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Abstract—The aim of the paper is to investigate the differences

as far as the numerical accuracy is concerned between feed-

forward layered Artificial Neural Networks (ANN) learned by

means of Kalman filtering (KF) and ANN learned by means

of the evidence procedure for Bayesian technique. The stress-

strain experimental time series for concrete hysteresis loops

obtained by the experiment of cyclic loading is presented as

considered example.
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1. Introduction

Kalman filtering and Bayesian learning methods are based

on the same assumption of modeling neural networks as

the combination of random variables. In both cases, ANNs

are layered, feed forward, learned by supervised method

with a teacher. Learning set and testing set are consid-

ered. Learning process is based on methods known from

probability theory and statistical analysis: Kalman filter-

ing and Bayes theorem. The aim of the paper is to make

a comparison of the two approaches from the same family

techniques.

As far as the network architecture, the most common multi-

layer perception ANN were considered. Two hidden layers

were used for their ability to model nonlinear functions,

according to the universal approximation theorem [1]. For

a comparison purpose the same architecture of ANNs were

considered. It results in the same number of ANN weights

to be found. The Mean Squared Error (MSE) for learning

and testing set was considered as the measure of learning

efficiency. In addition, the qualitative criteria was exam-

ined. The shape of modeled time series is calculated by

ANNs according to the experimental data. Possibilities of

easy designing the network shape (number of neurons in

each layer), the number of parameters that control the pro-

cess of selection model and the time for implementing both

methods were also verified.

2. Motivation and Related Background

Bayesian Neural Networks (BNN) are constructed as lay-

ered, feed forward networks learned by supervised methods

that involves Bayes theorem [2]. The following four steps

are considered:

1. make predictions including error bars for new input

data;

2. estimate the weight parameters and their uncertain-

ties.

3. estimate the weight decay parameters and their un-

certainties;

4. repeat steps 2–3 with different initial conditions and

different network architectures. Select the architec-

ture and w-minimum with highest evidence. Option-

ally select a committee to reflect the uncertainty on

this level [3].

The BBN were recently used for the case problems in-

cluding a regression, a classification, and an inverse prob-

lem. The Internet traffic classification [4], modeling protein

family [5], concrete quality estimation problem [6], as-

sessment of lean manufacturing effect on business perfor-

mance [7], medicine diagnoses finding [8], forecasting per-

formances over the weekly sales of a Finance Magazine [9],

image skin segmentation [10], classification of file system

activities [11], analyzing weather data [12], classifying seg-

mented outdoor images [13], were analyzed.

The traditional approach to the hysteresis modeling as-

sumes using differential equation models that involves

the parameters that are specific to the modeled material:

Jiles–Atherton model [14], Ylinen’s Model [15], Takács

model [16], Prandtl–Ishlinskii model [17]. In most cases,

the models are in the form of piece-wise functions different

for the particular branches of the hysteresis [15], [18].

Also soft methods was considered: neural networks in

the form of multi-layer perceptions, learned by the back-

propagation algorithm for supervised training [19], [20], or

the Levenberg-Marquardt algorithm [21]–[23] .

3. Kalman Filtering as the ANN

Learning Technique

The KF as a method was adapted to ANN nonlinear mod-

els [24], as the learning technique and developed exces-
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sively using selected nodes learning and as far as pruning

the ANN is concerned [25].

The basic KF learning method – Node Decoupled Extended

Kalman Filter (NDEKF) consists of process equation and

measurement equation. After modifications they may be

adopted to learn standard Multi-layered ANN [26]:

wi
k+1 = wi

k + ω i
k , (1)

yk = h(wk,xk)+ νk , (2)

where: k – discrete pseudo-time parameter, i – the num-

ber of neuron in ANN- wi
k+1

for i = 1, 2, . . . , W – state

vector corresponding to the set of synaptic weights and

biases, h – non-linear vector-function of input-output rela-

tion, x/y – input/output vectors, ω i
k, νk – Gaussian process

and measurement noises with mean and covariance matri-

ces defined by:

E(νk) = E(ω i
k) = 0 , (3)

E(ω i
k ∗ω i

l

T
) = Qi

kδk,l , (4)

E(νkνT
l ) = Rkδk,l , (5)

where: δk,l = 1 for k = l, δk,l = 0 for k not equal l.

The NDEKF algorithm assumes splitting state vector into

groups. The single group was assigned to single neuron

(nodes i = 1, 2, . . . , N). Similar to all teacher based learn-

ing techniques the change of wi is made during the presen-

tation of each k-th learning pattern:

Ki
k = PkHk

[ g

∑
j=1

(H j)T
k P

j
kH

j
k +Rk

]−1

, (6)

wi
k+1 = twi

k +Ki
kξk , (7)

Pi
k+1 = (I−Ki

k(H
i
k)

T )Pi
k +Qi

k , (8)

where: Ki
k – Kalman gain matrix, Pi

k – approximate error

covariance matrix, g – the number of ANN nodes (neurons),

ξk = yk − ŷk – error vector, with the target vector yk for the

k-th presentation of a training pattern, ŷk – output vector

given by ANN.

H is the matrix of current linearization of Eq. (2)

Hi
k =

∂h

∂wi
. (9)

The considered parameters for the Gaussian noise adopted

are e.g. in the form:

Qi
k = α1 · e

s−1
β1 · I , (10)

Rk = α2 · e
s−1
β2 · I , (11)

where: I – identity matrix which dimension depends on the

state vector dimension in ANN, s – the number of learning

epoch, and α1, α2, β1, β2 are real numbers.

4. Bayesian Neural Networks

The ANN is formulated as [27]:

t = y(x;w)+ ε , (12)

where y is the non-linear vector function of input-output

relation, ε – noise incorporated to the model, w – vector

of ANN weights interpreted as the random variables, t is

the target output variable interpreted as a random variable.

Next, the

p(w) (13)

is the prior broad probability distribution of the w, and

representing little knowledge about values of w:

p(w|D) =
p(D|w)p(w)

p(D)
(14)

is the posterior probability distribution of the w. It rep-

resenting knowledge about values of w after data set D is

presented to the network, p(D|w) is the data set likelihood.

p(t|x∗,D) =
∫

p(t|x∗,w)p(w|D)dw (15)

is the predicted distribution of the ANN output y for the

particular input vector x
∗;

E(t|x∗,D) =
∫

t p(t|x∗,w)p(w|D)dw (16)

is the point prediction of the ANN output t for the particular

input vector x
∗. The requirement for small values of w

suggests a Gaussian prior distribution the the ANN weights

p(w) =
1

ZW (α)
· e

−α||w||2

2 , (17)

where α represents the inverse variance of the distribution

of w and

α =
1

D2(w)
. (18)

ZW (α) is the normalization constant ZW (α) =
(

2π
α

)W
2

where W is the number of ANN weights.

It is assumed the target data is given by the Gaussian dis-

tribution with zero mean and the constant inverse variance

β , so the data set likelihood p(D|w) is

p(D|w) =
1

ZD(β )
· e

−β ∑N
n=1

‖t(xn;w)−tn‖2

2 , (19)

where β represents the inverse variance of the ε distribution

defined as:

β =
1

D2(ε)
. (20)

The ZD(α) is the normalization constant given by ZD(α) =
(

2π
β

)N
2 , where N is the number of data point in D. Then
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assuming α,β are random variables with their own proba-

bility distributions:

p(t|x∗,D)=

∫∫
p(t|x∗,w,β )p(w|α,β ,D)p(α,β |D)dαdβ ,

(21)

p(t|x∗,w,β ) = N
(
t|t(x∗,w),β−1

)
, (22)

ln p(w|α,β ,D) = p(D|w) . (23)

5. Evidence Procedure for Bayesian

Neural Networks

The evidence procedure was used as an iterative algorithm

for determining optimal weights and hyper parameters dur-

ing Bayesian learning of the ANN [28].

Presented method is based on the approximating the hyper

parameters posterior distribution with its value at the most

probable (MP) values

p(w|D) ∼

∫
p(y|w,βMP)p(w|αMP,βMP,D)dw . (24)

To find the MP values of α and β one have to find the

maximum of:

p(α,β |D) =
p(D|α,β )p(α,β )

p(D)
. (25)

In the further calculation p(α,β ) is assumed to be uni-

form and ignored. Maximizing p(D|α,β ) equals finding

the maximum of:

p(D|α,β ) =

∫
p(D|w,β )p(w|α)dw (26)

p(D|α,β ) =
1

ZD(β )

1

ZW (α)

∫
e
−S(w)

dw , (27)

where:

S(w) =
β

2

N

∑
i=1

(y(xn
;w)− tn)2 +

α

2

W

∑
i=1

w
2
i = β ED + αEW

(28)

is the misfit function. The tn and y(xn;w) are the target and

computed output values for n-th pattern scaled to the inter-

val 0 . . . 1, w = wi, . . . , wW is the vector of ANN weights.

By computing the logarithm of the Eq. (28) and the partial

derivative with respect to α one can obtain:

α =

W −
W

∑
i=1

α
λi+α

2EW (wMP)
=

γ

2EW (wMP)
, (29)

where w = wMP, λi is the i-th eigenvalue of the Hessian

matrix H:

H = ∇∇ED , (30)

γ =
W

∑
i=1

λi

λi + α
. (31)

This implicit solution is used for the iterative procedure:

after setting initial values of α that is used to find wMP and

SW (wMP) the α is re-estimated according to [6]:

α =
γ

2ED(wMP)
, (32)

where w = wMP.

By computing the logarithm of the objective function and

the partial derivative with respect to β one can obtain:

β =
N − γ

2ED(wMP)
. (33)

The procedure scheme can be written in following steps:

1. Choose the initial values of hyper parameters α
and β , initial ANN weights drown from prior dis-

tribution given by α ,

2. Train the ANN with Scaled Conjugate Gradients Al-

gorithm (SCGA) [1], to minimize negative log prob-

ability of weight posterior probability misfit function

S(w), where N = L is the number of learning patterns

to find wMP,

3. Hyper parameters re-estimate:

α(new) =
γ

2EW (wMP)
, (34)

and

β (new) =
N − γ

2ED(wMP)
, (35)

4. Update the log evidence

p(D|α(new),β (new),γ) , (36)

5. Repeat steps 2–4 until convergence.

Number of training cycles is the steps number during SCGA

performance, number of inner loops is the number of up-

dating α ⇒ α(new), β ⇒ β (new), number of outer loops

is the number of repeating the w re-estimation.

6. Experimental Results for Simulation

and Prediction of Steel Hysteresis

Loops

6.1. Experimental Data

Many time series for simulation and prediction stress-strain

relation was considered for steel and concrete. In this paper,

the one specific numerical result would be presented. The

main tendency and numerical accuracy during modeling

the rest of the data was similar. All the tested examples

may be found in [29].

Presented data set was the result of uniaxial low cyclic

tension-compression test for stainless steel AISI 316L [24],

see Fig 1.
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Fig. 1. Experimental data on σ -ε plane.

The aim of the conducted neural analysis was to simulate

first part of experiment and to predict the phase before the

material damage. Presented time series is based on the

inner processes inside the material and is self-dependent

because each next state of the material depends on all the

previous states during experiment. During learning stage,

time series simulation was performed, and whole testing

stage time series prediction was made.

The twelve representative loops were selected for the neu-

ral computation. The loops were selected to the constant

maximal stain value inclination. The first and second loop

selected for neural analysis were taken from range of

0–2000 experimental loops, three next loops from range

of 2000–24000 experimental loops, the remaining 7 loops

from range, were the changes in stress and stein values were

the largest. Each loop was discretized on 49 (σ(k),ε(k))
points for:

ε(k) = 0.2− (k−1) ·∆1ε , (37)

for k = 1, 2, . . . , 25 and

ε(k) = −0.26 +(k−25) ·∆2ε , (38)

for k = 26, . . . , 49 with

∆1ε(k) = 0.2/25 = 0.008% ,

∆2ε(k) = 0.26/25 = 0.0104% . (39)

Adopted discretization results in P = 12 · 49 = 588 data

points for learning and testing. Given data ware scaled to

the interval 0.1 . . . 0.9 for the ANN processing, see Fig. 2.

The first nine loops containing L = 949 patterns for the k =
1, . . . , 441 were used for the learning and T = 588−441 =
147 = 3 ·49 patterns form final loops for k = 442, . . . , 588

for testing.

The input vector x consists of scaled marker of current

pattern k/587, scaled marker of current pattern number

inside each loop separately mod(k,49)/49 and the previous

σ value given by ANN, marked σANN(k−1) [29]:

x(k) =
[
σANN(k−1),k/587, mod (k,49)/49

]
. (40)

The output vector for k-th input takes the form σ(k).
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Fig. 2. Data on σ -ε plane for ANN learning and testing.

7. Comparison of Neural Networks

Learned by Bayesian Evidence

Procedure Accuracy with KF Models

The basic KF model is simple, that makes is easy to imple-

ment. However, the model does not have many parameters

to exploit. One may split ANN differently (layers not nodes)

[26], or use different parameters for the Gaussian noise,

α1, α2, β1, β2 in Eqs. (10)–(11). Also different noise mod-

els instead of Eqs. (10)–(11) may be adopted. First pos-

sibility enlarges excessively the model dimensions given

by Eqs. (1)–(5) makes the model very time consuming.

This second option does not influence the computational

results much, see [29]. The possibility of automation of

setting the network structure without the stopping learning

process is very valuable. One may start from the large

network and switch off the some of the network nodes

during learning (pruning). The author’s model develop-

ment proved that ANN learned by KF may be successfully

designed by pruning, and the approximate error covari-

ance P, matrix may be used to more accurate learning, see

Eq. (8) [29], [30]. KF learning technique was stated to be

very promising tool as far as time series simulation and

prediction [29], [31]–[34].

In comparison to KF, Bayesian learning technique is much

more complicated to implement but have many more free

parameters to change to adjust the model. It allows the

better flexibility, but incorporates the problem of searching

the parameter space for a suboptimal solution. For example

the changing of characteristics of hiper parameter distribu-

tion significantly influence the model, see Eqs. (19)–(36).

During pruning process the model given by Eqs. (24)–(36)

have to be reformulated and there is a need to compute

prior for sparsely connected ANN [35]. The method also

depends on the SCGA performance that should be imple-

mented and used correctly, whereas the in KF no additional

high-level tool is needed.

The simulation for Bayesian learning process was made

using modified Netlab Software [1]. Simulation for KF
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was made for software developed fully by author in Mat-

lab environment. The same ANN architecture was con-

sidered, and the same networks input vectors were used,

see Eq. (40).

For Bayesian learning the initial prior hyper parameter

α = 0.01, initial noise hyper parameter β = 50, number of

training cycles in inner loop 500, number of inner loops 3,

number of outer loops 3 was found as the suboptimal solu-

tion for the given data set. The results of ANN simulation

and prediction are presented in Figs. 3 and 4.
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Fig. 3. Experimental vs. simulated by KF neural network hys-

teresis loops, 9 first loops for learning and remaining for testing

on σ -ε plane.
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Fig. 4. Experimental vs. simulated by KF neural network hys-

teresis loops, 9 first loops for learning and remaining for testing

on σ – no. of pattern plane.

For KF learning method with 1000 epochs and α1 = 0.001,

α2 = 7, β1 = 50, β2 = 50 was adopted. The results of ANN

simulation and prediction are presented in Figs. 5 and 6.

The presented method of ANNs learning enables simulation

of the hysteresis loops with a very high accuracy using

ANN of small number of parameters (first hidden layer

6 nodes, second hidden layer 6 nodes). ANN predicts the

behavior of the considered material during the final step of

loading and unloading properly.
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Fig. 5. Experimental vs. simulated by Bayesian neural network

hysteresis loops, 9 first loops for learning and remaining for testing

on σ -ε plane.
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Fig. 6. Experimental vs. simulated by Bayesian neural network

hysteresis loops, 9 first loops for learning and remaining for testing

on σ – no. of pattern plane.

Comparison with the results obtained by modeling with

damage mechanics was made.

In [36] two theoretical models for stress-strain relation for

the considered material were proposed. They were based

on uniaxial nonlinear elasto-plastic Ylinen model [37].

The relationship between considered quantities had to be

separated for two phases, two damage parameters was

needed to obtain the proposed models. The models took

into consideration the discrete process of opening and close

of the cracks, see Fig. 7 for model A, and continuous pro-

cess of opening and close of the cracks, see Fig. 8 for

model B.

Proposed model A is inconsistent with the experiment as far

as continuity of first order derivative of ∂σ/∂ε is consid-

ered. Both models are incorrect concerning negative values

of stress strain close to their minimal values.

Simulating the stress-strain relation, using damage mechan-

ics equations, require the values of material constants to be

properly chosen for the theoretical model and calibration
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Fig. 7. Hysteresis loops for model A, σ -ε plane.
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Fig. 8. Hysteresis loops for model B, σ -ε plane.

as far as model parameters are considered. During ANN

modeling none of this component is necessary. The model

is based only on the experimental data and simple markers

of the experiment phase. Information about mechanical ef-

fects is independent of arbitrarily chosen mechanical model

and imposed model parameters.

KF and Bayesian ANN modeling incorporates no prior

knowledge about mechanical model.

8. Conclusions

The evidence procedure for the Bayesian Neural Networks

enables hysteresis loops simulation with a very high accu-

racy as far as results quality is concerned. The model fits

the data better than model based on KF and it is superior

to known mechanical models. Presented Bayesian model

has three basic parameters to set: Bayesian learning initial

prior hyper parameter α , initial noise hyper parameter β ,

and number of training cycles in inner loop k.

Presented KF model has five parameters. The coefficients

for Gaussian noise incorporated into the model (four val-

ues), and number of epochs of learning.

The influence of the Bayes model parameters is meaning-

ful. It enables the model to adjust to the data better, but

makes searching for optimal parameter set more demand-

ing. For some set of parameters model calibrated to the

data is incorrect or significantly worse.

The influence of the KF model parameters is hardly a sig-

nificant. Different parameter setting leads to slightly longer

teaching. The most significant parameter is the number of

epochs of learning.

For both models, there is also the need for searching initial

weight space. For different initial weight sets the results of

simulation and prediction differs slightly.

The automatic setting of neural network shape, i.e. num-

ber of neurons in each hidden layer, by pruning procedure

during learning process is much easier to implement in KF

model. To adjust both models to different kind of data

the distributions incorporated into models may be changed.

However, any change in Bayesian theoretical model has

more severe consequences into computational process, be-

cause all Eqs. (12)–(36) have to be changed.
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