there were developed methods for iter-

ative, statistical, local, descriptive regularization, subopti-

mal filtering, solutions on the compact and others. For-

eign development methods are optimal filtration of the

Kalman-Bucy and Wiener, method of controlled linear fil-

tering (Beykusa-Gilbert), and others. Although these meth-

ods are in principle more precise, the methods proposed

by mentioned scientists (primarily Tikhonov regularization

method) require much less additional information about the

solution and therefore are more widely used when solving

ill-posed problems.

To study the behavior of complex physical objects or pro-

cesses, the authors use a systematic approach, which is

characterized by the determination of a set of properties

and relationships inherent in the object or process. Re-

searching properties often contradict each other, but neither

one of them cannot be neglected, because only all together

they give a complete object picture. For ill-posed prob-

lems, such contradictory properties or partial quality crite-

ria in multiobjective formulation can be resulting solution

stability and accuracy. Multicriteria problems are complex

because their computational complexity depends linearly

on the vector criterion dimension and exponentially on the

desired solution dimension vector. In addition in many

studies the effectiveness of multi-objective optimization is

the assertion for a wide class of problems.

117



Nadia Kazakova, Oleksandr Skopa, and Mikołaj Karpiński

3. Analysis of Finding the Optimal

Regularization Parameter Methods

In practical tasks the right side of the operator Eq. (1) and

matrix elements (i.e., the coefficients of the system) are fre-

quently given by their approximations
∥

∥ f̃ − f
∥

∥

L2
≤ δ and

∥

∥Ã−A
∥

∥ ≤ ξ with the upper bound of the right part and

the operator. In this case this type of equation is solved:

Ãỹ = f̃ , where ỹ ∈ L2 – approximate solution, f̃ ∈ L2 –

approximate function that most closely matches the experi-

mental results, L2 – common designation of studied events

multitude. But it should be noted that there are an infi-

nite number of system with this type input data, i.e. (A, f ).

Within the accuracy that can be a priori given with un-

known tolerances, errors may be unnoticeable. In this case

an approximate system Ãy = f̃ can be solved.

This paper introduces the concept of normal solution for

solving degenerate and ill-conditioned SLAE system (1),

which is stable against input data small changes. Here

the normal solution of SLAE on the vector y1 is called

solution y0, for which
∥

∥y1 − y0
∥

∥ = inf
y∈FA

∥

∥y− y1
∥

∥, where

∥

∥ y0
∥

∥ =
√

∑n
j y2

j . Thus, the problem of solving SLAE is

reduced to minimize the functional
∥

∥ y0−y1
∥

∥

2
on the set of

vectors that satisfy the inequality
∥

∥ Ay− f̃
∥

∥≤ δ , so accord-

ing to [10], [11], there is need to find vector that minimizes

the smoothing functional:

Mα [y, f̃ ,α
]

= α
∥

∥y0 − y1∥
∥

2
+
∥

∥Ay− f̃
∥

∥

2
, (2)

where α is the regularization parameter.

According to the foregoing, it is necessary to stave the

parametric optimization problem, which is connected with

great challenges (e.g. [1]–[6], [8]–[11]). It is also called

the position of finding the optimal regularization parameter

question. This follows from the fact that by definition of the

general case, it should be searched with infinite precision

in the interval 0 ≤ α ≤ 1.

When Eq. (1) is a linear integral operator with constant

limits of integration, the signal reconstructing problem can

be represented by “truncated” Fredholm’s linear integral

equations of the first kind, which is:

b
∫

a

Q(x,s) · y(s)ds = f (x),x ∈ [c,d] , s ∈ (a,b) . (3)

To solve the signal restoration problem for the Eq. (3)

means finding the kind of signal y(s), distorted by mon-

itoring instrumentation with hardware function Q(x,s) to

a signal f (x). Existing methods for solving the problem of

information recovery typically use regularization, and they

are extremely sensitive to errors in the results obtained in

the monitoring process. In addition, they are not universal

due to the fact that they shows acceptable results only for

recovery tasks defined types, such as those that have precise

initial conditions and well-conditioned system of equations,

which can be reduced to Eq. (3).

4. Providing the Optimal Regularization

Parameter Conditions

Methods mentioned in Section 3 for finding the regulariza-

tion parameter are not always provide the optimal regular-

ization parameter in which solution error given by Eq. (3)

can be minimalized, i.e.:

δy =
‖yα − ȳ‖L2

‖ȳ‖L2

→ min , (4)

where yα and ȳ are obtained and exact solutions of the

Eq. (3).

In this paper the concept of partial quality criteria is used,

that are typical for multiobjective optimization, to identify

the conditions for the solution to find. The quality of the

Eq. (3) solution is estimated by set of frequency criteria:

I j = Φ j [x,a,b,c,d,y] , (5)

where j = 1, 2, 3, . . . , P, functions Φ j have continuous par-

tial derivatives on y, and partial criteria given by Eq.

(5) are the components of P-dimensional vector criterion

I = (I1, I2, . . . , Ip).
Suppose vector’s I criterion is limited by permissible area

I ∈ Ω(I). Each component of the vector’s criterion I is

described by Eq. (5), which is specified on solutions Y ∈Y
of integral Eq. (3). Solution’s multicriteria problem IP

is to determine the extremes {y∗ (s)} ,y∗ ∈ Y, I∗ ∈ (I) (that

under the given circumstances conditioned by the degree of

a priori information about the solution y(s), which optimize

the vector’s criterion I.
Let’s take Y as the given set of possible solutions, com-

posed of vectors y = {yi}
n
i−1 n – dimensional Euclidean

space. The solution quality can be evaluated by set of con-

flicting partial criteria, which forms P – dimensional vector

Y (y) =
{

I j(y)
}P

j−1 ⊂ F specified on the set Y , which be-

longs to the class F admissible vectors effectiveness and

which is limited by acceptable area I ∈ Ω. Therefore, there

is need to define a solution y∗ ∈ Y , that under given condi-

tions and constraints optimizes the solution y(s) of Eq. (3).

So the components of the vector y(s) should be subjected

to normalization, since the solution is defined on the set of

efficient points (Pareto’s area) only if all partial criteria re-

duced to a single dimension or dimensionless form. In [7]

an objective normalization method which does not disrupt

any of the equality of partial criteria and which does not

depend on the scale was presented. In this case the compo-

nents of normalization vector y0 as partial criteria extremes

are taken, which defined on the space of solutions:

y0 =

{

sup
s∈S

y j (s)
}P

j=1
. (6)

Let’s perform the efficiency vector I(y) normalization by

constrained vector I jm and obtain the vector of relative par-

tial criteria, i.e. normalized efficiency vector:

I0(y) =
{

I j(y)/I jm
}P

j=1 = {i0(y)}
P
j=1 . (7)
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Assume that all partial criteria I j(y) require minimization

and they all are non negative and constrained:

Ω =
{

I
∣

∣0 ≤ i j (y) ≤ I jm, j ∈ [1,P]
}

. (8)

According to the literature analysis, case given by Eq. (8)

is the most common. The system of inequalities (8) is a

structured demonstration of acceptable area y ∈ Ω. In this

area efficiency vector (6) has the form of given constrained

vector:

y0 =
{

I jm
}P

j=1 , (9)

as the supremum of partial criteria are specified con-

straints I jm.

5. Restrictions on Finding the Optimal

Solution

Depending on the presence and prior information type,

approaches to solving multicriteria problems may be dif-

ferent. In the absence of such information just find any

vector solution y∗, that provides only the condition (8) to

limit [14], [15]:

I∗ ∈ Ω =
{

I|0 ≤ I j(y∗) ≤ I jm, j ∈ [1,r]
}

,y∗ ∈ Y = Y k ∪YC,
(10)

where y∗ ∈ Y = Y k ∪YC is solution belongs to two ar-

eas: compromises Y k (the Pareto’s area) and agreement Y C

[16], [17]. With this method the optimal solution it often

approximated. The main criteria method is often recom-

mended for practical use. It assumes that for the optimiza-

tion from a set I j, where j ∈ [1,P] , only one of the possible

criteria (e.g. first) is chosen as a criterion, and others are

transferred to the constraints category. Thus output multi-

criterion problem artificially replaced by a single-criterion

with constraints is:

y∗ = argmin
y∈Y

I1 (y) ,0 ≤ i j (y) ≤ A j, j ∈ [1,P] . (11)

Although this method can be justified only for the complex

systems optimization, i.e., when to perform even the sim-

plest coordination of contradictory criteria is not easy, one

still could argue that ill-posed problems are also a complex

systems [18]–[20], and the replacement of multicriterion

optimization by single-criterion will be expedient.

6. Modeling Multicriteria Problems in

Data Restoring Technology

In [21], [22] some of multicriteria models are reviewed.

According to the first model, resulted in the sources, mul-

ticriterion problem defined by Eqs. (3)–(7) is reduced to

minimize the linear form component scalar criterion with

constant weighting coefficients:

IM1 =
P

∑
j=1

α jI j,α j > 0,
P

∑
j=1

α j = 1 . (12)

In this case there is the problem of choosing weighting

coefficients α j, j = 1,P. The scheme (12) in [12], [13] and

[21], [22] is called the integration optimality model.

The second model in [21], [22] is defined as the ideal (op-

timal) point in the space of quality criteria. In each partial

criterion (5) is optimized separately from others in the sys-

tem of constraints (7). The result can be obtained by P
optimal solutions, which are characterized by vectors Y ( j),

where j = 1,P. These solutions corresponds to the defi-

nition of partial criteria (7) I0
j (Y

( j), where j = 1,P, which

are the coordinates of the ideal (optimal) point. Later the

problem of minimizing the generalized norm puts up in the

system of constraints (7):

I

(

P

∑
j=1

[

I j(y)− I0
j

(

y( j)
)]L
) 1

L

, L ≥ 1 , (13)

The expression (13) with L = 1 represents a linear combi-

nation of vector components I(y) and I0(0). For L = 2
the expression (13) coincides with the Euclidean norm
∥

∥I(y)− I0(y)
∥

∥, and if L → ∞ it is reduced to the form:

max
j

{

I j (y)− I0
j

(

y( j)
)

∣

∣ j = 1,P
}

.

In some cases, the multicriterion model (13), treats the

function (7) minimizing problem by the relative deviations

sum of squares from their optimal values:

IM2 =
P

∑
j=1





I j (y)− I0
j

(

y( j)
)

I0
j
(

y( j)
)





2

. (14)

For such cases multicriteria problem given by Eqs. (3)–(7)

is reduced to minimize the function (14), and solution vec-

tor is chosen from the condition of minimization of the

distance from the point corresponding to the space criteria

selected solution vector to the ideal (optimal) point.

Modeling the multicriterion task by Eqs. (3)–(7) and

Eq. (14) does not require weighting coefficients preselec-

tion α j in the Eq. (12), but has a high computational com-

plexity. This is due to solving P optimization problems

in (3)–(7) for each partial criterion I j to identify the ideal

point coordinates
{

I0
1 (y1), I0

2 (y2), . . . , I0
P(yP)

}

and solving

the problem of minimizing additional functions in (7) to

determine the optimal solution vector.

Next multicriteria model based on the scalar contraction

of partial criteria for nonlinear compromise scheme [23],

[24] is presented. It was was introduced in the theory of

information recovery in [12], [13] does not require selection

of weighting coefficients in the expression (12) and does

not need a solution P + 1 of optimization tasks, which is

necessary for implementation in the others. Multicriterion

problem given by (3)–(8) is reduced to the solution of a

single optimization problem in expression [12]–[15] under

the conditions (8):

IM3 =
r

∑
j=1

1

1− I j
I

. (15)

To set a certain criteria priority and achieve different sen-

sitivity to variation problem parameters, instead of a unit
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in the expression (15) numerator the weight coefficients α j
must be entered which imposed constraints ∑a j = 1.

Necessary conditions for a minimum IM3 give a finite sys-

tem of equations:

∂ IM3

∂yi
= 0, i = 1,n . (16)

After differentiation of Eq. (16), a low dimensioned system

of nonlinear equations (SNE) is obtained, which leads to

for example using Newton’s method for SLE.

When the function y0(x), j = 1,m – continuous and strictly

convex parallelepiped Πx =
{

x ∈ En
∣

∣ai ≤ xi ≤ bi,i = 1,n
}

,

a scalar convolution by nonlinear scheme of compro-

mise Φ(x) =
m
∑
j=1

α j
(

1− y0 j (x)
)−1

, x ∈ Γx, when normal-

ization of partial criteria using expressions y0 j =
y j(x)

A j
,

A j = sup
x∈Γx

u j(x) j = 1,m, has a single minimum on paral-

lelepiped Πx, which means being unimodal. Therefore, for

the partial criteria it should be selected strictly convex func-

tion in order to problem of optimizing by the scheme (15)

has a unique solution.

Multicriterial model given by Eq. (15) is sensitive to param-

eters changes defined by Eqs. (3)–(8). If there’s one partial

criteria I j close to the upper limit I jm allowable values (8)

multicriteria model (15) implements the Chebyshev’s ac-

tion (minimax) operator in this partial criterion. In other

cases multicriteria model (15) is equivalent to the integrated

optimality operator with varying degree of equalization of

partial criteria. The deterioration one of the partial’s crite-

ria is offsets by another partial improvement.

7. Conclusions

The presented analysis shows that multicriteria model pro-

vides selection of a point on Pareto’s set. Thus if Pareto

set belongs to this area it is necessary to take into ac-

count specified constraints on the range of allowable vector

criterion. Accordingly, for solving multicriteria problems,

which set constraints (8) on the components of the vector

criterion, model (15) is recommended.

However, the drawbacks of the model should be taken into

account:

• cumbersome of equations when a large dimension,

• CHP (16) can have many roots,

• if the solution lies on the constraints border, it will

be found with an error, although less than required

(i.e., it means that there is essentially exact solution).

As presented, the SLAR solution is unstable. The insta-

bility is the result of the presence of a large numbers, its

representation and tolerances. Thus, the goal of future re-

searches is to show that:

• if the solutions of these equations does not exist, then

is there any point in using the Gauss method of least

squares, which can lead to a pseudo-solution,

• if there is no unique solution, whether it may be

possible to use the Moore-Penrose matrix pseudo-

inverse, where the normal solution can be obtained,

• if the solution is unstable, whether it may be ap-

propriate to use regular or sustainable methods, i.e.

regularization or filtering.

The experts of data recovery in inverse and ill-posed prob-

lems are involved in the study of the properties and non-

stable problems regularization methods. These tasks are

distributed into a large set of physical and information pro-

cesses. For IT processes and for information space monitor-

ing systems, these problems are only in their developmental

stage. Nowadays scientists are trying to create new methods

to solve non-stable problems. While doing so, they suggest

that the methods are suitable for use in informatization sys-

tems. In terms of linear algebra, this is equivalent to find

approximate methods to search the normal pseudo-solution

in algebraic linear equations systems. It is assumed that

the methods can be applied to calculations in rectangular,

degenerate or poorly conditioned matrices. It is the aim of

the further researches on the issue which was discussed in

this paper.
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