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Abstract—At present, solutions of many practical prob-

lems require significant computational resources and systems

(grids, clouds, clusters etc.), which provide appropriate means

are constantly evolving. The capability of the systems to ful-

fil quality of service requirements pose new challenges for the

developers. One of the well-known approaches to increase sys-

tem performance is the use of optimal scheduling (dispatching)

policies. In this paper the special case of the general prob-

lem of finding optimal allocation policy in the heterogeneous

nnn-server system processing fixed size jobs is considered. There

are two servers working independently at constant but differ-

ent speeds. Each of them has a dedicated queue (of infinite

capacity) in front of it. Jobs of equal size arrive at the system.

Inter-arrival times are i.i.d. random variables with general

distribution with finite mean. Each job upon arrival must be

immediately dispatched to one of the two queues wherefrom

it will be served in FCFS manner (no pre-emption). The ob-

jective is the minimization of mean job sojourn time in the

system. It is known that under this objective the optimal pol-

icy is of threshold type. The authors propose scalable fast

iterative non-simulation algorithm for approximate calcula-

tion of the policy parameter (threshold). Numerical results

are given.

Keywords—continuous MDP, discretization, job allocation, op-

timal policy, threshold.

1. Introduction

For high-performance processing systems, consisting of

several servers working independently and in parallel one

of the fundamental problems is the problem of optimal al-

location (or routing) of arriving jobs. Allocation happens

at instants of each job arrival and means that job is assigned

to one of the servers where it will be served. This decision

cannot be undone later. It is assumed that each server has

a dedicated queue of infinite capacity where jobs assigned

to this server can wait for service.

The optimal allocation (or optimal policy) is the one

which provides optimal value of the value function. As

the example of simple (but sometimes difficult to com-

pute) value function one can imagine mean sojourn time

in the system, tail of the sojourn time distribution. The

optimal policy typically depends on value function, ser-

vice discipline (FIFO, LIFO, PS, etc.) and on the amount

of information about the state of the system, which is

available at decision instants. One can identify are three

main approaches for finding optimal policy for the type

of problems described above. The first approach is to

choose, based on preliminary qualitative system analysis,

the most “promising” policy and then to check the “degree”

of its optimality. According to the second approach one

chooses the parametrized policy (for example, SITA policy

in [1], [2]), then finds the value function under this policy

and estimates the values of the policy parameters which

provide optimal value of the value function. The third re-

lied on ideas from Markov decision processes and is used

in many jobs and resource allocation problems (see for ex-

ample [3]–[9]). In the majority of the problems the sys-

tem state space is very complex (for example, due to the

need to track elapsed/remaining service times, allow infi-

nite storage capacities, etc.). Thus the class of considered

policies is usually reduced to static policies which allow

sometimes decomposition of the system and its study in

component-wise manner. The are also policies which al-

low look-ahead actions and still tractable solution (see, for

example, [10]).

The problem of finding optimal allocation policy in a het-

erogeneous two-server system processing fixed size jobs,

which is the subject of this paper, has already been consid-

ered before and the apparently latest results appear in [11].

In [11] the flow of jobs is Poisson and jobs are served in

FCFS manner from queues. The objective is minimiza-

tion of mean sojourn time in the system. Authors show

that this problem is related to the well-known slow-server-

problem ([11], [12]). From this observation they derive the

following result: optimal allocation policy is of threshold

type with one threshold i.e. if upon arrival of the job the

amount of unfinished work at faster server (plus total work

in its queue) minus the amount of unfinished work at slower

server (plus total work in its queue) exceed the threshold

value, job is allocated to slow server. The simplicity of the

problem formulation and the known (but nonconstructive)

answer makes even more sticking the fact that its analytic

solution is not known: one can determine the threshold

value only using numerical methods. In [11] authors pro-

vide one of such methods based on Markov decision pro-

cesses and Monte-Carlo simulation and also provide several

heuristic policies which show near optimal results for the

wide range of initial system’s values.
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The use of Monte-Carlo simulation for the threshold value

estimation in the considered problem is greatly complicated

by the fact that the curvature of the value function in the

neighborhood of its minimum is very low and thus it re-

quires very long simulation time in order to achieve high

accuracy.

In this paper a new method for estimation of the threshold

value of the optimal policy is provided, which does not rely

on any simulation results and is based only on probabilis-

tic arguments and properties of threshold policy. In this

respect from one point of view it is free from disadvan-

tages inherent to simulation methods (like those in [11])

and from the other point of view it serves as a case study

of efficient handling of Markov decision process problem

with continuous state space by discretization.

The paper is organized as follows. In the Section 2 the

description of the system is given and the question under

study is formulated. Section 3 is devoted to detailed de-

scription of the solution method and in Section 4 some

numerical results are presented. In conclusion, obtained

results are briefly discussed.

2. Description of the System

and Problem Formulation

Consider heterogeneous dispatching system with two par-

allel servers processing fixed size jobs. Jobs inter-arrival

times are i.i.d. random variables with known distribution

function F(x) with finite mean. Servers are working inde-

pendently and at constant rates: service rate of one server

equals 1 and of the other equals ν > 1. Henceforth, the

server working at rate 1 will be referred as server I and to

the server working at rate ν as server II. Clearly, time it

takes server I and server II to complete one job equals 1

and ν−1 respectively. Each server has its own queue (of in-

finite capacity) and arriving job must be immediately upon

arrival assigned (or routed) to one of the queues wherefrom

it will be served. For the sake of brevity in what follows au-

thors will refer to the decision to route a job to the queue

in front of server I or server II by saying that action 1
or 2 was chosen. No jockeying between queues is allowed.

Each server serves jobs only from its own queue on a first-

come-first-served basis. Pre-emption is not allowed. The

objective is to find the sequence of actions that minimizes

mean job sojourn time in the system1. It is known that

such sequence of actions is fully described by threshold-

type policy (see details in, for example [11]). The most

interesting is the non-simulation estimation of the value of

the policy parameter, i.e. threshold value.

Let us denote by x current workload at server I which equals

the number of jobs in the queue in front of server I plus the

remaining service of the job in server I. Current workload

at server II is denoted by y. Following queueing theory

1Sojourn time for a given job starts from the instant when it arrives at

a queue and stops when its service is completed. It is assumed that the

decision process does not incur any delay.

terminology x and y can be understood as virtual wait-

ing times. The evolution of the system in time is fully de-

scribed by changing values of the pair (x,y) with state space

S = {(x,y), x ∈ [0,∞), y ∈ [0,∞)}.

Assume that upon arrival of a job the system is in the state

s = (x,y) ∈ S. At this time instant the job must be routed

to one of the two queues. If the job is routed to queue in

front of the server I (i.e. action 1 is chosen), then at time

instant of the next job arrival system’s state will be s′ equal

to

s′ = ((x+1− τ)+,(y−ντ)+),

where τ is the time until next job arrival and a+= max(0,a).
The set of states to which transitions from state s = (x,y)
can occur is A1(s) = {(x′,y′), x′ = (x + 1− t)+,y′ = (y−
νt)+, t ≥ 0}. The probability distribution that governs

these transitions is denoted by P1(s′|s), s′ ∈ A1(s), s ∈ S.

Note that given the distribution F(x) of inter-arrival times,

the distribution P1(s′|s) can be calculated in straightforward

manner.

In case the job is routed to server II (i.e. action 2 is chosen),

then at time instant of the next job arrival the state of the

system will be s′ equal to

s′ = ((x− τ)+,(y+1−ντ)+) .

When action 2 is chosen the set of states to which transi-

tions from state s = (x,y) can occur is A2(s) = {(x′,y′), x′ =
(x− t)+, y′ = (y + 1− νt)+, t ≥ 0}. Probability distribu-

tion that governs such transitions is denoted by P2(s′|s),
s′ ∈ A2(s), s ∈ S. It can be calculated just like P1(s′|s).
For fixed s both sets A1(s) and A2(s) are one-dimensional.

Specifically, each of them is the composition of two line

segments: one segment is part of the line with slope ν go-

ing through point (x,y) between point (x,y) and intersection

of the line with one of the coordinate axes (segment AB in

Fig. 1) and the other segment is part of the line from the

intersection to point (0,0) (segment OA in Fig. 1).

A

B

y

x

B -2 B 0B -1
B 2B 1

S

vh
1

vh
0

h
0

h
1

h
2

O

Fig. 1. Discretization of the state space.
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Let τn, n ≥ 1, be the arrival instant of the n-th job. Denote

by sn the state of the system at time τn but before any action

is chosen, i.e. before decision where to route the arrived job

is made. The authors assume that threshold-type policy is

implemented in the system. This implies that at time τn
one must choose action 1 if

sn ∈ Sξ = {(x,y) :
y
ν
− x > ξ} (1)

and one must choose action 2 if

sn ∈ Sξ
= S\Sξ = {(x,y) :

y
ν
− x ≤ ξ}. (2)

Here ξ ≥ 0 is the parameter of the policy (i.e. threshold

value). For detailed discussion of this threshold-type pol-

icy one can refer to [11]. Given initial system’s state, say

s1 =(0,0), the sequence of sn, n≥ 1, constitutes the Markov

chain with transition probabilities

Pξ (s′|s) =

{

P1(s′|s), if s ∈ Sξ ,

P2(s′|s), if s ∈ Sξ
.

Denote the stationary distribution of this Markov chain

by πξ . Given sufficient condition for the stability of the

system (λ/(1 + ν)) < 1, where λ = (
∫

xF(x))−1, is satis-

fied, the stationary distribution exists.

With each state of the Markov chain sn, n ≥ 1, one can

associate a “reward” gn(sn) equal to the sojourn time of

the n-th job in the system. If sn = (x,y) then, due to the

fact that jobs are served from queues on FCFS basis, we

have

gn(sn) =

{

x+1, if sn ∈ Sξ ,

y+1
ν , if sn ∈ Sξ

.

The limiting expected reward or limiting expected sojourn

time Tξ in the system can be defined as

Tξ =

∫

S
g(u)πξ (du).

As mentioned above, the most interested is the non-simu-

lation estimation of the value ξ , which minimizes the value

of Tξ . Despite the fact that the value function depends only

one parameter, the analytical solution of the optimization

problem is not known. To author’s knowledge there are no

analytical results concerning the exact expression and prop-

erties of Tξ such as monotonicity, concavity, unimodality,

differentiability, which makes impossible the application

of standard optimization methods. One of the main so-

lution approaches is the use of simulation in conjunction

with ideas of Markov decision processes. This was done

in [11], where authors have thoroughly studied the behavior

of Tξ experimentally and proposed method for the estima-

tion of the threshold value ξ . But the problem of mini-

mization of Tξ basing only on system’s initial parameters

(F(x) and ν) without the use of simulation remains open

and in the next section fast iterative algorithm is provided,

which allows one to find solution with prescribed accuracy.

3. Iterative Algorithm

The idea of the iterative algorithm for computation of the

approximate value of the optimal threshold is based on

the following observation. Assume the system is in state

ŝ = (x̂, ŷ) such that
ŷ
ν − x̂ = ξopt , where ξopt is the optimal

(still unknown) threshold value. Then the threshold pol-

icy introduced in the previous section tells us that action 2

must be chosen. But in fact it is irrelevant, which action

one chooses when system is in the state ŝ. Otherwise the

current threshold value is not the true optimal value, be-

cause we have to prefer one action to another (and thus the

threshold value must be shifted and the value of the value

function will be improved2). As we don’t know the opti-

mal threshold value we fix (almost) arbitrary value ξ ≥ 0
and assume the system is in the state ŝ = (x̂, ŷ) such that
ŷ
ν − x̂ = ξ . In state ŝ two actions can be chosen. Denote

by σ (1)
ξ the policy that chooses action 1 and then follows

Eqs. (1)–(2) rule. The policy that at first chooses action 2

and then also follows Eqs. (1)–(2) rule denote by σ (2)
ξ . Let

us compare σ (1)
ξ and σ (2)

ξ . Consider the difference

∆ξ = g(1)−g(2) +
∞

∑
n=1

(

∫

S
g(u)π (1)

n (du)−

∫

S
g(u)π (2)

n (du)

)

,

(3)

where g(1) and g(2) are rewards for the first action when

system is in state ŝ, and π (i)
n is stationary distribution at

n-th step of Markov chain (corresponding to fixed value

of ξ ) given that first action was i, i = 1,2. From definition

of strategies σ (i)
ξ it follows that

g(1) = x̂+1, g(2) =
ŷ+1

ν
. (4)

Thus g(1)−g(2) 6= 0 and the other terms in (3) are non-zero

because the distibutions π (1)
n and π (2)

n are different for any n.

But due to the fact that limn→∞ π(1)
n = limn→∞ π(2)

n = πξ at

exponential rate, the sum in Eq. (3) converges. If ∆ξ = 0
then the value of ξ is the value of the optimal threshold. If

∆ξ 6= 0 then the value of ξ must be increased or decreased

depending on the sign of ∆ξ .

The implementation of this idea heavily depends on the

opportunity to compute distributions π (i)
n . The obvious ap-

proach is to approximate Markov chain {sn,n ≥ 1} by

a finite-state Markov chain with transition probability ma-

trix P and use the relation πn = πn−1P. If one partitions

state space by equal rectangles then the cost to compute

with such an approach becomes too high. As experiments

show the curvature of function Tξ in the neighborhood of

its minimum is very low and thus, in order to obtain suit-

able results, one has to use very high level of discretiza-

tion. Eventually matrix P becomes too big (storage require-

ments become too high) making impossible to use relation

πn = πn−1P. In the next subsection a new discretization

method based on non-uniform grid spacing, which does

2Here is implicitly assumed that Tξ is a continuous function of ξ .
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not require the calculation of matrix P and gives accurate

results is proposed.

3.1. Discretization of the State Space and Construction

of Approximating Finite-State Markov Chain

Before constructing finite-state Markov chain {ŝn,n ≥ 1},

which approximates Markov chain {sn,n≥ 1} discretization

of state space S must be performed.

In order to do this some notation need to be introduced.

Denote by hi be the sequence of numbers

hi = h0(1+α)i, i = 0,1, . . . , (5)

where h0 > 0 and α > 0 are arbitrary small numbers and

introduce the following sets:

Bi = {(x,y) : y = ν(x−ai)}, i = 0, ±1, ±2, . . . , L,

where L is arbitrary big whole number and

ai =











0, if i = 0,

ai−1 +hi−1, if i > 0,

ai+1 −h−i−1, if i < 0.

The sets Bi are straight lines with slope ν shifted along the

x-axis. Denote also by C
+
j and C

−
j the following sets:

C
+
j =

{

(x,y) : x = a j
}

, j = 1, 2, . . . , L,

C
−
j =

{

(x,y) : y = νa j
}

, j = 1, 2, . . . , L.

Define the set of points S̃α,L as union of the following sets

S̃α,L =
{

S̃00
}

∪
{

S̃i j, i = 0,±1,±2, . . . , L; j = 1, 2, . . . , L
}

,

where S̃00 = (0,0), S̃i j = Bi∩C
+
j if i ≥ 0 and S̃i j = Bi∩C

−
j

if i < 0. The set of points S̃α,L consists of (L+1)2 points

and represents the grid, which covers the rectangle area

of the first quadrant of the xy-plane. One vertex of the

rectangle coincides with (0,0) and sides along the x-axis

and y-axis equal H and νH respectively, where

H =
L−1

∑
i=0

hi =
h0(1+α)L−h0

α
. (6)

The points in the set S̃α,L are distributed non-uniformly

(Fig. 1). As one moves towards the origin and line y = νx
(set B0) the concentration increases. As one move in the

opposite direction the concentration goes down.

The set of points S̃α,L is used to construct state space of

approximating finite-state Markov chain {ŝn,n ≥ 1}. The

following argumentation follows from the description of the

sets A1(s) and A2(s) given in the previous section.

Assume that after decision on the n-th step Markov chain

{sn,n ≥ 1} was in state s = (x,y) ∈ Bi (see Fig. 1). Then

until the arrival instant of the next job system’s state, i.e.

values of pair (x,y) will “belong” to the line indicated with

the arrow in Fig. 1. The start point of the route is s and

finish point is A = (0,0) which means that system is empty.

By the arrival of (n+1)-th customer the system may be at

any point only on this route. As the continuous state space

of Markov chain {sn,n ≥ 1} is discretized, then this route

must consist of finite number of points.

Remark 1. The way in which the grid S̃α,L was constructed

tells that the length of any segment (either vertical or hori-

zontal, or slanted) of arbitrary route equals hi. It can easily

be seen that time it takes system to pass a segment also

equals hi.

Now one needs to define the set of possible routes. In order

to do this the following sets are defined:

A0 = B0 ∩ S̃α,L, (7)

Ai =
(

Bi ∩ S̃α,L)∪{S̃i−1,i−1, . . . , S̃1,1, S̃0,0}, i > 0, (8)

Ai =
(

Bi ∩ S̃α,L)∪{S̃i+1,−i−1, . . . , S̃−1,1, S̃0,0}, i < 0. (9)

In Eqs. (8)–(9) each set in parentheses contains points from

the set S̃α,L which belong to slanted segment Bi. The set

in braces contains points of the line connecting origin O
and intersection of Bi with one of the coordinate axes. The

routes Ai can be also represented in a different way:

A0 = {S̃0,L, S̃0,L−1, . . . , S̃0,0},

Ai = {S̃i,L, S̃i,L−1, . . . , S̃i,i, S̃i−1,i−1, . . . , S̃1,1, S̃0,0}, i > 0,

Ai = {S̃i,L, S̃i,L−1, . . . , S̃i,−i, S̃i+1,−i−1, . . . , S̃−1,1, S̃0,0}, i < 0.

Any discretized route, just like OAB depicted in Fig. 1, is

the subset of Ai. The elements of Ai can be enumerated in

a natural way, starting from point S̃0,0. For i ≥ 0 it holds

that

Si,0 = S̃0,0,Si,1 = S̃1,1, . . . ,Si,i−1 = S̃i−1,i−1,

Si,i = S̃i,i, . . .Si,L−1 = S̃i,L−1,Si,L = S̃i,L,

and for i < 0

Si,0 = S̃0,0,Si,1 = S̃−1,1, . . . ,Si,−i−1 = S̃i+1,−i−1,

Si,−i = S̃i,−i, . . .Si,L−1 = S̃i,L−1,Si,L = S̃i,L.

Thus for any i the route Ai can be represented as Ai =
{Si,0,Si,1, . . . ,Si,L}. As the state space Sα,L of the approx-

imating finite-state Markov chain {ŝn,n ≥ 1} we will take

the union of possible routes, i.e. Sα,L = ∪L
i=−LAi. The size

of the set Sα,L is (L + 1)(2L + 1), which is greater than

the size of the set S̃α,L. This is due to the fact that some

points of the grid S̃α,L belong to different routes Ai at the

same time. Such points are those which lie on coordinate

axes (excluding extreme points). For example the route Ai
includes point Si,0 = S̃0,0 corresponding to empty state of

the system. Such duplication may seem unnatural but, as

will be shown further, it greatly simplifies the calculation

of transition probabilities.

Now let us dwell on description of transitions of approx-

imating Markov chain {ŝn,n ≥ 1}. Let at the time of the

n-th job arrival the system be in the state ŝn = Si j ∈ Sα,L

and assume that after a decision the system entered state
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Skl ∈ Sα,L3. The state Si j (point on the grid) to which transi-

tion from state Si j occurs is completely defined by threshold

policy and there is one-to-one correspondence between in-

dexes k and i (l and j, as well). After transition to state

Skl system evolves deterministically until the next arrival.

At next arrival instant system finds itself in the new state

ŝn+1, which coincides with one of the points Skl , Sk,l−1, . . . ,
Sk0 of the grid. From description of the set Sα,L and Re-

mark 1 it follows that the transition probabilities Skl → Skm,

m = 0,1, . . . , l, depend only on index l and do not depend

on index k. Let us denote these probabilities by qlm, i.e.

qlm = P{Skl → Skm}. Clearly q00 = 1. Let l = 1. From sys-

tem standpoint it means that there is unfinished work in the

system equal to h0. Due to the fact that the state space at the

instant of the next job arrival have been discretized, there

are only two options: either unfinished work in the system

will be the same (say, with probability q11), or the system

will be empty (with probability 1−q11 = q10). The value

of q11 may be taken equal to probability that inter-arrival

time does not exceed 0.5h0, i.e. q11 = F(0.5h0)
4. By the

same argument the following expression for arbitrary value

of l = 1, . . . , L is obtained:

qlm = F(Hl−m+1)−F(Hl−m), m = 0, . . . , l,

where

Hm=







0, if m=0,

hl−1+hl−2 + . . .+hl−m+1+0.5hm−1, if m=1, . . . , l,
1, if m= l +1 .

3.2. Description of the Iterative Procedure

In order to be able to compute transition probabilities of

approximating Markov chain {ŝn,n ≥ 1} one has to know

how to jump from bevel coordinates given by indexes of

elements Si j to rectangular coordinates (x,y) ∈ S and back.

This transform follows directly from the way the sets Sα,L

was constructed. Let x and y be rectangular coordinates of

point Si j ∈ Sα,L. If i = 0, then clearly x = y = 0. For i > 0
it holds that

x = h0
(1+α) j −1

α
, (10)

y = max
(

0,νx−νh0
(1+α)i −1

α
)

, (11)

and for i < 0

x = max
(

0,
y
ν
−h0

(1+α)−i−1
α

)

, (12)

y = νh0
(1+α) j −1

α
. (13)

The inverse transform is not unique. This is because there

are different ways in which one can choose point Si j ∈ Sα,L,

3Note that the authors are working under assumption that transitions

Si j → Skl do not incur any delay.
4This value is taken by an agreement. The is no other reasoning behind

this choice except for common sense.

which approximates point (x,y) ∈ S. For example, one can

use the following rule:

i = max
(

−L,min(L, i′)
)

, (14)

j = max
(

−L,min(L, j′)
)

, (15)

where

i′ = sign
(

x−
y
ν

)

⌊

ln
(

1+ α
h0

∣

∣x− y
ν
∣

∣

)

ln(1+α)

⌋

,

j′ =























⌊

ln
(

1+ αx
h0

)

ln(1+α)

⌋

, if y < νx,

⌊

ln
(

1+ αy
h0ν

)

ln(1+α)

⌋

, if y ≥ νx,

where sign(a) denotes signum function and bac denotes

integer part of a.

Assume Markov chain {sn,n ≥ 1} generated by threshold

policy ξ is in state s = (x,y) at the time of n-th arrival.

Then after a decision it will move to state

(x̃, ỹ) =

{

(x+1,y), if
y
ν − x > ξ ,

(x,y+1), if
y
ν − x ≤ ξ .

(16)

Let the approximating Markov chain {ŝn,n ≥ 1} be in state

ŝ = (x̂, ŷ) such that
ŷ
ν − x̂ = ξ . Consider again policies σ (1)

ξ

and σ (2)
ξ introduced at the beginning of Section 3 and de-

note by π̂(1)
n and π̂(2)

n respectively stationary distribution

over the state space Sα,L under these policies. The dis-

crete version of the difference ∆ξ , introduced in Eq. (3), is

given by

∆α,L
ξ = g(1)−g(2) +

∞

∑
n=1

∑
i

∑
j

g(i, j)
(

π̂(1)
n (i, j)− π̂(2)

n (i, j)
)

,

where g(1) and g(2) are computed from Eq. (4), g(i, j) =

g(Si j), and π̂(i)
n (i, j) are the values of the distributions π̂(1)

n

and π̂(2)
n at point Si j.

The step-by-step procedure for the update of the value ∆α,L
ξ

is given below in Algorithm 1. It also shows how stationary

distributions π̂(i)
n can be calculated on the fly.

The xi j, yi j are rectangular coordinates of point Si j, calcu-

lated from Eqs. (10)–(13), Ixy, Jxy are indexes of inverse

transform calculated from Eqs. (14)–(15) and x̃ = x̃(x,y),
ỹ = ỹ(x,y) are given by Eq. (16).

Remark 2. Algorithm 1 is only the basic version which can

be modified in order to improve its efficiency. For example,

one can shift the area of the grid S̃α,L where the most points

are concentrated from the neighborhood of (0,0) (which is

the case in Algorithm 1) to the neighborhood of the more

frequent states of the system. Such states can be determined

using simulation.

Remark 3. Proposed algorithm allows one to check whether

the chosen value of threshold ξ is the optimal value. Al-

gorithm 1 does not contain the description of the exact
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Algorithm 1: Algorithm for computation of steady state

probabilities and approximating value of ∆ξ

Step 1

Initialize ∆0 = g(1)−g(2);

if i = ix̂,ŷ and j = jx̂,ŷ then

π̂(1)
0 (i, j) = 1, π̂(2)

0 (i, j) = 0;

else

π̂(1)
0 (i, j) = 0, π̂(2)

0 (i, j) = 1;

end if

Step 2

x = x̂+1, y = ŷ;

k = Ixy, l = Jxy;

π̂(1)
1 = 0;

for m = 0 to l do

π̂(1)
1 (k,m) = π̂(1)

1 (k,m) + qlmπ̂(1)
0 (k, l) = 0; // Com-

pute initial state probabilities after action 1

end for

x = x̂, y = ŷ+1;

k = Ixy, l = Jxy;

π̂(2)
1 = 0;

for m = 0 to l do

π̂(2)
1 (k,m) = π̂(2)

1 (k,m) + qlmπ̂(2)
0 (k, l) = 0; // Com-

pute initial state probabilities after action 2

end for

∆π̂1 = π̂(1)
1 (k,m)− π̂(2)

1 (k,m); // component-wise differ-

ence

∆1 = ∆0 +∑∞
n=1 ∑L

i=−L ∑L
j=0 g(i, j)∆π̂1(i, j);

n = 1;

Step 3

n = n+1;
for i = −L to L do

for j = 0 to L do

x = xi j, y = yi j; // rectangular coordinates of point

Si j
k = ix̃ỹ, l = jx̃ỹ; // index values after making de-

cision

∆π̂n = 0;

for m = 0 to l do

∆π̂n = ∆π̂n +qlmπ̂(1)
n−1(k, l)−qlmπ̂(2)

n−1(k, l)
end for

end for

end for

∆n = ∆n−1 +∑∞
n=1 ∑L

i=−L ∑L
j=0 g(i, j)∆π̂n(i, j);

if |∆n−∆n−1|< ε then // ε – parameter of the algorithm

goto Step 3;

else

∆α,L
ξ = ∆n.

end if

procedure for the calculation of the threshold because it

can be performed in different ways. For example, one can

choose (using qualitative analysis of the system behavior)

interval which contains the (unknown) value of threshold ξ .

For example, in current setting this interval is (0,ν−1).
Then use bisection method can be applied.

4. Numerical Example

Let us give simple comparison of results, which were ob-

tained from proposed algorithm with results obtained from

Monte-Carlo simulation.

Let the service rate of server II be equal to ν = 2. The

threshold value of the optimal policy for two types of inter-

arrival distributions is then computed: exponential with

parameter λ = 2.4 and Pareto with scale b = 0.21 and

shape a = (1− λb)−1 ≈ 2.016. Both these distributions

have equal mean inter-arrival times but their variances dif-

fer significantly. For exponential distribution the variance

is λ−2 ≈ 0.417 and for Pareto it is ab2/[(a−1)2(a−2)])≈
≈ 25.43.

In order to construct the grid S̃α,L let us fix the mini-

mum and maximum grid spacing by letting h0 = 0.005 and

hL−1 = 0.025. Let the total length of the approximating

area along the x-axis be H = 10. Given the value of h0,

hL−1 and Hm, other parameters of the grid can be calcu-

lated from Eqs. (5) and (6). That is

α =
hL−1 −h0

H −hL−1
≈ 0.0001, L =

⌊

ln
(

1+ αH
h0

)

ln(1+α)

⌋

≈ 1600.

The total number of states after discretization is

(L+1)(2L+1)≈ 5.2×106.

Having applied iterative algorithm described in Section 3

we obtained that for exponential inter-arrival times the op-

timal threshold ξopt lies in the interval (0.166,0.167) and

for Pareto inter-arrival times the interval is (0.150,0.151).
In order to understand how accurate these results are, let

us have a look at the value of value function Tξ (estimated

from Monte-Carlo simulation) for the threshold values ξ ,

which are in the neighborhood of the obtained intervals.

The results are given in Table 1.

Table 1

(Approximate) values of the value function Tξ
in the neighborhood of the intervals,

containing optimal threshold

Exponential inter-arrival times Pareto inter-arrival times

Threshold ξ Mean T Threshold ξ Mean T
0.160 1.25459 0.144 0.93638

0.162 1.25458 0.146 0.93637

0.164 1.25456 0.148 0.93636

0.166 1.25454 0.150 0.93636

0.168 1.25454 0.152 0.93636

0.172 1.25454 0.154 0.93637

0.174 1.25455 0.156 0.93638

One can see from Table 1 that the proposed algorithm gives

good results up to (and including) the third digit after the

decimal point. In order to check the value of the fourth

digit one has to be able to estimate value function Tξ from

Monte-Carlo simulation up to the sixth digit after the deci-

mal point. Such estimation is far from being simple because

estimation of Tξ up to fifth digit already takes several hours
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on standard PC. Meanwhile the proposed algorithm finds

the interval (up to third digit after decimal point), which

contains optimal threshold value usually in 5–10 minutes.

5. Conclusion

As it is mentioned in many research papers quite a few

problems which one may encounter in practice (for exam-

ple, building schedulers in distributed processing systems)

can be formulated in terms of flows, servers, queues. The

considered problem is only the special case of far more

general model which may encompass many details of real-

life systems and the need for appropriate solution methods

seems to be high. At present the most popular “attack”

method for such problems is the use of heuristics and their

validation using simulation. Even for the considered special

case the non-simulation solution is far from being simple

(and exact solution is not known at all). Analytic solution

methods for arbitrary n > 2 number of servers have not yet

been developed and the structure of optimal policy is not

known. It must not necessarily be of threshold type. Al-

though if one decides that threshold policy should be used

in the n-server system, then the proposed algorithm can be

scaled in a straightforward manner, but the obtained results

may not be optimal. Here one of the appealing ways to

check the quality of the solution is again the comparison

with simulation. Our experiments show that Monte-Carlo

simulation in combination with adaptive algorithms for par-

tially observed Markov chains is the most suitable approach

for this purpose.
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[10] E. Hyytiä, “Lookahead actions in dispatching to parallel queues”,

Perform. Eval., vol. 70, no. 10, pp. 859–872, 2013.
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