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Abstract— The aim of the paper is to present the possi-

bilities of modeling the experimental data by Gaussian pro-

cesses. Genetic algorithms are used for finding the Gaussian

process parameters. Comparison of data modeling accuracy

is made according to neural networks learned by Kalman

filtering. Concrete hysteresis loops obtained by the experi-

ment of cyclic loading are considered as the real data time

series.
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1. Modeling Time Series

Modeling processes that are time-dependent is made based

on many techniques. Methods for time series analyzes may

be: correlation analyzes, autoregressive or moving aver-

age model, trend estimation and decomposition of time se-

ries, principal component analysis, Fast Fourier Transform,

continuous wavelet transform. Also many tools are used

for time series modeling, e.g., general state space mod-

els, unobserved components models, and machine learning

methods such as artificial neural networks (ANN), support

vector machines, Gaussian processes (GPs) [1], [2]. The

main concern of the paper is Gaussian processes model-

ing. Genetic algorithms (GAs) are well known tools for

searching the space of sub-optimal solutions, for example

for supporting neural networks learning processes [3]. The

investigation was made for the possibility of transferring

the techniques known in the field of neural networks for

accelerating the search of Gaussian models parameters.

2. Motivation and Related

Background

Nowadays Gaussian processes are used for modeling differ-

ent kind of data and wide variety of time series. In [4] GPs

were used for modeling super resolution images, confirm-

ing the ability to deal with data read out from the image.

In [5] complicated problem of probabilistic prediction of

Alzheimer’s disease from multimodal image was solved.

GPs were also used for modeling time dependent processes

inside materials, i.e. wax precipitation model in crude oil

systems [6].

Also time depended signals such as speech [7], wind energy

systems [8], and facial expressions [8], economical time

series, was successfully modeled using GPs.

Modeling stress-strain hysteresis loops involves the repre-

sentation of changes in time the material properties dur-

ing tension-compression test. The data for analysis were

discrete points taken from the graphical representation of

stress-strain relation considered as the time series for arti-

ficial unit of time strictly related to the consecutive exper-

iment stages.

The traditional approach to the hysteresis modeling assumes

using differential equation models that involve the param-

eters that are specific to the modeled material as: Jiles–

Atherton [9], Ylinen [10], Takács model [11], Prandtl–

Ishlinskii model [12]. In most cases, the models are in

the form of piecewise functions different for the particular

branches of the hysteresis [10], [13].

In addition, the soft methods were considered: neural

networks in the form of multi-layer perceptions, learned

by the back propagation algorithm for supervised

training [14], [15], or the Levenberg-Marquardt algo-

rithm [16]–[18]. For considered experiments, success-

ful modeling using supervised artificial neural networks

learned by Kalman filter was already made [19].

MacKay in [20] suggested that Gaussian processes might

be a replacement tool for supervised neural networks.

During numerical experiments, the influence of parameters

of GP was examined. It was stated that the parameters of

GP models are much more significant for the proper time

series modeling then the parameters of ANN. The number

of neurons, the initial values of ANN, values of the param-

eters that govern the learning process does not influence the

numerical results much. The improper parameters of GP

lead to incorrect modeling. Using GA is the well-known

technique for supporting the process of ANN learning pro-

cess [2], [21]–[24].

The aim of this survey was to confirm or subvert the thesis

of the possibility of using GP instead of ANN for modeling

hysteresis loops of stress-strain relation for concrete spec-

imens and to find methodologies for effective selection of

GP parameters. The tool, selected for this purpose was GA,

and each individual in the population represents a possible

solution of the Gaussian model, similarly to [18], but in

this paper scatter, crossover operator was used.
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3. Gaussian Process Model

Lets consider the stochastic process Y, generated by the set

of fixed basis functions with random weights [3]:

Y (x) =
M

∑
j=1

Wjφ j(x) , (1)

where x is the input vector indexing random variables

[3]. If weights vector has normal distribution with zero

mean, and particular standard deviation Wj ∼ N(0,Σ) then

EW [Y (x)] = 0 and EW [Y (x)Y ′(x)] = φT (x)Σφ(x). The train-

ing data set consist of pairs (xi,ti), where ti, i = 1, 2, . . . , N

is the sample from the random variable T (xi).
To make the prediction in the new input x∗ it is necessary to

compute conditional distribution p(T (x∗)|T (x1), . . . ,T (xN)).
Let C denote covariance matrix of the training data,

t = [T (x1), . . . , T (xN)], k denote the covariances vector

between the training data T (x1), . . . ,T (xN) and T (x∗), V de-

note the prior variance of T (x∗) that is Cov(T (x∗),T (x∗)).
Then [3]:

E(T (x∗)|T (x1), . . . , T (xN)) = kTC−1t , (2)

D2(T (x∗)|T (x1), . . . , T (xN)) = V − kTC−1k . (3)

Two covariance functions were considered:

• Squared exponential:

C(xi,x j) = v0 exp
( d

∑
l=1

al(x
i
l − x

j
l )

2
)

+ b , (4)

where xi,x j ∈ Rd , xi = [xi
1, . . . , xi

d ]. Then target covariance

is given by:

C(xi,x j)+ σ2
ν δi, j , (5)

where

σ2
ν (6)

is the variance for the p(T (x∗)|T (x1), . . . , T (xN)) δi, j = 1

for i = j, δi, j = 0 for i not equal j. The parameters of the

model ale considered in the log space:

θ = (ln(v0), ln(b), ln(a1), . . . , ln(ad), ln(σ2
ν ), ln(ν)) . (7)

• Rational quadratic:

C(xi,x j) = v0

(

1 +
d

∑
l=1

al(x
i
l − x

j
l )

2
)−τ

+ b , (8)

θ =
(

ln(v0), ln(b), ln(a1), . . . , ln(ad), ln(σ2
ν )

)

. (9)

Gaussian process structure may be viewed in the ANN

form:

θ =
(

ln(v0), ln(b), w, ln(ν)
)

, (10)

where b is the network bias, σ2
ν is the noise incorporated

into the network, w is the vector of weights, v0 is the scaling

parameter, xi,x j are input vectors [25]. That is why the

effectiveness of GP models was compared to ANN models.

3.1. Learning Hyper Parameters

The non-linear optimizer is used to find the maximum like-

lihood values of the parameters θi. It is done by equal-

ing to zero partial derivatives of log likelihood and using

one of the standard optimization algorithms. The Scaled

Conjugate Gradient optimization (SCG) was used with the

standard Matlab implementation options [26]. The analysis

showed that the key role in the efficiency of the procedure

plays the number of SCG steps marked with k parameter.

The starting parameter values for the algorithm are ran-

domly chosen from the N(m,σ) distribution, where m and

σ are the hyper parameters for this model. Additional noise

term is added to the noise σ2
ν in Eqs. (5) and (6) to make

sure that noise variance never collapse to zero.

3.2. Making Predictions

During this stage the parameters for the predicted Gaus-

sian distribution are computed according to the Eqs. (11)

and (12) [3]:

E(T (x∗)|T (x1), . . . , T (xN)) = kTC−1t , (11)

D2(T (x∗)|T (x1), . . . , T (xN)) = V −CTC−1k . (12)

3.3. Parameters of the Presented Procedure

The starting parameter values for the algorithm m and

sigma and the SCG algorithm steps k number have to be

chosen before each algorithm run. In the paper, the re-

search for this parameters is made. Software for Flexible

Bayesian Modeling and Markov Chain Sampling imple-

mentation [27] with own author’s modification was used

to implement the theoretical model. The weight number

in each Gaussian model corresponds fully to the feed for-

ward ANNs of the architecture that were considered in [19].

Each ANN weight has its equivalent in GP model.

To summarize the data effectiveness simulation set using

one single value, MSE error was introduced:

MSEV =
1

V

V

∑
l=1

(yl − yl)
2 , (13)

where: V = L, T is the number of learning and testing

patterns, respectively; yl – the target yl is computed output

mean value for l-th pattern scaled to the interval [0 . . .1],
see Eq. (1).

3.3.1. Calibrating the Parameters of the Numerical

Models

As far as squared exponential covariance function is con-

cerned the parameters of models are:

θ = (ln(v0), ln(b), ln(a1), . . . , ln(ad), ln(σ2
ν ), ln(ν)) . (14)

For the rational quadratic covariance:

θ = (ln(v0), ln(b), ln(a1), . . . , ln(ad), ln(σ2
ν )) . (15)
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Fig. 1. Sample results of genetic algorithm proceeding.

To initialize the process of finding the optimal values of

the parameters mean and variance of their prior Gaussian

densities have to be set:

θ (i) ∼ N(m,σ) . (16)

3.3.2. The Genetic Algorithm for the GP Models Param-

eter Finding

There was stated that there is the significant influence of

the parameters on the value of MSE errors as far as param-

eters (m,σ ) and the length of SCG process k is concerned.

This was the main reason for applying the additional pro-

cedure of calibrating both models. To reach that GA was

chosen, and the fitness function to minimize was set in

the form:

MSE(k,m,σ) , (17)

where k is k scaled to the selected range by the linear

scaling parameter ω : k = ωk.

In this research, the Matlab Genetic Algorithm Tool was

used [28]. Population type, which specifies the type of the

input to the fitness function was the vector (k,m,σ) ∈ R3.

Population size, which specifies how many individuals there

are in each generation, was assumed 20 individuals. The

uniform creation function creates the initial population from

the given interval of initial range. The scaling function,

which converts raw fitness scores returned by the fitness

function to values in a range that is suitable for the selec-

tion function was used. Next, the rank scaling function was

applied. Rank scales the raw scores and is based on the

rank of each individual, rather than its score. The rank of

an individual is its position in the sorted scores. The rank

of the fittest individual is 1, the next fittest is 2 and so on.

Rank fitness scaling removes the effect of the spread of the

raw scores [29].

The selection function chooses parents for the next gener-

ation based on their scaled values from the fitness scaling

function.

Stochastic uniform selection function was then applied. It

lays out a line in which each parent corresponds to a sec-

tion of the line of length proportional to its expectation.

The algorithm moves along the line in equal size steps,

one step for each parent. At each step, the algorithm al-

locates a parent from the section it lands on. The first

step is a uniform random number less than the step size.

Reproduction options determine how the genetic algorithm

creates children at each new generation. Elite count speci-

fies the number of individuals that are guaranteed to survive

to the next generation. Set elite count to be a positive inte-

ger less than or equal to population size. Here this number

was set to 2. Then crossover fraction specifies the fraction

of the next generation, other than elite individuals, that
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are produced by crossover. The remaining individuals,

other than elite individuals, in the next generation are pro-

duced by mutation. Set crossover fraction is a fraction

between 0 and 1, and was set 0.8.

Mutation functions make small random changes in the

individuals in the population, which provide genetic di-

versity and enable the GA to search a broader space. In

presented research a Gaussian mutation functions was used.

It adds a random number to each vector entry of an indi-

vidual. This random number is taken from a Gaussian dis-

tribution centered on zero. The variance of this distribution

can be controlled with two parameters. The scale parame-

ter determines the variance at the first generation, and the

shrink parameter controls how variance shrinks as gener-

ations go by. If the shrink is 0, the variance is constant.

If the shrink is 1, the variance lowers to 0 linearly as the

last generation is reached. Scale and shrink parameters was

set at 1.

Crossover combines two individuals, or parents, to form

a new individual, or child, for the next generation. Scattered

crossover was used. It creates a random binary vector. It

then selects the genes where the vector is a 1 from the

first parent, and the genes where the vector is a 0 from

the second parent, and combines the genes to form the

child [29].

Stopping criteria determine what causes the algorithm to

terminate:

• generations parameter specifies the maximum num-

ber of iterations the genetic algorithm performs (the

value 100 was set),

• time limit specifies the maximum time (in seconds)

the genetic algorithm runs before stopping (inf. was

set),

• fitness limit – if the best fitness value is less than or

equal to the value of fitness limit, the algorithm stops

(inf. was set),

• stall generations – if there is no improvement in the

best fitness value for the number of generations spec-

ified by stall generations, the algorithm stops (50 was

set,

• stall time limit – if there is no improvement in the

best fitness value for an interval of time in seconds

specified by stall time limit, the algorithm stops (105

was set).

Best fitness plots the best function value in each genera-

tion vs. iteration number. Score diversity plots a histogram

of the scores at each generation. Best individual plots the

vector entries of the individual with the best fitness func-

tion value in each generation. Scores plots the scores of

the individuals at each generation. Distance plots the aver-

age distance between individuals at each generation. Range

plots the minimum, maximum, and mean fitness function

values in each generation, see Fig. 1.

4. Simulation

Tests were made according to previously, investigated data

sets [19]. Many experimental data sets coming from differ-

ent kind of loading-unloading concrete and steel specimens

were considered. These time series reflects the behavior of

the material over time.

In this Section the time series coming from 12 concrete

cylindric samples 3×6 inches size, that were compressed

according to the following cyclic loading plan are pre-

sented [26]:

• monotonic increasing of the load to the maximal

value,

• decreasing of the load to the 0,

• monotonic increasing of the load to the maximal

value, and the stress-strain relation in time was con-

sider as the modeled time series.

ANN + KF

experiment
4

2

0
0 0.004 0.008

Fig. 2. Simulation and prediction of hysteresis loops from ANN

models, learned by Kalman filtering (vertical axis contains values

of stress, horizontal axis shows values of strain).

Data for calibrating and testing the models were discrete

points from stress–strain σ -ε relation, see Fig. 2. As a pre-

processing scaling to the internal range [0.1 . . . 0.9] was ap-

plied. This operation was done to correspond to the learn-

ing and testing for ANN, considered in [19] for the same

experiment. Given data sets were divided into calibrat-

ing and testing set, corresponding to the learning set and

testing set in [19]. The used testing set consists of points

from 3 last of 8 hysteresis loops. For properly calibrated

models it results in simulating behavior of the material

in the first experiment part and prediction of the material

behavior in the final part of the experiment basis on the

material behavior in the first part of the experiment. The

number of weight in each Gaussian model corresponds feed

forward ANN of the architecture, which were considered

in [19]. Each ANN weight has its equivalent in Gaus-

sian process model. The output Gaussian process models
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were the stress σ value, predicted in the current step of

computation.

The calibrating set for the experiment consist of first six

hysteresis loops, which gave L = 273 data points. The test-

ing set were selected as the following three loops, what

resulted in T = 132 data points. From among many input

vectors the most effective

x( j) = [σ( j−1), j/(273 + 132),marker2] ,

was found in [19], where i is the number of current pattern,

j = 1, . . . , 405. The marker is the parameter numbering

patterns for network learning and testing inside each loop

separately independently from another loops. Parameters

marker1 and marker2 were adopted. Inside i-th hysteresis

loop the following values of these parameters were the most

numerically effective:

marker1,i =
[

1/Mi,2/Mi, . . . , Mi/Mi,(Mi−1)/Mi,(Mi−2)/Mi, . . . ,

(Mi −Ni)/Mi

]

(18)

where Mi is the number of experimental points for which

the material is loaded, Ni is the number of experimen-

tal points which material is unloaded inside i-th hystere-

sis loop. Parameter marker2,i is based on marker1,i scaled

to the interval [0.1 . . . 0.9].
There were the sets of parameters when both models are

simulating and predicting the data set correctly. The com-

bination of algorithm parameters was for example m = 0,

σ = 1, k = 10.

Results of simulation given data set is presented for both

considered covariance models initialized by the same set of

parameters m = 5,σ = 1,k = 40. The numerical accuracy

of both models differs, see Fig. 3. The predicted mean

values of the experimental data for the rational quadratic

covariance function are shown on the Fig. 4.

5. Results Discussion

The analysis of the presented results suggest that the k

parameter setting plays the key role in the presented nu-

merical method. For the chosen values of k both covari-

ance function can be used to simulate presented data cor-

rectly. Setting the SCG algorithm steps maximal number

too small or two large can make one of the covariance func-

tion model ineffective. Simulation made shows that the val-

ues of k in the range [10 . . . 45]. For the squared exponential

covariance function much longer SCG operating phase is

necessary.

For the rational quadratic covariance function k = 10 is

enough to receive correct results, see Figs. 4 and 5. For

the squared exponential covariance model processing SCG

algorithm for too less steps result in averaging the obtained

results. Neither learning nor testing set is simulated cor-

rectly – obtained model do not distinguish the process tak-

ing place in time as far experiment is taking place. Then,
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Fig. 3. Simulation and prediction of hysteresis loops for GP

models (vertical axis presents values of stress, horizontal axis is

number of data point j).
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setting k larger gives optimal behavior of the model. Pro-

cessing SCG algorithm for too much steps result in aver-

aging the obtained results again. The rational quadratic

covariance function seems to be less sensitive to the k pa-

rameter setting. The effect of averaging results is taking

place for considered range of k > 70 steps.

The comparison with earlier results when ANN learned

by Kalman Filtering demonstrated superiority of Gaussian

processes, as far as the quality of modeling is concerned,

see Fig. 2. The model of first 7 hysteresis loops is more

accurate. Last loop is model with less precision but the

tendency still may be found.

6. Final Remarks

Gaussian processes were found as a very accurate tool for

simulation and prediction of concrete hysteresis loops. The

use of genetic algorithm as a method for automatic setting

parameters of GP occurred to shorten the parameters set-

ting process much. The simulation and prediction of the

stress-strain relation is much precise then made by neural

networks models.
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the dynamic Takács model”, Physica B: Condensed Matter, vol. 407,

no. 17, pp. 3632–3634, 2012.

[12] M. Al Janaideh, “A time-dependent stop operator for modeling

a class of singular hysteresis loops in a piezoceramic actuator”, Phys-

ica B: Condensed Matter, vol. 413, pp. 100–104, 2013.

[13] A. P. S. Baghel, A. Gupta, K. Chwastek, and S. V. Kulkarni, “Com-

prehensive modelling of dynamic hysteresis loops in the rolling and

transverse directions for transformer laminations”, Physica B: Con-

densed Matter, vol. 462, pp. 86–92, 2015.

[14] I. Kucuk, “Prediction of hysteresis loop in magnetic cores using

neural network and genetic algorithm”, J. Magnetism and Magnetic

Materials, vol. 305, no. 2, pp. 423–427, 2006.

[15] R. Dong, Y. Tan, H. Chen, and Y. Xie, “A neural networks based

model for rate-dependent hysteresis for piezoceramic actuators”,

Sensors and Actuators A: Physical, vol. 143, no. 2, pp. 370–376,

2008.

[16] A. Nouicer, E. Nouicer, and F. Mouloudc, “A neural network for

incorporating the thermal effect on the magnetic hysteresis of the

3F3 material using the Jiles–Atherton model”, J. Magnetism and

Magnetic Materials, vol. 373, pp. 240–243, 2015.

[17] V. Wolfs and P. Willems, “Development of discharge-stage curves

affected by hysteresis using time varying models, model trees and

neural networks”, Environ. Model. & Softw., vol. 55, pp. 107–119,

2014.

[18] X. Zhang, Y. Tan, and M. Su, “Modeling of hysteresis in piezo-

electric actuators using neural networks”, Mechan. Syst. and Sig.

Process., vol. 23, no. 8, pp. 2699–2711, 2009.

[19] A. Krok, “Analiza wybranych zagadnień mechaniki konstrukcji i ma-

teriałów za pomocą SSN i filtrów Kalmana (Analysis of mechan-

ics of structures and material problems applying artifcial neu-

ral networks learnt by means of Kalman filtering)”, Ph.D. thesis,

Tadeusz Kościuszko Cracow University of Technology, 2007 (in

Polish).

[20] D. J. C. MacKay, “Gaussian processes – a replacement for super-

vised neural networks?”, Lecture notes for a tutorial at Neural In-

formation Processing Systems (NIPS) 1997, Cambridge University,

1997.

[21] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and

neural networks: optimizing connections and connectivity”, Parallel

Comput., vol. 14, no. 3, pp. 347–361, 1990.

[22] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Ge-

netic Algorithms, Tabu Search, Simulated Annealing and Neural Net-

works. Springer, 2011.

[23] C. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.

[24] Ms. Dharmistha and D. Vishwakarma, “Genetic algorithm based

weights optimization of artificial neural network”, Int. J. Adv. Res.

Elec., Electron. and Instrumen. Engin., vol. 1, no. 3, 2012.

[25] R. M. Neal, “Regression and classification using Gaussian process

priors”, in Bayesian Statistics 6, J. M. Bernardo et al., Eds. Oxford

University Press, 1998, pp. 475–501.

[26] B. P. Sinha, K. H. Gerstle, and L. G. Tulin, “Stress-strain relations for

concrete under cyclic loading”, J. of the American Concrete Institute,

no. 61-12, 1964.

[27] R. Neal, Software for Flexible Bayesian Modeling and Markov Chain

Sampling [Online]. Available: http://http://www.cs.toronto.edu/

∼radford/fbm.software.html

[28] Optimization Toolbox User’s Guide – MathWorks, The MathWorks

Inc. [Online]. Available: http://uk.mathworks.com/help/pdf-doc/

optim/optim tb.pdf

[29] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algo-

rithms. Springer, 2008.

[30] Y. S. Othmana et al., “Frequency based hysteresis compensation for

piezoelectric tube scanner using Artificial Neural Networks”, Pro-

cedia Engin., vol. 41, pp. 757–763, 2012.

[31] F. Pernkopf and D. Bouchaffra, “Genetic-Based EM Algorithm for

Learning Gaussian Mixture Models”, IEEE Trans. Pattern Anal. Ma-

chine Intell., vol. 27, no. 8, pp. 1344–1348, 2005.

Agnieszka Krok – for biography, see this issue, p. 51.

63


