
Paper SHaPe: A Honeypot

for Electric Power Substation
Kamil Kołtyś and Robert Gajewski

Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract—Supervisory Control and Data Acquisition

(SCADA) systems play a crucial role in national critical

infrastructures, and any failure may result in severe damages.

Initially SCADA networks were separated from other net-

works and used proprietary communications protocols that

were well known only to the device manufacturers. At that

time such isolation and obscurity ensured an acceptable se-

curity level. Nowadays, modern SCADA systems usually have

direct or indirect Internet connection, use open protocols and

commercial-off-the-shelf hardware and software. This trend

is also noticeable in the power industry. Present substation

automation systems (SASs) go beyond traditional SCADA

and employ many solutions derived from Information and

Communications Technology (ICT). As a result electric power

substations have become more vulnerable for cybersecurity

attacks and they need ICT security mechanisms adaptation.

This paper shows the SCADA honeypot that allows detecting

unauthorized or illicit traffic in SAS which communication

architecture is defined according to the IEC 61850 standard.

Keywords—cybersecurity, IEC 61850, honeypots, SCADA.

1. Introduction

An electric power substation is a part of a critical infras-

tructure, an electrical grid, which delivers essential services

that many industry sectors and millions of individual con-

sumers depend on. Substations are used to distribute elec-

trical energy to consumers, transform voltage to different

levels, supervise and protect the distribution network. In

the modern substations theses functions are performed with

the support of a substation automation system (SAS).

SAS realizes common tasks of a Supervisory Control and

Data Acquisition (SCADA) system and also provides addi-

tional features enhancing operation and maintenance effi-

ciency, e.g. alarm processing or substation integration [1].

Figure 1 presents a typical architecture of SAS that is di-

vided on three levels: station, bay and process. In the

station level there is a so-called Human Machine Interface

(HMI) used to control, supervise and monitor the substa-

tion, a workplace for engineering and configuration pur-

poses and interfaces for the remote communication, e.g.

with a control center. The bay level consists of control, pro-

tection and monitoring units of each bay and the process

level provides devices that directly interface the primary

substation equipment, i.e. smart sensors, actuators.

The devices in the bay and process levels are mostly intelli-

gent electronic devices (IEDs). IED is a device that imple-

ments particular function in a substation and has a micro-

processor and communication ports to be able to transmit

data and execute control commands. The examples of IEDs

are circuit breakers, voltage regulators, protection relays

and Programmable Logic Controllers (PLC). Big substa-

tions may have more than 100 bay level IEDs and a sim-

ilar amount of process level IEDs. Those IEDs are usu-

ally made by different vendors. To provide interoperability

between them the IEC 61850 standard defining common

communication architecture has been proposed.

Control center

Router HMI
Engineering
workplace

Ethernet switch

Ethernet switches

Station level

Bay level

Process level

Protection
IED

Protection
IED

Control
IED

Control
IED

Breaker
IED

Breaker
IED

Merging unit
IED

Merging unit
IED

Fig. 1. A typical architecture of SAS.

In most countries the electrical grid contains typically very

few substations and a failure of one of them may have se-

vere consequences. Thus any single substation has to be

carefully protected. In particular, a special attention should

be devoted to the cybersecurity of SAS. The application of

Ethernet and other Information and Communications Tech-

nology (ICT) solutions, as indicated by IEC 61850, makes

SAS more exposed to cyberattacks.

A disclosure of cybersecurity incidents in SCADA systems

confirms that they are not free of security issues. The

prominent example of an attack on the SCADA system was

an attempt to sabotage Iran’s nuclear project by means of

a computer worm known as Stuxnet. Stuxnet was released

in 2009. Chen et al. in [2] show an overview of the

Stuxnet’s architecture. They point on the considerable ef-

fort needed to develop such a malware as well as on the

fact that the attack would not be possible to succeed with-

out insider knowledge and the support from a large team of

37



Kamil Kołtyś and Robert Gajewski

experts. The Stuxnet targeted attacks are able to penetrate

into the isolated part of the SCADA system that were tradi-

tionally separated from the parts connected to the Internet.

Stuxnet contains modules that attack PLCs in the target

system and may cause physical damage to the equipment.

Fortunately, the awareness of cybersecurity threats is grow-

ing. According to the recent ICS-CERT report [3] in 2014

there were reported 232 incidents and 167 vulnerabilities

concerning SCADA systems. It is widely recognized that

the protection based on network isolation and an obscu-

rity of proprietary communication protocols is no longer

suitable for today’s such systems. From the analysis of

SCADA security standards presented in [4] it results that

the most important cyber countermeasures are authentica-

tion and cryptography. On the other hand the most fre-

quently mentioned threat in those standards is a malicious

code. The leading SAS vendors try to address these security

issues offering their products with additional security fea-

tures adapted from ICT systems such as firewalls, antivirus

software, advanced account management systems or intru-

sion detection and prevention systems supporting SCADA

signatures.

A useful security mechanism that is becoming more popular

in ICT systems are honeypots. As defined by Spitzner [5]

a honeypot is an information system resource whose value

lies in unauthorized or illicit use of that resource. The

honeypot is a trap for the attackers. One of the honeypot’s

aim is to maintain the attacker’s interest and thus observe

the attack methods. This way previously unknown attack

methods can be revealed and analyzed to improve the sys-

tem security. Honeypots surely can help to better protect

the SCADA systems. Their application is considered in the

one of big research project concerning the cybersecurity of

critical infrastructures [6].

This paper presents the honeypot named SHaPe that is able

to emulate any IED conforming to the IEC 61850 standard.

SHaPe can be used to detect unauthorized or illicit traf-

fic in SAS, which communication architecture is defined

according to IEC 61850.

The remainder of the paper is organized as follows. In

Section 2 the related work concerning SCADA honey-

pots is discussed. In Section 3 the main principles of the

IEC 61850 standard are presented. Section 4 describes the

SHaPe honeypot. Finally, Section 5 summarizes the paper.

2. SCADA Honeypots

The literature mentions only few honeypots designed es-

pecially for SCADA systems. Each of them belongs to

one of the two traditional honeypot classes [7]: low-in-

teraction or high-interaction. A high-interaction honeypot

usually uses a real resource and let an attacker to inter-

act with it, e.g. log into the operating system. A low-in-

teraction honeypot operates by emulating a resource or

some part of it making an attacker convinced that he in-

teracts with the real resource. On the one hand the high-

interaction honeypot is able to induce and thus detect any

type of attack against the particular resource while the effi-

ciency of the low-interaction honeypot is limited by the

accuracy of the emulation. On the other hand the low-

interaction honeypot is usually easier to deploy and main-

tain and involves a lower risk of the honeypot to become

compromised.

One of the first initiatives concerning SCADA honeypots is

the SCADA Honeynet Project [8] that was started in 2004.

It aims to create a SCADA honeypot based on the low-

interaction honeypot Honeyd [9]. Honeyd simulates a num-

ber of network protocols such as HTTP, SMTP and FTP but

it can be extended to simulate other network protocols us-

ing simple scripts. The developers of the SCADA Honeynet

Project create a number of scripts emulating a PLC device

with HTTP, FTP, Telnet and Modbus services. They also

implement a Java applet that shows the status of a SCADA

device. The project being at the proof of concept stage has

not been developed since 2005.

Based on the SCADA Honeynet Project, Digital Bond [10]

develops a low-interaction SCADA honeypot that emulates

a popular PLC device with SNMP and all services provided

by the SCADA Honeynet Project honeypot. Moreover, Dig-

ital Bond proposes a security mechanism called SCADA

Honeywall. It uses IDS with special SCADA signatures to

detect known attacks and is able to stop the outbound traffic

from the compromised honeypots. The SCADA Honeywall

can be placed in front of either a low-interaction honeypot

like the one provided by Digital Bond or a high-interaction

honeypot using e.g. a real PLC.

Two different honeypot systems that have been used to

collect statistical data about the SCADA cyberattacks are

described in [11]. One system is a high-interaction honey-

pot that utilizes an actual PLC device and a physical server.

The PLC mimics a temperature controller in a factory and

has temperature, fan speed and light settings that can be

modified. The physical server that is connected with the

PLC operates as a HMI and hypothetically modifies the

PLC settings. The second system is a low-interaction hon-

eypot realized on the Amazon EC2 cloud Web service. One

Amazon EC2 instance is configured as a Web page emu-

lating the interface of a water pressure station. The another

Amazon EC2 instance connected with the first one simu-

lates PLC with DNP3 and Modbus services.

Another low-interaction SCADA honeypot emulating PLC

is presented in [6]. It implements three communication

protocols: Modbus, FTP and SNMP. Moreover it has a spe-

cial module for detecting probing activity at the remaining

TCP ports. The honeypot also provides additional features

such as filtering and aggregating the security events.

One of the latest SCADA honeypots is Conpot [12] on

which work began in 2013. Conpot is a low-interaction

honeypot that at the default configuration emulates Sie-

mens SIMATIC S7-200 PLC. It provides an implementa-

tion of Modbus and SNMP. The response times of emulated

services can be artificially delayed to mimic the behavior

of a system under constant load. Conpot can be deployed

with a custom HMI. It is an open source software that can

38



SHaPe: A Honeypot for Electric Power Substation

be easily extended to emulate more complex SCADA sys-

tems. The project is actively developed under the auspice

of the Honeynet Project.

At the end, it should be noted that beside the aforemen-

tioned typical SCADA honeypots there are other more gen-

eral honeypot solutions that may be employed to protect

SCADA systems. For example, GhostUSB [13] is a low-

interaction honeypot that emulates a USB storage device.

Although it does not focus on the SCADA network proto-

cols it can be used in the SCADA system to detect malware

that propagates through USB devices, e.g. Stuxnet.

Concluding, the SCADA honeypots known in the literature

allow monitoring traffic involved with a HMI and typical

PLC devices. They focus on the traditional SCADA com-

munication protocols such as Modbus, SNMP, FTP and

HTTP. Taking into account that these protocols are not

included in the IEC 61850 standard none of the existing

SCADA honeypots is suitable for modern SASs compliant

with this standard.

3. Overview of IEC 61850

IEC 61850 is an international standard that defines layered

communication architecture for a SAS to provide an in-

teroperability between IEDs from different vendors. The

communication architecture is based on abstract informa-

tion and service models.

3.1. Information Model

The IEC 61850 information model is presented in [14]. It

is an object oriented model that specifies a set of basic

data types and data objects with strict naming conventions.

The data objects have a fixed hierarchical organization il-

lustrated in Fig. 2.

Physical device (Network address)

Logical device (Multifunction IED)

Logical node (XCBR)

Logical node (CSWI)

Data (Pos)

Data (Loc)

data attribute (stVal)

data attribute (q)

Fig. 2. The IEC 61850 information model.

At the top level of the hierarchy there is a physical device

that represents an IED connected to a SAS network. The

physical device is identified by its network address. It may

contain one or more logical devices. The logical devices are

used to form a group of some power system functions which

are defined as logical nodes. Typically, the physical device

has one logical device. However the possibility of having

multiple logical devices allows a single physical device to

act as a proxy or gateways for several IEDs.

The logical nodes contained in the logical device are the

key objects in IEC 61850 representing the smallest entities

of a SAS functionality used to exchange information be-

tween IEDs. A logical node is a named grouping of data

objects that are logically related to the specific function.

IEC 61850 defines more than 100 kinds of logical nodes

covering the most common applications of SAS equipment.

They are classified into 19 groups. The names of all logical

nodes from the same group begin with the same character.

For example the logical node XCBR that is used to model

switches with short circuit breaking capability belongs to

the Switchgear group which all logical nodes have names

beginning with the letter X.

The semantic of the logical node is defined by its data and

data attributes. Each data in the logical node has a unique

name determining its purpose. IEC 61850 specifies about

500 data types with different semantic definitions. A data

object may have multiple data attributes each one having

name and attribute type. Data attribute names are standard-

ized and carry specific semantic. For example the logical

node XCBR has several data objects, e.g. Pos that describe

a position of the circuit breaker, Loc indicating a switchover

between local and remote operations or OptCnt represent-

ing an operations counter. In turn, the data object Pos has

many data attributes, e.g. stVal representing a position of

the real breaker that is an enumerated type taking one of the

following values: intermediate-state, off, on or bad-state.

3.2. Service Model

The IEC 61850 service model is described in [15]. Like

the information model it is also object oriented. The ser-

vice model defines several classes with related services.

The class GenServer represents the external behavior of

a device. Each GenServer object contains one or more

instances of GenLogicalDeviceClass class. GenLogicalDe-

viceClass together with three other classes GenLogicalN-

odeClass, GenDataObjectClass and GenDataAttributeClass

represent the generic logical device, logical node, data and

data attribute, appropriately. GenDataAttributeClass has an

important property named functional constraint that indi-

cates what services can be performed on the particular data

attribute. For example value ST of the functional constraint

means that the data attribute represents status information

whose value may be read, but cannot be written.

In the service model there are also defined functional

constraint data and functional constraint data attribute.

The functional constraint data is an ordered collection of

data attributes of the data object having the same func-

tional constraint. The functional constraint data attribute is

a data attribute having the specific functional constraint.

An ordered set of elements being either a functional con-

39



Kamil Kołtyś and Robert Gajewski

straint data or a functional constraint data attribute is called

a data set and is represented by the DATA-SET class.

Data sets allow for more efficient information exchange

between IEDs.

The services related with the aforementioned classes are

the following:

• GenServerClass:

– GetServerDirectory: retrieves a list of all logi-

cal devices;

• GenLogicalDeviceClass:

– GetLogicalDeviceDirectory: retrieves a list of

all logical nodes;

• GenLogicalNodeClass:

– GetLogicalNodeDirectory: retrieves a list of all

instances of a given object class,

– GetAllDataValues: retrieves a list of all data at-

tribute values (optionally having a given func-

tional constraint) of all data objects;

• GenDataObjectClass:

– GetDataValues: retrieves a list of all data at-

tributes values,

– SetDataValues: sets a value of a given func-

tional constraint data or functional constraint

data attribute,

– GetDataDirectory: retrieves a list of all data

attribute names,

– GetDataDefinition: retrieve a list of all data at-

tribute definitions (names, types and functional

constraints);

• DATA-SET:

– GetDataSetValues: retrieves a list of the values

of all data attributes of the data set,

– SetDataSetValues: sets values of all data at-

tributes of the data set,

– CreateDataSet: creates a data set with a given

list of members being either a functional con-

straint data or a functional constraint data at-

tribute,

– DeleteDataSet: deletes a given data set,

– GetDataSetDirectory: retrieves a list of all data

set members.

IEC 61850 defines also other classes with different services

that are described in detail in [15]. All services are divided

on several categories. For example one category contains

services supporting the device self-description. Another

category is related with fast peer-to-peer exchange of sta-

tus information between IEDs and yet another involves the

control of an IED.

3.3. Mapping to MMS

The objects defined in the information and service models

are independent of any protocol stack. However to enable

real communication between IEDs these abstract objects

need to be implemented in a form that can practically op-

erate in a SAS network. IEC 61850 has established that

the Manufacturing Message Specification (MMS) protocol

over TCP/IP should be used for this purpose. Nonetheless

another protocol can be chosen in the future to follow the

evolution in ICT.

MMS is a public ISO 9506 standard that specifies the ways

in which real time process data and supervisory control

information is transferred between networked devices and

computers. The key element of MMS is a Virtual Manufac-

turing Device (VMD) that models an MMS device (server)

from the viewpoint of an MMS client. The VMD defines

the objects (e.g. variables, domains) that are contained in

the MMS server, the services (e.g. read or write a vari-

able) a client can use to access or manipulate the objects

and the behavior of the server upon receipt of those service

requests. Tables 1 and 2 present the mapping of the IEC

61850 objects and services to MMS as defined in [16].

Table 1

The mapping of IEC 61850 objects to MMS objects

IEC 61850 object MMS object

GenServerClass VMD

GenLogicalDeviceClass Domain

GenLogicalNodeClass Named variable

GenDataObjectClass Named variable

DATA-SET Named variable list

Table 2

The mapping of IEC 61850 services to MMS services

IEC 61850 service MMS service

GetServerDirectory GetNameList

GetLogicalDevice-

Directory
GetNameList

GetLogicalNodeDirectory GetNameList

GetAllDataValues Read

GetDataValues Read

SetDataValues Write

GetDataDirectory
GetVariableAccess-

Attributes

GetDataDefinition
GetVariableAccess-

Attributes

GetDataSetValues Read

SetDataSetValues Write

CreateDataSet DefineNamedVariableList

DeleteDataSet DeleteNamedVariableList

GetDataSetDirectory
GetNamedVariableList-

Attributes

40



SHaPe: A Honeypot for Electric Power Substation

According to ISO 9506 a VMD and thus every instance

of GenServerClass must also implement the following

services:

• Initiate – establishes an application association, i.e.

an agreement between the MMS client and the MMS

server governing their communication,

• Conclude – terminates an existing application asso-

ciation in a graceful manner,

• Abort – terminates an existing application association

in an ungraceful manner that may result in the loss

of data,

• Reject – notifies about reception of an unsupported

service request,

• Cancel – cancel an outstanding MMS service request,

• Identify – obtains information and status about the

MMS server.

MMS services are grouped into two categories: the ser-

vices requiring confirmation (so-called confirmed services)

and the services that do not require such a confirmation

(so-called unconfirmed services). The confirmed services

contain an invocation identifier that identifies the service

instance.

3.4. Configuration Description Language

Proper substation operation requires appropriate configu-

ration of all its IEDs. IEC 61850 provides a Substation

Configuration Language (SCL) that allows to describe the

substation topology, the communication system, e.g. how

IEDs are connected to networks and subnetworks, how data

objects are grouped into data sets. SCL also allows to de-

scribe the particular IED capabilities in terms of logical

nodes and the relation between substation structure and the

SAS functions represented by the logical nodes. The SCL

is based on XML. Its specification is given in [17].

A configuration process of substation involves many SCL

files to be created. The structure and functions of the

substation is defined in a System Specification Descrip-

tion (SSD) file that for example may contain the required

types of logical nodes and data. The configuration of

all IEDs with the communication section and the sub-

station description is included in a System Configuration

Description (SCD) file. Each IED to be compatible with

IEC 61850 must have an IED Capability Description

(ICD) file describing its functional and engineering capa-

bilities or an Instantiated IED Description (IID) file includ-

ing its project specific configuration. Moreover, it must be

able to use the SCD file to set its communication con-

figuration that is saved as a Configured IED Description

(CID) file.

4. SHaPe

The IEC 61850 standard was published in 2004 and since

then it has gained popularity among electric utilities and

power system authorities in many countries. It can be taken

for granted that more and more substations will be up-

graded to conform the IEC 61850 standard. Thus a future

SCADA honeypot to be useful in the electric power indus-

try must support the communication protocols specified in

IEC 61850.

4.1. General Concept

SHaPe is a low-interaction honeypot that is able to emulate

any IED compliant with IEC 61850.

The low-interaction approach allows to achieve several im-

portant goals. Firstly, SHaPe can be easily configured to

emulate different devices. What is needed is to provide an

ICD or IID file with the requested IED configuration. The

SCL file can be prepared using some IEC 61850 configu-

ration tool or simply obtained from the existing IED if the

similar one has to be emulated by SHaPe.

Secondly, SHaPe does not require any specialized equip-

ment or much computing resources. A typical personal

computer may run several instances of SHaPe. Each in-

stance can listen on multiple IP addresses. Taking into

account that a traffic coming into honeypots is rather low

one machine should be enough to deploy a farm of SHaPe

honeypots emulating many IEDs of different types.

Finally, SHaPe as a low-interaction honeypot involves lower

risk of being compromised by an attacker than a high-

interaction solution [18].

4.2. Detection Scope

SHaPe emulates IED behaviour that is involved with

the MMS communication over TCP/IP connection. The

generic substation events based on GOOSE or transmission

of sampled values that according to IEC 61850 are mapped

to other protocol stacks are not handled by the SHaPe

honeypot. Nonetheless all IEC 61850 services mapped to

MMS are supported and executed by SHaPe. If a service

creates, modifies or deletes some object the state of the

emulated IED will be accordingly updated.

SHaPe allows for detecting many important events that may

appear during the communication with the emulated IED.

These events are the following:

• an establishment of a TCP connection,

• a termination of a TCP connection,

• an establishment of an MMS application association

(Initiate service),

• a graceful termination of an MMS application asso-

ciation (Conclude service),

• a receipt of a Reject service request,

• a receipt of an Identify service request,

41



Kamil Kołtyś and Robert Gajewski

• a receipt of a GetNameList service request,

• a receipt of a Read service request,

• a receipt of a Write service request,

• a receipt of a GetVariableAccessAttributes service

request,

• a receipt of a DefineNamedVariableList service re-

quest,

• a receipt of a DeleteNamedVariableList service re-

quest,

• a receipt of a GetNamedVariableListAttributes ser-

vice request,

• a receipt of an unknown MMS request before estab-

lishing an MMS application association,

• a receipt of an unrecognized MMS request after es-

tablishing an MMS application association.

Note that all IEC 61850 services are captured by SHaPe in

terms of appropriate MMS services. Moreover, SHaPe de-

tects the establishment and termination of every TCP con-

nection and the receipt of MMS services related to VMD

except Abort and Cancel services.

4.3. Monitoring Multiple Network Addresses

One instance of SHaPe can emulate an IED of a particu-

lar type. However SHaPe is able to run many copies of

the emulated IED each one having assigned different IP

address. In this way SHaPe allows for easily increasing

the number of monitored IP addresses and thus the attack

surface involved with the particular type of IED.

For each running copy of IED SHaPe maintains a sepa-

rate state, i.e. the values of all data attributes in all log-

ical nodes. The IED state can be modified by some IEC

61850 services, e.g. SetDataValues or SetDataSetValues.

All MMS clients connected with the same IED copy see

the modifications made by any of them. SHaPe keeps the

modified state until there is no MMS client connection over

a predefined period of time. After this idle time the IED

state is restored to the initial one.

4.4. Implementation

SHaPe has been implemented as a module of Dionaea [19],

which is a general purpose low-interaction honeypot run-

ning on the Linux platform. Dionaea has several modules

that emulate different services prevalent in typical computer

networks, e.g. HTTP, FTP, SMB. None of these modules

can emulate a typical SCADA device. SHaPe is the first

Dionaea module that is designed for SCADA networks.

Dionaea provides two useful mechanisms for their modules:

a communication mechanism handling TCP connections

and a logging mechanism that registers security events.

Thanks to the communication mechanism SHaPe does not

have to operate directly on the TCP sockets as it can handle

appropriate events related to the transport communication

layer, e.g. establishing a new TCP connection, terminating

a TCP connection or receiving data. The events concern-

ing the establishment or termination of a TCP connection

are automatically forwarded to the Dionaea logging mech-

anism. For each establishment of a TCP connection the

following information is registered: the TCP connection

identifier, the timestamp, the source IP address, the source

port, the destination IP address and the destination port.

An event of the termination of a TCP connection contains

the identifier of the TCP connection and the timestamp.

The Dionaea logging mechanism saves event information in

a log file and optionally sends it to a specific XMPP server.

SHaPe uses this logging mechanism to register events re-

lated to MMS protocol layer in the same way as the TCP

layer events are registered. For each MMS protocol layer

event the following information is provided: the identifier

of TCP connection within the event has occurred, the event

timestamp, the type and body of the MMS request in which

the event has been detected. The type of MMS request indi-

cates one of the unconfirmed services (Initiate, Conclude or

Reject) or that a requested service is confirmed. In the latter

case SHaPe registers additional information – the subtype

corresponding to the particular confirmed MMS service and

the invocation identifier of the service instance.

To handle MMS requests SHaPe utilizes library li-

biec61850 [20] that for integration purposes has been

slightly modified.

Both Dionaea and libiec61850 are an open source software.

Also SHaPe is publicly available under GNU GPL at the

SHaPe project website [21].

5. Summary

In this paper the honeypot named SHaPe is proposed.

SHaPe opposed to other SCADA honeypots supports the

IEC 61850 standard. Thus it can be used to protect a mod-

ern SAS conforming to this standard.

SHaPe can be easily configured to emulate any IED by pro-

viding an appropriate SCL file. One SHaPe instance may

listen on multiple IP addresses maintaining many copies

of the particular IED. Several SHaPe honeypots allow to

create a network of different IED decoys significantly in-

creasing the chance of detecting an unauthorized or illicit

traffic in SAS.

SHaPe has been implemented as a module of Dionaea

which is a general purpose low-interaction honeypot. To

handle MMS requests according to IEC 61850 SHaPe uses

library libiec61850. SHaPe along with Dionaea and li-

biec61850 is an open source software publicly available

under GNU GPL.

Acknowledgements

This work was supported in part by the National Centre

for Research and Development (NCBiR) under the research

project “The system of secure IP communication provision

42



SHaPe: A Honeypot for Electric Power Substation

for the power system management” (no. ROB 0074 03 001).

The authors would like to thank Tomasz Pałka for his con-

tribution in developing the SHaPe software.

References

[1] W. Rebizant, J. Szafran, and A. Wiszniewski, Digital Signal Pro-

cessing in Power System Protection and Control. Springer, 2013.

[2] T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet”, IEEE

Comp., vol. 44, no. 4, pp. 91–93, 2011.

[3] “ICS-CERT Year in Review 2014”, Industrial Control Systems Cyber

Emergency Response Team, 2014 [Online]. Available:

https://ics-cert.us-cert.gov/Year-Review-2014

[4] T. Sommestad, G. N. Ericsson, and J. Nordlander, “SCADA System

cyber security – A comparison of standards”, in Proc. IEEE Power

Energy Soc. General Meet., Minneapolis, MN, USA, 2010.

[5] L. Spitzner, “Honeypots: catching the insider threat”, in Proc. 19th

Ann. Comp. Secur. Appl. Conf. ACSAC 2003, Washington, DC, USA,

2003, pp. 170–179.

[6] P. Simões, T. Cruz, J. Gomes, and E. Monteiro, “On the use of Hon-

eypots for detecting cyber attacks on industrial control networks”, in

Proc. 12th Eur. Conf. Inform. Warfare Secur. ECIW 2013, Jyväskylä,

Finland, 2013.

[7] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA, USA:

Addison-Wesley, 2002.

[8] V. Pothamsetty and M. Franz, “SCADA HoneyNet Project: Build-

ing Honeypots for Industrial Networks”, 2005 [Online]. Available:

http://scadahoneynet.sourceforge.net/

[9] The Honeyd website [Online]. Available: http://www.honeyd.org

[10] The SCADA Honeynet website [Online]. Available:

http://http://www.digitalbond.com/tools/scada-honeynet

[11] K. Wilhoit, “Who’s Really Attacking ICS Equipment?”, Trend Micro

Research, Cupertino, CA, USA, 2013.

[12] The Conpot website [Online]. Available: http://www.conpot.org

[13] The Ghost USB honeypot website [Online]. Available:

http://code.google.com/p/ghost-usb-honeypot

[14] “Communication networks and systems for power utility automa-

tion – Part 7-1: Basic communication structure – Principles and

models”, IEC 61850-7-1, 2011.

[15] “Communication networks and systems for power utility automa-

tion – Part 7-2: Basic information and communication structure –

Abstract communication service interface (ACSI)”, IEC 61850-7-2,

2010.

[16] “Communication networks and systems for power utility automa-

tion – Part 8-1: Specific communication service mapping – Map-

pings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC

8802-3”, IEC 61850-8-1, 2011.

[17] “Communication networks and systems for power utility automa-

tion – Part 6: Configuration description language for communication

in electrical substations related to IEDs”, IEC 61850-6, 2010.

[18] K. Gorzelak, T. Grudziecki, P. Jacewicz, P. Jaroszewski, Ł. Juszczyk,

and P. Kijewski, “Proactive Detection of Security Incidents”, Tech.

Rep., ENISA, 2012.

[19] The Dionaea website [Online]. Available: http://dionaea.carnivore.it

[20] The libiec61850 website [Online]. Available: http://libiec61850.com

[21] The ShaPe project website [Online]. Available:

https://www.assembla.com/spaces/scada-honeypot

Kamil Kołtyś received the

M.Sc. and Ph.D. degrees in

Computer Science from War-

saw University of Technology

(WUT) in 2007 and 2012, re-

spectively. He was a research

assistant at WUT from 2011

to 2012. From 2012 to 2015

he worked as a lecturer in In-

stitute of Control and Com-

putation Engineering of WUT.

Since 2012 he has been an associate professor at Research

and Academic Computer Network (NASK). His research

interests include honeypots, data analysis, graph theory and

operations research.

E-mail: kamil.koltys@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Robert Gajewski received the

M.Sc. degree in Control En-

gineering Science from War-

saw University of Technology

in 2002. He was designing and

building IT tools to optimize

operations in NUKAT union

catalogue. Since 2012 he has

been an research assistant at Re-

search and Academic Computer

Network (NASK). His present

area of interests includes spam data analysis, data mining,

and security mechanisms.

E-mail: robert.gajewski@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

43


