
Paper The Integration, Analysis

and Visualization of Sensor Data

from Dispersed Wireless Sensor Network

Systems Using the SWE Framework

Yong Jin Lee1, Jarrod Trevathan2, Ian Atkinson1, and Wayne Read3

1 eResearch Centre, James Cook University, Townsville, Australia
2 School of Information and Communication Technology Griffith University, Brisbane, Australia

3 School of Engineering and Physical Sciences, James Cook University, Townsville, Australia

Abstract—Wireless Sensor Networks (WSNs) have been used

in numerous applications to remotely gather real-time data

on important environmental parameters. There are several

projects where WSNs are deployed in different locations and

operate independently. Each deployment has its own models,

encodings, and services for sensor data, and are integrated

with different types of visualization/analysis tools based on in-

dividual project requirements. This makes it difficult to reuse

these services for other WSN applications. A user/system is

impeded by having to learn the models, encodings, and ser-

vices of each system, and also must integrate/interoperate data

from different data sources. Sensor Web Enablement (SWE)

provides a set of standards (web service interfaces and data

encoding/model specifications) to make sensor data publicly

available on the web. This paper describes how the SWE

framework can be extended to integrate disparate WSN sys-

tems and to support standardized access to sensor data. The

proposed system also introduces a web-based data visualiza-

tion and statistical analysis service for data stored in the Sen-

sor Observation Service (SOS) by integrating open source

technologies. A performance analysis is presented to show

that the additional features have minimal impact on the sys-

tem. Also some lessons learned through implementing SWE

are discussed.

Keywords—environmental data, environmental monitoring, sen-

sor technologies, standardization, web-based visualization.

1. Introduction

In recent decades Wireless Sensor Networks (WSNs) have

been dramatically advanced and adopted by many domains

to remotely monitor environments [1]. The development of

low-cost sensor technologies that are capable of capturing

various properties of physical phenomena has led to the

growing popularity of WSNs. This has made it easier to

observe many environmental aspects [2]. WSNs can also

reduce the time needed for collecting large amounts of data

on key environmental factors. Furthermore, WSNs pro-

vide access to the collected data via the Internet, thereby

allowing environmental scientists and decision makers to

gain a better real-time understanding about the observed

environment.

Analyzing sensed data requires a significant amount of time

and effort. Such analysis involves the discovery and inte-

gration of data from multiple sources (e.g. various and dif-

ferent types of sensors), assessing quality issues (e.g. miss-

ing/suspicious data), hypothesis testing, and visualizing the

test results to support decision making. Manual analysis

of large amounts of heterogeneous and spatiotemporal data

is difficult and complicated. Automatic integration, analy-

sis, and visualization of sensed data from multiple sources

can reduce the workload needed for addressing data quality

issues and understanding environmental conditions. Such

automation can also minimize human mistakes during the

analysis phase. However, different WSN systems provide

different encodings, models, and services for their sensor

data. This makes the integration of differing sensor tech-

nologies and network systems problematic. Furthermore,

the encodings, models, and services are typically designed

for a particular application, which makes it difficult to reuse

these services for other WSN applications. A standardized

model, encoding, and service for WSN data would avoid

the constant and inefficient need to “reinvent the wheel”,

and can facilitate the discovery and exploitation of sensor

data.

This paper describes a system architecture based on the

Open Geospatial Consortium (OGC) Sensor Web Enable-

ment (SWE) framework [3], [4]. A middleware integra-

tion platform has been designed to collect and integrate

sensor data from disparate WSN systems, referred to as

the James Cook University (JCU) Sensor Federation (JSF).

JSF provides a flexible solution for automating the pro-

cess of transforming sensor data into the corresponding

SWE encoding and storing the data in the Sensor Obser-

vation Service (SOS) via the web service interface. Fur-

thermore, additional features have been added to the ex-

isting SOS web service interface to provide web-based ac-

cess to the data and statistical analysis tools. Several real

world WSN projects of varying scales and complexities

have been integrated into one SOS using JSF to demonstrate

the system’s versatility. A performance analysis indicates

that the additional features have minimal impact on the

system.

86



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

This paper is organized as follows. Section 2 describes

the SWE framework, provides a brief overview of the

WSN projects that authors have been involved with, and

presents the motivation for the work presented in this pa-

per. Section 3 describes the JSF system architecture, and

proposes a middleware integration platform for the automa-

tion of transforming data from multiple WSNs into the

SWE encodings. Section 3 also shows how SOS is in-

tegrated with open source freely available technologies to

support web-based data visualization and statistical analysis

of the data stored in the SOS. Section 4 analyses the per-

formance of the enhanced SOS and discusses some of the

issues authors had when implementing a SWE system. Sec-

tion 5 provides some concluding remarks and avenues for

future work.

2. Related Work and Problem

Motivation

2.1. Sensor Web Enablement

Historically, WSN applications have been completely pro-

prietary. A specific vendor would provide all of the sen-

sor technologies, hardware, software, and network infras-

tructure. This predicament meant that WSNs were very

technical, application-specific, inflexible, and expensive to

purchase and maintain. There was limited scope to inte-

grate heterogeneous sensor technologies (i.e. sensors from

different vendors). Furthermore, the sensed data was for-

matted/encoded according to the vendor’s own standards,

which restricted data sharing and reuse.

In recent years, the concept of the Sensor Web has gained

momentum [3]–[10]. The Sensor Web’s aim is to make all

sensors interoperable (regardless of the vendor) so that het-

erogeneous sensor technologies can be combined to create

low-cost, non-proprietary WSNs. Furthermore, collected

data becomes available to the Sensor Web which promotes

data sharing and reuse. The data can be reused by other

consumers for purposes that may be unrelated to, or extend

upon the original motivation for collecting the data. This

is possible as the WSNs and the data they collect adhere to

a set of mutually accepted standards.

The OGC is made up of representatives from academia,

industry, and enthusiasts to develop the standards behind

the Sensor Web. The OGC SWE framework provides a set

of standards that enables all types of sensors, transducers

and sensor data repositories to be discoverable, accessible

and usable via the Web [3], [4]. The SWE framework

consists of following standards and services:

• Observations and Measurements (O&M) – defines

XML schemas for accessing and exchanging obser-

vations, measurements, procedures, and metadata of

sensor systems;

• Sensor Model Language (SensorML) – defines stan-

dard models and XML schemas for describing the

processes within sensor and observation processing

systems. SensorML provides a functional model of

the sensor system, where all components including

sensors, transducers, actuators, and processors are

modeled as processes;

• Sensor Observation Service (SOS) – enables the

querying of observations, sensor metadata and repre-

sentations of observed features, registration/deletion

of sensors, and inserting new observations of a reg-

istered sensor. SOS is essentially a data repository

at the heart of an SWE WSN;

• Sensor Planning Service (SPS) – defines interfaces

for queries that provide information about the capa-

bilities of a sensor and how to task the sensor;

• Sensor Alert Service (SAS) – provides a standard

web service interface for publishing and subscribing

to alerts from sensors; and

• Web Notification Services (WNS) – provides a stan-

dard web service interface for asynchronous delivery

of messages or alerts from SAS and SPS web ser-

vices.

The SWE architecture has reached broad acceptance by

sensor network application developers. Schade et al. [11]

applied the SWE framework to volunteered geographic

information sensing and event detection techniques.

Shafi et al. [12] introduced an automated detection/alert

system based on the SWE framework (SOS, SAS and

WNS) that detects radiation leakage and sends a notifi-

cation to its subscribed users. Hu et al. [13] extended the

SensorML model to support sensor observation capabil-

ity information, i.e. depth, quality, frequency, and range,

that enables the accurate discovery of qualified sensors.

Srimathi et al. [2] proposed a sensor grid architecture that

combines a metamodeling tool, the SWE framework, and

sensor grid (Hadoop framework). Back et al. [14] presented

a conceptual design for bridging two domains: a supervi-

sory control and data acquisition system and a Geographic

Information System (GIS), where the SOS is used to provide

a standardized service model for GIS.

Churcher et al. [15], [16] describe their experiences with

applying SWE to a telecare application involving a number

of projects using bespoke sensor hardware, interfaces, and

communications. Guru [17] show how they are using the

a river catchment WSN to evaluate specifications for SWE

in terms of its ability to facilitate water resource manage-

ment tools. Markovic et al. [8] also describe a system

for river pollution monitoring and alerts using architecture

based on SWE. Lee and Reichardt [18] discuss how open

standards for sensor interfaces and data formats can aid in

speeding up the identification of threats to homeland secu-

rity. Samadzadegan et al. [19] developed a system archi-

tecture for monitoring air quality observations using SWE

standards (i.e., SOS, SAS, SPS and WNS) for integrat-

ing/interoperating heterogeneous sensors and discovering

air pollution to send a notification.

87



Yong Jin Lee, Jarrod Trevathan, Ian Atkinson, and Wayne Read

2.2. Proposed Sensor Network Projects

The authors have been involved in several projects where

WSNs were deployed in different locations and operate in-

dependently. The WSN projects differ in size, complexity,

and application. These WSN projects include:

Smart Environmental Analysis and Technologies (SE-

MAT) [20]: The SEMAT project revolved around con-

structing smart sensor networks that can be deployed in

aquatic settings for the purposes of conducting marine stud-

ies. Authors have undertaken SEMAT deployments at De-

ception Bay and Heron Island in Queensland Australia. The

system was designed to take a heterogeneous, low-cost ap-

proach, which allowed for near real-time access to data. In

each deployment, five buoys containing on-board electron-

ics (Gumstix Computer-On-Module) equipped with various

sensors from Dataflow Systems (temperature, light, water

pressure, and salinity) were positioned in shallow water en-

vironments. The buoys communicated sensor data back to

the end user via a base station located near-by on land. This

project grappled with significant WSN issues including lim-

ited power supply, communications over and underwater,

and problems with marine fouling and water ingress.

Digital Homestead Project: This project involved build-

ing a low-cost and smart WSN suitable for applications in

a digital homestead (i.e. remote farming properties) and ur-

ban environments. The project’s initial WSN deployment

at Rowes Bay in Queensland Australia used and Seeeduino

Stalker with eight DS18B20 temperature sensors, DHT22

humidity sensors, and analogue light sensors placed un-

der different types of roofing materials for observing the

energy efficiency measures. This study is being used to

explore renewable energy solutions that can benefit biodi-

versity maintenance through planned urban landscapes.

Greening Federation Place: This project’s goal was to

demonstrate how heritage buildings in tropical environ-

ments can evolve into sustainable buildings while retaining

cultural significance. Federation Place is a heritage listed

building located in Townsville Australia. A WSN contain-

ing DS18B20 temperature sensors was deployed at Federa-

tion Place to examine the thermal properties of the building

and identify fine scale sources of temperature variation.

Over time, difficulties arose as a result of each of the indi-

vidual WSN deployments using different types of sensors

(with different capabilities) and requiring different setup

configurations. From a software perspective, each of the

projects contained its own models, encodings, and services

for sensor data. Also, differing amounts and types of data

were available to describe each deployment’s characteris-

tics, e.g. the positioning of nodes and sensors are available

for the SEMAT deployments, but not for the Rowes Bay

deployment. Furthermore, each deployment was initially

integrated with different types of visualization and analysis

tools based on individual project requirements [21].

As the number of projects grew and their complexity in-

creased, the need for standardization of sensor configu-

ration, data, storage, communication, and a generic web-

based user interface for data visualization and analysis be-

came apparent. The solution required was more compre-

hensive than the existing solutions proposed by the liter-

ature in Subsection 2.1 due to a number of factors. The

existing proposals from the literature were either for a spe-

cific project, or proposed frameworks that were too broad

to be applied in practice. A system that could be used

over multiple disparate WSN projects with completely dif-

ferent applications was desired. The system also needed to

remove the manual process of generating documents that

adhere to SWE standards (i.e., SensorML, O&M). When

performed manually, this process is tedious, repetitious of

work conducted in other WSNs, and is often error-prone.

Automating this process would increase the speed of setting

up a WSN and reduce the possibility of errors in the SWE

documents. Furthermore, to authors’ knowledge little or no

literature exists on providing a general web-based interface

and statistical analysis features that can interact with the

SWE framework.

3. JSF System Architecture

In order to integrate and interoperate sensor data from

the disparate WSNs described in Subsection 2.2, the SWE

framework was extended by creating a middleware inte-

gration platform. The intention is to provide an interface

(referred to as the SWE API) for each WSN deployment

that facilitates interoperability according to SWE standards.

The SWE API provides common encoding/decoding func-

tions that can be used by any WSN. Encoding functions

specific to a particular WSN are abstracted from the SWE

layer and are implemented in an extension level. For exam-

ple, with the SEMAT Heron Island deployment, the Heron-

SOSEncoder implements functions specific to the Heron Is-

land deployment, by extending the SWE SOSEncoder. The

point of this approach is that changes to any particular WSN

do not affect how any other WSN application interacts with

the SWE framework. Furthermore, the system automates

the generation of the SWE documentation (i.e., SensorML,

O&M) to ease WSN set-up time or changes in the WSN

configuration, thereby reducing the potential for errors in

adhering to SWE standards.

The authors also decided to extend SWE’s SOS standard

by providing a generic web-based user interface and statis-

tical analysis functionality. The combination of the WSN

projects and our extended SWE functionality is referred to

as the JCU Sensor Federation (JSF). Figure 1 presents the

proposed JSF system architecture. The system is comprised

of:

• A Data User – this is the individual user/stakeholder

who is interested in accessing and viewing the data

from any WSN connected to the system;

• A SOS with support for web-based data visualization

and statistical analysis – this provides storage of sen-

sor metadata and sensor observations. The extended

88



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

Data User

Access/view

SOS

Analysis Vizualization

Web Service Interface

Access

Middleware Integration Platform

Deception
Bay

Heron
Island

Rowers
Bay

Federation
Place

Fig. 1. The JSF system architecture for the integration and in-

teroperability of sensor data from multiple data sources.

functionality allows for automated input, integration,

visualization, and analysis of sensed data. Environ-

mental scientists can use these features to enhance

the decision making process and/or the discovery of

new information from the environment under obser-

vation;

• A Middleware Integration Platform – this hides the

heterogeneity of models, encodings, and web service

interfaces for sensor data. This enables a user to

access the sensor data via the Internet without hav-

ing to learn individual models and service interfaces,

and also facilitates the integration and interoperabil-

ity of the heterogeneous data through automating the

process of generating SWE-compliant documents;

• Individual WSN Projects – the projects undertaken

as part of the work presented in this paper. These

include the SEMAT deployments at Deception Bay

and Heron Island, the Digital Homestead deployment

at Rowes Bay, and the Greening Federation Place

deployment (refer to Subsection 2.2). Conceivably

the number of projects can scale with the system.

A major benefit of employing the SWE framework is for

easy discovery and use of the data. The decision was made

to not utilize different SOSs for each deployment as a dis-

tributed approach reduces this benefit. For example, the

distributed approach would require a user to send requests

to different SOS URLs. Furthermore, users would need to

be informed every time a new SOS is added to the system.

Having a single SOS provides a single service interface to

multiple WSN deployments’ data/metadata. Therefore, the

proposed architecture brings all of the WSN deployments

together in one SOS.

3.1. The JSF Middleware Integration Platform

Sensor data stored in a SOS must be available via the SOS

web service interface. However, this process requires sig-

nificant effort in practice to achieve. For example, regis-

tering a sensor via the SOS web service interface requires

three steps:

• the sensor data need to be mapped into the respective

message encoding (i.e., the InsertSensorDocument),

• the document needs to be formatted based on a SOS

protocol binding, e.g., Simple Object Access Proto-

col (SOAP),

• the formatted document is then transferred to the SOS

via its web service interface.

Furthermore, it is necessary to have a common agreement

on how to apply SWE within a specific domain. This is

because there are different SWE specifications available,

where the encodings, models, and services are different.

For example, SOS version 2.0 provides the ability to store

observation metadata and data through different transac-

tions, whereas this ability is not available in SOS ver-

sion 1.0. That is, SOS version 1.0 requires metadata to

be transferred every time an observation is to be stored.

However, SOS version 2.0 only requires the metadata to

be stored once. Therefore, only the observation data is re-

quired, which reduces the amount of data transferred and

makes transfers faster. Also, the SOS implementations can

vary based on the needs of a particular domain (e.g. proto-

col bindings). Due to the aforementioned reasons, and that

SOS version 2.0 has a richer array of functionality, for JSF

the SOS version 2.0 is used.

JSF was developed to integrate the sensor data from mul-

tiple WSNs using the SWE architecture. JSF manages

adapted SWE specifications of an individual domain ap-

plication to map, format, and store its sensor and sensed

data. JSF provides the ability to extract sensor data from

a domain WSN application, and transforms the data into

the corresponding request document using its SWE API

implementation. Then, the encoded document is formatted

and transferred using the Transaction API, which provides

binding protocols (i.e. XML binding or SOAP binding) and

the HTTP functions (request/response). This abstracts the

underlying WSN projects from SWE and also automates

the process of generating SWE-compliant documents.

Figure 2 shows the design of the JSF middleware integra-

tion platform. This platform consists of three layers:

• Extraction layer – extracts sensor network data from

web services or databases and converts the data into

a corresponding SWE API function,

89



Yong Jin Lee, Jarrod Trevathan, Ian Atkinson, and Wayne Read

SOS

Deception Bay Heron Island Rowes Bay Federation Place

Transaction API

InsertSensorDocument

InsertSensorDocument

InsertResultDocument

InsertResultTemplate

Transaction
layer

Transformation
layer

Extraction
layer

SWE API (interface)

DeceptionBaySOSEncoder HeronBaySOSEncoder RBSOSEncoder FPSOSEncoder

DeceptionBaySOSExtractor HeronExtractor RBExtractor FPExtractor

Fig. 2. JSF middleware integration platform design (the arrows denote the direction of the flow of information).

• Transformation layer (SWE API) – maps data into

a corresponding SOS request document (i.e., Insert-

SensorDocument, InsertObservationDocument, In-

sertResultTemplateDocument, or InsertResult),

• Transaction layer – binds/transfers the encoded docu-

ments to a corresponding SOS web service interface.

Consider the SEMAT Deception Bay deployment. The data

is first extracted by the DeceptionBayExtractor (i.e. the

Extraction layer) and appropriate SWE API function is

called. The data is then encoded into a SOS-compliant

document by the DeceptionBaySOSEncoder (i.e. the Trans-

formation layer). Finally, the SOS request document is

transferred and stored in the SOS according to the SOS

web service (i.e. the Transaction layer). A similar process

occurs for data from any of the other WSN deployments,

i.e. Heron Island, Rowes Bay, and Federation Place.

3.1.1. The SWE API

The SWE Application Programming Interface (API) pro-

vides standardized and portable system abstractions that al-

lows JSF to transform data into SWE encodings (i.e. the

Transformation layer). The SWE API consists of the fol-

lowing components:

• Interface layer – provides five interfaces for the SOS

API. Each interface corresponds to the individual

SWE standards (SWEFrame SOSEncoder, SWE-

Frame SMLEncoder, SWEFrame OMOLEncoder,

SWEFrame SASEncoder, and SWEFrame SPSEn-

coder);

• Abstract layer – is associated with a particular SWE

implementation that provides a list of commonly used

functionality for the particular SWE implementation,

i.e. encoding data, query request documents, and

binding and transmission operations;

• Implementation layer – is an extension of the Abstract

layer that maps sensor network data from a particular

system type into the SWE documents.

A deployment must first be registered with JSF. During

registration, an API is created for the deployment. A de-

ployment’s API implementation contains two properties

“identifier” and “version”. The combined value must be

unique in order to store it into the API container. The

registered implementation can be retrieved from the con-

tainer by passing the respective identifier and version onto

the container interface. The Abstract layer can simply be

extended to add a new encoding, binding, or transmission

process.

Figure 3 presents an example of an SWE API implemen-

tation for the data from the SEMAT Heron Island deploy-

ment. It shows the identifier, version, and methods for

each class, and relationships between classes. The Heron-

SOSEncoder class uses all of the other classes. Individ-

ual classes represent each corresponding SWE component,

e.g. HeronSOSEncoder for SOS. These classes transform

sensor data into their respective SWE encodings (e.g., the

getInsertSensorDocument functionality maps sensor data

into the SOS InsertSensorDocument).

The HeronSensorMLEncoder implements the AbstractSen-

sorMLEncoder that maps the sensor data into an In-

sertSensorDocument. The HeronOMLEncoder implements

the AbstractOMLEncoder that maps the observation data

into an InsertObservationDocument, where its observation

metadata and data can be mapped in separate documents by

the HeronResultTemplateEncoder and HeronResultEncoder

respectively. The HeronSosEncoder provides a single in-

terface to access to the aforementioned implementations.

To describe a sensor in a SWE-compliant way requires the

following attributes:

• Identification – this requires the user to supply

uniqueID (“urn:ogc:def:identifier:OGC:uniqueID”)

and offeringID (urn:ogc;def:identifier:OGC:offer-

ingID), where an uniqueID attribute is used for

90



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

AbstractSensorMLEncoder AbstractSOSEncoder

AbstractResultEncoder

AbstractResultTemplateEncoder

AbstractOMLEncoder

HeronSensorMLEncoder
identifier = “Heron_SensorMLEncoder”;

version = “1.0”;

HeronSOSEncoder
identifier = “Heron”;

version = “1.0”;

HeronResultEncoder
identifier = “Heron_ResultEncoder”;

version = “1.0”;

HeronResultTemplateEncoder
identifier = “Heron_ResultTemplateEncoder”;

version = “1.0”;

HeronOMLEncoder
identifier = “Heron_OMLEncoder”;

version = “1.0”;

Extends Extends

Extends

Extends

Extends

#getlnsertSensorDocument:InsertSensorDocument

#getlnsertSensorDocument:insertSensorDocument

#getlnsertionCapabilitiesDocument:insertionCapabilitiesDocument

#getlnsertResultDocument:InsertResultDocument

#getlnsertResultTemplate:insertResultTemplateDocument

#getlnsertResultTemplate:insertResultTemplateDocument

#getlnsertResultDocument:insertResultDocument

#getlnsertObservationDocument:InsertObservationDocument

#getlnsertObservationDocument:insertObservationDocument

1 1

1

1

1 1

1

1

Fig. 3. Class diagram of the SWE API implementation for the SEMAT Heron Island deployment.

Table 1

The integration of the heterogeneous sensor data models/encodings using the SWE encodings

WSN Sensor Data Model/Encoding SWE Encoding

Deception

Bay, Heron

Island and

Rowes Bay

Node model: name, latitude, longitude, buoy

model, power log and sensors

SensorML: identifier, position, outputs and

components

Sensor model: serial number, manufacturer, de-

scription, type, parameter number and unit of

measurement

SensorML: identifier, position and outputs

SensedData model: type, unit of measurement,

position, time, raw Data, calibrated Data and

power log

O&M: field and values

Federation

Place

Node model: name, latitude, longitude and

sensors

SensorML: identifier, position and components

Sensor model: name, type, observedProperty,

code, altitude and definition

SensorML: identifier, position, outputs and

observableProperty

Observation model: definition, code and type ResultTemplate: field

Data model: value and timestamp Result: value

querying sensor (system) metadata, and offeringID

is used for inserting the sensor’s sensed data.

This is the same value that must be used within

O&M in order to link the observation and sensor

metadata/data;

• Capabilities– this attribute is used to describe the

feature that the sensor is measuring (e.g. Ocean);

• Location – describes the sensor’s (system) geograph-

ical location, its format is defined by its “reference-

frame” definition;

• Inputs – describes the sensor’s (system) process

input;

• Output – describes the sensor’s (system) process

output;

• Components – other systems that is included within

the system.

A WSN deployment typically consists of sensor nodes,

where sensors are attached/installed. So proposed WSNs

are described as a sensor node (identification, capabilities,

location, inputs, outputs, and components) that combines

91



Yong Jin Lee, Jarrod Trevathan, Ian Atkinson, and Wayne Read

Web service
interface

52north
SOS (2.0)

Database
(postgres)

Repository

Web-based
user interface

ServiceSystem

Config

„New”

O&M

t = 300

RowesBayStatistic

DeceptionBayStatistic

«Component»
Data Analysis

HeronStatistic

Fig. 4. The enhanced SOS architecture with web-based data visualization and statistical analysis functionality.

all the sensors under the components attributes, where in-

dividual sensors are described (identification, capabilities,

location, inputs, outputs). The SEMAT Heron Island de-

ployment is described under the sensor node’s capabilities

attribute and individual sensor’s capabilities describe what

actual environmental factor the sensor is measuring, e.g.

temperature, light. Note that SensorML documents can be

quite large. The InsertSensor document for the Heron Is-

land deployment contains over 800 lines of code.

Table 1 shows how the SWE API integrates the hetero-

geneous sensor data models/encodings using the SWE en-

codings. The SWE API implementation for the Deception

Bay, Heron Island and Rowes Bay deployments converts the

Node and Sensor model into SensorML, and the Sensed-

Data model into O&M. The API implementation for the

Federation Place deployment transforms the Node and Sen-

sor model into SensorML, and the Observation and Data

model into InsertResultTemplate and InsertResult. The pur-

pose of this table is to show how each deployments own

characteristics can be maintained, while the SWE API maps

these characteristics to the appropriate corresponding at-

tributes in SWE.

3.2. SOS Design and Implementation

As previously mentioned, the authors required a generic

web-based user interface to operate across all the WSN

deployments using JSF. Therefore, an existing SOS imple-

mentation (52◦ North SOS version 2.0) is extended to sup-

port web-based data visualization and statistical analysis of

the collected data. This was achieved using the following

open source technologies and APIs:

• Apache Common Math API – provides mathemat-

ics and statistics, i.e. descriptive statistics, sim-

ple/multiple regression, rank transformation, covari-

ance, correlation, and statistical tests;

• Weka API – enables Java to support several data min-

ing tasks including data pre-processing, clustering,

classification, regression, and feature selection;

• Highstock library – provides general timeline charts

with navigation options, e.g. scrolling and date

picker;

• Google Maps API – allows for the embedding of

Google Maps on a web page.

The system provides additional features to the existing

SOS web service interfaces (i.e., InsertObservation, In-

sertResultTemplate and InsertResult) that analyses and

visualizes the data based on the system configuration.

The SWE encodings/documents are provided by the OGC

(net.opengis.* package). 52◦ North SOS does not provide

support for all the semantic definitions to describe at-

tributes such as FeatureOfInterest, Location, Format, etc.

These attributes are described using the 52◦ North API

(ogc.n52.sos.ogc.om.features*).

Figure 4 illustrates the enhanced SOS architecture and how

the system operates. At the heart of the architecture is the

52◦ North SOS. SWE compliant documents are pushed to,

or retrieved from the SOS via SWE’s web service interface.

When a sensor transfers sensed data, the system stores the

data in a temporary location. This sensed data is formatted

according to the O&M SWE standard.

The system runs a batch-process at predefined intervals to

iterate through new data to generate and store a JavaScript

Object Notation (JSON) file for each O&M document. The

interval is determined by a configuration file. For example,

in this instance the configuration file contains t=300 which

means that batch process runs every 300 s.

Individual statistical analysis implementations can integrate

data from multiple sensors by providing a list of sensor

identifiers supplied by the offering parameter. Note that

the offering parameter is O&M’s equivalent of the sensor

identifier in sensorML. This parameter can be accessed by

invoking the isOfferingListed function in O&M. The system

also checks for any statistical analysis implementations that

use the sensed data through the offering property within the

O&M document during the iteration. The result of each

92



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

Fig. 5. The main web page shows the geographical location of the WSN deployments on the Google Maps, and sensor/observation

data provided by the SOS.

Fig. 6. An example deployment page for the web-based user interface.

analysis process is mapped with the Java Map interface,

which is transformed into a JSON file and stored in the

repository. The JSON files provide a light-weight data in-

terchange format to facilitate asynchronous browser/server

communication. This technology is used for mapping de-

ployment data via the Java Map interface.

The web-based user interface provides graphical visual-

ization of the sensors, observation data, and the analysis

results. When the user interface requires information, it

can access the data from the 52◦ North SOS using SWE’s

web service interface. Alternately, when statistical analy-

sis/aggregation data is required, the user interface can ac-

cess the repository.

The user interface consists of two primary sections:

• Main web page – provides an overview of registered

deployments, presents the deployment locations on

a Google Map, and allows the user to select and

navigate to a specific deployments web page,

• Deployment web page – provides access to all details

specific to an individual deployment, and presents

93



Yong Jin Lee, Jarrod Trevathan, Ian Atkinson, and Wayne Read

the user with options to graphically visualize sensed

data and analysis results, or to export the data to

a file.

Figure 5 shows the user interface’s main web page. The

main page of the interface consists of four frames:

• Map – illustrates the geographical location of various

WSN deployments and sensor nodes as markers on

Google Maps. A user can view a deployment’s para-

metric information by clicking on the corresponding

marker in the map;

• Deployment – displays a list of WSN deployments

associated with a particular project (e.g. SEMAT)

and shows each deployment’s name, geographical

location, type, and description. A user can also view

information specific to a WSN deployment by click-

ing the corresponding deployment button;

• Service – provides the SWE service information;

• SOS offering – shows a list of the sensed data pro-

vided by the SOS.

Figure 6 shows an example of what is shown in the user

interface when a specific deployment has been clicked on.

This page consists of the following components:

• Visualization metadata – provides a brief description

about the deployment’s purpose;

• Sensors – shows a list of sensors associated with the

deployment and allows a user to click on a specific

sensor to view its metadata and sensed data;

• Sensor metadata – displays sensor metadata informa-

tion (e.g., the sensor type, description);

• Analysis – lists any analysis processes being con-

ducted on the collected data, and provides the user

with several options regarding the types of statistical

analysis that can be performed;

• Analysis result – provides graphical illustration of the

analysis results;

• Data graph – provides graphical illustration of the

sensed data. Note that numerous sensor data sets

can be overlayed on the same graph;

• Time control bar – allows the user to control the

analysis result by varying the time span.

Figure 6 shows the deployment page for the Rowes Bay

WSN. The interface is showing the data graphs correspond-

ing to the temperature sensors and the sensor metadata,

i.e. where each sensor is located in relation to the roofing

material. The user can graph each sensor’s data individ-

ually, or overlay all sensor data. The deployment page

also illustrates the statistical analysis results conducted on

the temperature data. The analysis section is charting the

minimum, maximum, variance, and average temperature of

each temperature sensor at hourly intervals. An user has

the ability to export the collected (and analyzed) data in

a series of formats for use in other software packages.

The web-based user interface is written in JavaScript and

HTML to increase flexibility and reusability. The interface

also provides the ability to add, modify, or remove a data

source (i.e. sensor and analysis results), and to configure

the visualization type (i.e. charting type) from the deploy-

ment web page using a system configuration file. A new

deployment web page can be added by creating a web page

and modifying the configuration file (i.e. setting its data

sources and visualization types). This is automatically con-

verted into the corresponding JavaScript functions to gen-

erate charts/graphs and Google Maps. In this manner, the

web-based interface essentially becomes “generic” in that

it can display data from any WSN regardless of its appli-

cation.

4. Performance and Lessons Learned

4.1. Performance of the Enhanced SOS System

To evaluate the integration of the statistical analysis and

visualization services with the SOS, the 52◦ North SOS is

compared with presented enhanced SOS. The test environ-

ment was setup with a virtual machine and a laptop. Both

SOS implementations were installed on the virtual machine

(Linux kernel 2.6.32, Red Hat 4.4.7, 2.93 GHz CPU and

1 GB RAM) with Java 1.7 and Tomcat 7. JSF was installed

on the laptop (Mac OS X 10.7.5 2.8 GHz CPU, 4 GB RAM)

to simulate test data sets (InsertObservationDocument).

The effects of the additional features in the system perfor-

mance were observed. 100 simulated sensors were regis-

tered on the both SOS implementations, and the enhanced

SOS was configured to provide descriptive statistics on

the sensed data transferred by these sensors every minute.

A test function was implemented in the middleware to

encode and transfer the InsertObservationDocument with

100 data points for each sensor.

Figure 7 presents the results of the performance comparison

between the 52◦ North SOS and the enhanced SOS. The

X-axis and Y-axis gives the number of sensors and the time

(in seconds) respectively. The test results show that the In-

sertObservation, InsertResultTemplate and InsertResult ser-

vice time of the enhanced SOS are approximately 0.5, 0.1,

and 0.3 seconds slower respectively than the original SOS

for every transaction. This indicates that the additional fea-

tures of proposed enhanced SOS have minimal impact on

the original service performance of the 52◦ North SOS.

4.2. Lessons Learned from Implementing SWE

In this section some of the practical challenges the authors

faced when using SWE are briefly described and how they

managed to overcome these issues.

A major hurdle for implementing a SWE-compliant WSN

is that SWE takes time to learn (i.e. a few months). The

SWE documentation is complex. An SWE implementer

94



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

800

700

600

500

400

300

200

100

0
10 20 30 40 50 60 70 80 90 100

T
im

e 
[s

]

Number of sensors

52north SOS
enhanced SOS

InsertObservation
(c)

60

50

40

30

20

10

0
10 20 30 40 50 60 70 80 90 100

T
im

e 
[s

]

Number of sensors

52north SOS
enhanced SOS

InsertResultTemplate
(b)

800

700

600

500

400

300

200

100

0
10 20 30 40 50 60 70 80 90 100

T
im

e 
[s

]

Number of sensors

52north SOS
enhanced SOS

InsertObservation
(a)

Fig. 7. A performance comparison between the 52◦ North SOS

and the enhanced SOS.

has to go through every part of the documentation or

a least the relevant sections in order to successfully get

a SWE-compliant WSN operational.

The process with moving a WSN towards SWE is found

to first focus on getting a SOS running. The next step is

understanding how to push a SensorML document into the

SOS using the sensor’s identifier (and also usually a seman-

tic web resource). Once a sensor is registered with SOS,

the sensor’s identifier is used to push a sensor observation

into the SOS. SOS will then use the sensor’s identifier to

automatically link observation data with the corresponding

SensorML document.

A major issue that hinders an SWE implementation is that

SWE is very pedantic with its expectations about data and

message formats. SWE requires specific data to be pro-

vided in a particular order with an explicit structure, and

also with an exact semantic resource. If any data or mes-

sage does not strictly adhere to these formatting rules, the

information is not recognized and causes errors. This lack

of flexibility can make implementing SWE a challenge. In

some instances SWE will raise the error to the user’s atten-

tion. On other occasions it may appear that data has been

stored correctly (as no errors are flagged). However, as the

format is incorrect, the data is unable to be retrieved. This

lack of storage safeguard can cause frustration if a signifi-

cant quantity of data has been incorrectly stored and can no

longer be recovered. Therefore, extensive testing of format-

ting is required before employing the system for use with

real data.

A further frustration with SWE is that SOS asks you to

describe a large number of characteristics. None of these

characteristics are optional. If you do not have this infor-

mation, you need to put in dummy values as placeholders.

Furthermore, SOS version 2.0 has a semantic web compo-

nent that requires you to define what the metadata is for

(semantic web resource). This may not be relevant in the

context of your system, or if you do not desire to use the

semantic web components. Additionally, it can be difficult

to locate some of these semantic resources.

JSF attempts to alleviate some of these issues as the SWE

API transforms the sensor data context of a deployment

into the SWE encoding (SensorML, O&M, etc.). As this

process is fully automated, it makes it easier to generate

the encodings. All you have to do is pass the parameters

(system name, process name, type of process) and the SWE

API creates the respective SWE-compliant document. This

ensures that data is properly formatted, data is not missing

(or dummy values are created), and semantic resources are

in place. This reduces the amount of work required and

the number of potential errors when operating the system.

5. Conclusion

The authors have been involved with multiple real-world

WSN projects including the SEMAT deployments at De-

ception Bay and Heron Island, the Digital Homestead de-

ployment at Rowes Bay, and the Federation Place WSN.

Each project differed in size, complexity, and application.

Different sensors were involved (i.e., temperature, humidity,

light, water pressure, and salinity) which provided differ-

ent data streams. Furthermore, each project used different

technologies to collect, log, transfer, and store the data.

A system has been required to speed up the deployment

process by automating common tasks, and a way to in-

tegrate, visualize, and analyze the data under a common

web-based user interface to support the decision making

processes of the end user.

This paper presented a system architecture based on the

SWE framework that facilitates the integration and interop-

erability of sensor data from dispersed WSN systems. The

authors proposed a middleware integration platform JSF,

which provides integration between the WSN systems and

the SWE framework. JSF manages adapted SWE specifi-

cations of an individual domain application to map, format,

and store its sensor and sensed data, and provides the abil-

ity to extract sensor data from a domain WSN application.

JSF transforms the data into the corresponding request doc-

95



Yong Jin Lee, Jarrod Trevathan, Ian Atkinson, and Wayne Read

ument using its SWE API implementation, formats the data

(via a protocol binding), and then transfers the requested

document to the SOS. JSF facilitates the discovery and ex-

ploitation of sensor data from dispersed WSNs, and reduces

the amount of effort needed for developing a new WSN ap-

plication. As presented solution provides a standardized

framework, JSF can be reused for any type of WSN appli-

cation.

The paper also presented an enhanced SOS implementa-

tion for JSF that provides support for web-based data vi-

sualization and statistical analysis using open source freely

available technologies. Additional features were added to

the existing SOS web service interfaces that integrates data

from multiple sensors. The enhanced SOS provides func-

tionality for analyzing the data and allows the data and

the analysis result to be visualized graphically via a web-

based user interface. A performance analysis was con-

ducted to compare the impact that the additional function-

ality of the enhanced SOS has on the system compared to

a regular SOS implementation. The performance analysis

showed that the additional features have minimal impact on

the system performance, where each additional transaction

with 100 sensed data points increased its service response

time by approximately 0.5 s. Also some lessons learned

for implementing a WSN systems using SWE are briefly

described. Some impediments/difficulties for integrating

SWE are the initial learning curve, having to strictly adhere

to SWE document formats, having to supply extraneous

or unnecessary information, dealing with subtle errors in

SOS due to incorrect message formats or missing data, and

the tedious process of generating lengthy SWE-compliant

documents.

Future work involves extending the SOS server with

a semantically-enabled SOS server [22]. A significant is-

sue with the SWE architecture is the lack of semantically

rich discovery mechanisms. This makes it hard to explore

related concepts, subgroups of sensor types, or other de-

pendencies between the sensors and the data they collect.

Integrating SOS with semantic technologies will enable the

SOS server to query high-level knowledge of the environ-

ment as well as the raw sensor data. This can facilitate

knowledge sharing and exchange, and automated process-

ing of web resources.

References

[1] F. L. Lewis, “Wireless sensor networks”, in Smart Environments:

Technology, Protocols and Applications, D. Cook and S. Das, Eds.

New York: Wiley, 2004, pp. 11–46.

[2] C. Srimathi, C. Eunmi, H. A. Jemal, and N. Rajesh, “Sensor grid

middleware metamodeling and analysis”, Int. J. Distrib. Sensor

Netw., pp. 1–12, 2014.

[3] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC Sensor Web

Enablement: Overview and High Level Architecture”, in GeoSensor

Networks – 2nd Int. Conf. GSN 2006, Boston, MA, USA, S. Nittel, A.

Labrinidis, and A. Stefanidis, Eds. LNCS, vol. 4540, pp. 175–190.

Springer, 2008.

[4] M. Botts and A. Robin, “Bringing the sensor web together”, Geo-

sciences, pp. 46–53, 2007.

[5] K. Delin and S. Jackson, “The sensor web: a new instrument con-

cept”, in SPIE’s Symposium on Integrated Optics, San Jose, CA,

USA, 2001.

[6] K. Delin, “Sensor webs in the wild”, in Wireless Sensor Networks:

A Systems Perspective, N. Bulusu and S. Jha, Eds. London: Artech

House, 2005.

[7] P. Gibbons, “Irisnet: An architecture for a worldwide sensor web”,

IEEE Pervasive Comput., vol. 2, no. 4, pp. 22–33, 2003.

[8] N. Markovic, A. Stanimirovic, and L. Stoimenov, “Sensor web for

river water pollution monitoring and alert system”, in Proc. 12th AG-

ILE Int. Conf. on Geographic Inform. Sci. AGILE 2009, Hannover,

Germany, 2009.

[9] D. Moodley and S. Ingo, “A new architecture for the sensor web: the

SWAP framework”, in Semantic Sensor Netw. Worksh. A workshop

of the 5th Int. Semantic Web Conf. ISWC 2006, Athens, Georgia,

USA, 2006.

[10] E. Torres-Martinez, P. Granville, M. Schoeberl, and M. Kalb, “A web

of sensors: enabling the earth science vision”, Acta Astronautica,

vol. 53, no. 4–10, pp. 423–428, 2003.

[11] S. Schade et al., “Citizen-based sensing of crisis events: sensor web

enablement for volunteered geographic information”, Appl. Geomat.,

vol. 5, no. 1, pp. 3–18, 2013.

[12] S. Shafi, A. A. Reshi and A. Kumaravel, “Wireless sensor network

based early warning and alert system for radioactive radiation leak-

age”, Middle-East J. Scient. Res., vol. 19, no. 12, pp. 1602–1608,

2014.

[13] S. M. Guru, P. Taylor, H. Neuhaus, Y. Shu, D. Smith, and A. Ter-

horst, “Hydrological sensor web for the South Esk catchment in the

Tasmanian state of Australia”, in Proc. 4th Int. Conf. on eScience,

eScience’08, Indianapolis, IN, USA, 2008, pp. 432–433.

[14] C. Hu, Q. Guan, N. Chen, J. Li, X. Zhong, and Y. Han, “An ob-

servation capability metadata model for EO sensor discovery in sen-

sor web enablement environments”, Remote Sens, vol. 6, no. 11,

pp. 10546–10570, 2014.

[15] S. Back, S. B. Kranzer, T. J. Heistracher, and T. J. Lampoltshammer,

“Bridging SCADA systems and GI systems”, in Proc. IEEE World

Forum on Internet of Things WF-IoT 2014, Seoul, Korea (South),

2014, pp. 41–44.

[16] G. E. Churcher, G. Bilchev, J. Foley, R. Gedge, and T. Mizutani,

“Experiences applying sensor web enablement to a practical telecare

application”, in Proc. 3rd Int. Symp. on Wirel. Pervasive Comput.

ISWPC 2008, Santorini, Greece, 2008, pp. 138–142.

[17] G. E. Churcher and J. Foley, “Applying and extending sensor web

enablement to a telecare sensor network architecture”, in Proc. 4th

International ICST Conf. on COMmun. Syst. softWAre and middle-

waRE, Dublin, Ireland, 2009, p. 6, 2009.

[18] K. B. Lee and M. Reichardt, “Open standards for homeland secu-

rity sensor networks”, Instrument. & Measur. Mag., vol. 8, no. 5,

pp. 14–21, 2005.

[19] F. Samadzadegan, H. Zahmatkesh, M. Saber, and H. J. Ghazi khan-

lou, “An interoperable architecture for air pollution early warn-

ing system based on sensor web”, ISPRS – Int. Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,

vol. 1, no. 3, pp. 459–462, 2013.

[20] J. Trevathan, R. Johnstone, T. Chiffings, I. Atkinson, N. Bergmann,

W. Read, S. Theiss, and T. Stevens, “SEMAT – The next generation

of inexpensive marine environmental monitoring and measurement

systems”, Sensors, vol. 12, no. 7, pp. 9711–9748, 2012.

[21] Y. J. Lee, J. Trevathan, I. Atkinson, W. Read, and R. Johnstone,

“The evolution of the SEMAT sensor network management system”,

in Proc. 7th Int. Conf. on Intell. Sensors, Sensor Netw. and Inform.

Process. ISSNIP 2011, Adelaide, Australia, 2011, pp. 229–234.

[22] C. A. Henson, J. K. Pschorr, A. P. Sheth, and K. Thirunarayan,

“SemSOS: Semantic Sensor Observation Service”, in Int. Symp. on

Collabor. Technol. and Syst., Baltimore, MA, USA, 2009.

96



The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework

Yong Jin Lee completed his

Ph.D. in Information Technol-

ogy in 2015 at James Cook

University. His research inter-

ests include wireless sensor net-

works, datamining, ecommerce

security and fraud, and big

data. He worked on the Smart

Environmental Monitoring and

Analysis Technologies project

in conjunction with the Univer-

sity of Queensland. Dr. Lee now works in industry in South

Korea as an analyst/programmer. His current projects in-

volves big data analysis of sensor data.

E-mail: yong.lee1@jcu.edu.au

eResearch Centre

James Cook University

Townsville, Queensland, Australia

Jarrod Trevathan is a lec-

turer/researcher for the School

of Information and Communi-

cation Technology at Griffith

University. His research inter-

ests include ecommerce secu-

rity and fraud, dynamic hand-

written signature verification,

phishing scams, and wireless

sensor networks. He has worked

in industry as an analyst/pro-

grammer and has an extensive history working with James

Cook University and the University of Queensland. He

took a lead role in the Smart Environmental Monitoring

and Analysis Technologies project. Dr. Trevathan has pub-

lished over 70 papers in conferences, journals and book

chapters.

E-mail: j.trevathan@griffith.edu.au

School of Information and Communication Technology

Griffith University

Nathan, Queensland, Australia

Ian Atkinson is a Professor and

the director of the eResearch

Centre at James Cook Univer-

sity. His research interests in-

clude environmental monitor-

ing, sensors, data management

and supramolecular chemistry.

He has worked in various pro-

fessional/corporate IT roles and

is the recipient of several major

research grants, including the

Smart Environmental Monitoring and Analysis Technolo-

gies and CSIRO Digital Homestead projects.

E-mail: ian.atkinson@jcu.edu.au

eResearch Centre

James Cook University

Townsville, Queensland, Australia

Wayne Read is an applied

mathematician Associate Pro-

fessor. He is a lecturer/re-

searcher for the School of En-

gineering and Physical Sci-

ences at James Cook Univer-

sity. His research interests in-

clude numerical and computa-

tional mathematics, mathemat-

ical modeling (particularly for

ground water), and ecommerce

security and fraud. He has worked in various roles at

James Cook University, including Head of School for

over five years. He has a long standing relationship with

IT/Computer Science researchers in mentoring and provid-

ing applied mathematical solutions for algorithms and data

structures.

E-mail: wayne.read@jcu.edu.au

School of Engineering and Physical Sciences

James Cook University

Townsville, Queensland, Australia

97


