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Abstract—This paper proposes multirate teletraffic loss mod-

els of a link that accommodates different service-classes of

elastic and adaptive calls. Calls follow a Poisson process,

can tolerate bandwidth compression and have an exponen-

tially distributed service time. When bandwidth compression

occurs, the service time of new and in-service elastic calls in-

creases. Adaptive calls do not alter their service time. All

calls compete for the available link bandwidth under the com-

bination of the Threshold (TH) and the Bandwidth Reser-

vation (BR) policies. The TH policy can provide different

QoS among service-classes by limiting the number of calls of

a service-class up to a predefined threshold, which can be dif-

ferent for each service-class. The BR policy reserves part of

the available link bandwidth to benefit calls of high bandwidth

requirements. The analysis of the proposed models is based

on approximate but recursive formulas, whereby authors de-

termine call blocking probabilities and link utilization. The

accuracy of the proposed formulas is verified through simula-

tion and found to be very satisfactory.

Keywords—adaptive traffic policy, Call Blocking Probabilities,

Multirate Loss Model, threshold and bandwidth reservation

policies.

1. Introduction

Multirate elastic traffic refers to in-service calls of different

service-classes which have the ability to compress/expand

their bandwidth and simultaneously increase/decrease their

service time, during their lifetime in a system. A varia-

tion of elastic traffic is the so-called adaptive traffic. The

service time of adaptive in-service calls is not affected by

their bandwidth compression/expansion. Assuming that the

system behaves as a loss system (i.e. calls are not allowed

to wait in order to be serviced) and that the call arrival pro-

cess is Poisson then the calculation of various performance

measures such as Call Blocking Probabilities (CBP), and

system’s utilization can be based on the classical Erlang

Multirate Loss Model (EMLM) [1], [2]. The latter has

led to numerous loss models proposed for the call-level

analysis of wired (e.g. [3]–[19]), wireless (e.g. [20]–[32])

and optical networks (e.g. [33]–[37]).

In the EMLM, a link accommodates calls of different

service-classes. New calls compete for the available link

bandwidth according to the Complete Sharing (CS) policy

(i.e., calls compete for all bandwidth resources) and have

fixed bandwidth requirements and generally distributed ser-

vice time [1]. The term “fixed” means that in-service calls

do not compress their bandwidth during their lifetime in the

system. A new call is blocked and lost if its required band-

width is not available. The steady state probabilities in the

EMLM have a Product Form Solution (PFS), which leads

to an accurate CBP calculation [1], [2]. In [5], the EMLM

is extended to include the case of elastic traffic. The au-

thors name this model Elastic EMLM (E-EMLM). In the

E-EMLM, instead of rejecting immediately a blocked call,

the link may accept this call by compressing its bandwidth

and the bandwidth of all in-service calls. Bandwidth com-

pression is permitted down to a minimum bandwidth, which

can be different for each service-class. Elastic calls increase

their service time so that the product bandwidth by service

time remains constant. When a call with compressed band-

width leaves the system, then the remaining calls expand

their bandwidth in proportion to their initial bandwidth re-

quirement. Call blocking occurs when the value of the

minimum bandwidth requirement is still higher than the

available bandwidth. The model of [5] has been extended

in [9] in order to include the case of adaptive traffic. The

authors name the model of [9], Elastic-Adaptive EMLM

(EA-EMLM).

In this paper, authors initially consider a link that accom-

modates Poisson arriving calls of elastic service-classes and

modify the admission mechanism to include the Threshold

(TH) and the Bandwidth Reservation (BR) policies. The

proposed model is named E-EMLM/TH-BR. In addition,

authors propose the EA-EMLM/TH-BR whereby a link ac-

commodates elastic and adaptive service-classes. In the

TH policy, the number nk of in-service calls k of service-

class should not exceed a pre-defined threshold, after the

acceptance of a new service-class k call. Otherwise, the
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call is blocked and lost. The TH policy is significant since

it analyzes a multirate access tree network which accom-

modates different service-classes [38] and may differentiate

service-classes in terms of CBP or revenue rates by a proper

threshold selection (see e.g. [39], [40]). The BR policy is

used to reserve bandwidth to benefit calls of high band-

width requirements and is mainly used when CBP equal-

ization is required among calls of different service-classes.

The fact that the BR policy has been extensively applied

in the literature (e.g. [6], [8], [18], [28], [42]–[47]) evinces

its importance in call admission control.

To model the proposed E-EMLM/TH-BR and EA-

EMLM/TH-BR, the Markov chain method is used. How-

ever, due to the existence of the compression/expansion

mechanism and the BR policy, the reversibility of the

Markov chains is destroyed, and the steady state proba-

bilities in the proposed models cannot be determined via

a PFS. Therefore, authors resort to approximate Markov

chains which provide recursive formulas for the efficient

determination of the link occupancy distribution and, con-

sequently, CBP and link utilization. The accuracy of the

proposed formulas is verified through simulation and found

to be very satisfactory. On the other hand, the comparison

of the proposed models with existing models shows the ne-

cessity of the new models, as well as their consistency over

changes of their parameters (e.g. compression factor and of-

fered traffic-load). The term “consistency” is referred to the

anticipated behavior of the proposed models over changes,

such as the increase of offered traffic-load or the increase

of the compression factor.

This paper is organized as follows. In Section 2, the

E-EMLM/TH is presented and formulas for the calcula-

tion of the various performance measures are proved. In

Section 3, the E-EMLM/TH is extended to include the BR

policy. In Section 4, the E-EMLM/TH-BR is extended

to include the case of adaptive traffic. In Section 5, au-

thors provide numerical results whereby the E-EMLM/TH

and the E-EMLM/TH-BR are compared to existing models

and evaluated via simulation. The paper is concluded in

Section 6.

2. The Elastic EMLM/TH

(E-EMLM/TH)

2.1. The System Model

Consider a link of capacity C bandwidth units (b.u.) that

accommodates K elastic service-classes. Calls of service-

class k (k = 1, . . . ,K) follow a Poisson process with arrival

rate λk and request bk b.u. Bandwidth compression is in-

troduced in the system by allowing the occupied link band-

width to virtually exceed C up to T b.u., i.e. j = 0, 1, . . . , T .

Let n = (n1, . . . , nK) be the vector of all in-service calls

and b = (b1, . . . , bK) the vector of peak-bandwidth require-

ments, then j = nb.

The decision to accept a new service-class k call in the

system is based on the following constraints:

(a) the number of in-service calls of service-class k,

nk, together with the new call, should not exceed

a maximum threshold n∗k , i.e. nk +1 ≤ n∗k . Otherwise

the call is blocked. This constraint expresses the TH

policy;

(b) if constraint (a) is met then:

(b1) if j + bk ≤ C, the call is accepted in the sys-

tem with bk b.u. and remains in the system for

an exponentially distributed service time with

mean µ−1
k ;

(b2) if T ≥ j +bk > C the call is accepted by com-

pressing its bk together with the bandwidth of

all in-service calls of all service-classes.

The compressed bandwidth of the new service-class k call

is:

b′k = rbk =
Cbk

j +bk
, (1)

where r ≡ r(n) = C
nb+bk

= C
j+bk

.

The product service time by bandwidth per call is kept

constant by changing the mean value of the service time

of the new service-class k call to 1
µ ′

k
= j+bk

Cµk
. The com-

pressed bandwidth of all in-service calls becomes
Cbi
j+bk

for

i = 1, . . . , K. When all calls have compressed their band-

width, then j = C. Note that the minimum bandwidth that

a call tolerates is:

b′k,min = rminbk =
Cbk

T
, (2)

where rmin = C
T is the min. proportion of the required peak-

bandwidth and is common for all service-classes.

A new service-class k call is blocked if j +bk > T .

When an in-service call, with compressed bandwidth b′
i

departs from the system then the remaining calls expand

their bandwidth to b∗i in proportion to their bi, as follows:

bi
′′ = min









bi, b′i +
bib′k

K
∑

k=1
nkbk









. (3)

2.2. The Analytical Model

The existence of the bandwidth compression mechanism

destroys reversibility in the E-EMLM/TH and therefore the

steady state probabilities have no PFS. To circumvent this

problem, the state-dependent factors φk(n) are used, which

lead to a reversible Markov chain:

φk(n)=











1, when nb ≤C and n ∈ΩΩΩ

x(n−
k )

x(n)
, when C < nb ≤ T and n ∈ΩΩΩ

, (4)

where:

ΩΩΩ = {n : 0 ≤ nb ≤ T, nk ≤ n∗k , k = 1, . . . ,K} ,
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n = (n1, . . . , nk, . . . , nK) ,

n−
k = (n1, . . . , nk −1, . . . , nK)

and

x(n) =
1
C

K

∑
k=1

nkbkx(n−
k ), when C < nb ≤ T, n ∈ΩΩΩ . (5)

To prove a recursive formula for the link occupancy dis-

tribution, G( j), initially the global balance equation for

state n, expressed as rate into state n = rate out of state n
is considered:

K

∑
k=1

λkP(n−
k )+

K

∑
k=1

(nk +1)µkφk(n+
k )P(n+

k ) =

=
K

∑
k=1

λkP(n)+
K

∑
k=1

nkµkφk(n)P(n) ,

where n+
k = (n1, . . . , nk + 1, . . . , nK) and P(n), P(n−

k ),
P(n+

k ) are the probability distributions of states n, n−
k , n+

k ,

respectively.

Assume now, the existence of Local Balance (LB) between

adjacent states. Then the following LB equations can be

extracted, for k = 1, . . . ,K and n ∈ΩΩΩ:

λkP(n−
k ) = nkµkφk(n)P(n) , (6)

λkP(n) = (nk +1)µkφk(n+
k )P(n+

k ) . (7)

Based on the assumption of LB, P(n) can be determined

by

P(n) = G−1
(

x(n)
K

∏
k=1

ank
k

nk!

)

, (8)

where ak = λk
µk

is the offered traffic-load (in Erlangs) of

service-class k and G ≡ G(Ω) = ∑
n∈ΩΩΩ

(

x(n)
K
∏

k=1

a
nk
k

nk!

)

.

Since j is the occupied link bandwidth, G( j) is defined as:

G( j) = ∑
n∈ΩΩΩ j

P(n), ΩΩΩ j = {n ∈ΩΩΩ : nb = j} , (9)

Consider now two sets: 1) 0 ≤ j ≤ C and 2) C < j ≤ T .

For set 1), we have the EMLM/TH and G( j)’s are given

by the following formula [41]:

G( j)=
1
j

K

∑
k=1

akbk
[

G( j−bk)−Tk( j−bk)
]

, for j = 1, . . . ,C ,

(10)

where
Tk(x) := Pr

[

j = x, nk = n∗k
]

. (11)

In Eq. (11) the fact that nk = n∗k implies that j ≥ n∗kbk.

When C < j ≤ T , Eq. (4) is substituted in Eq. (6) to have:

akx(n)P(n−
k ) = nkx(n−

k )P(n) . (12)

Multiplying both sides of Eq. (12) by bk and summing over

k we obtain:

x(n)
K

∑
k=1

akbkP(n−
k ) = P(n)

K

∑
k=1

nkbkx(n−
k ) . (13)

Equation (13), due to Eq. (5) is written as:

P(n) =
1
C

K

∑
k=1

akbkP(n−
k ) . (14)

Summing both sides of Eq. (14) over ΩΩΩ j = {n∈ΩΩΩ : nb = j}
and based on Eq. (9), we obtain:

G( j) =
1
C

K

∑
k=1

akbk ∑
n∈ΩΩΩ j

P(n−
k ) . (15)

Since nk ≤ n∗k then

∑
n∈ΩΩΩ j

P(n−
k ) = G( j−bk)−Pr

[

x = j−bk, nk = n∗k
]

.

Thus, Eq. (15) can be written as:

G( j)=
1
C

K

∑
k=1

akbk
[

G( j−bk)−Tk( j−bk)
]

, for j =C+1, . . . ,T ,

(16)

where Tk(x) is given by Eq. (11).

Equations (10) and (16) result in the following approximate

but recursive formula for the calculation of G( j)’s in the

E-EMLM/TH:

G( j) =
1

min(C, j)

K

∑
k=1

akbk
[

G( j−bk)−Tk( j−bk)
]

,

for j = 1, . . . ,T . (17)

Having determined G( j)’s the CBP of service-class k, Bk,

and the link utilization, U , are calculated as:

Bk =
T

∑
j=T−bk+1

G−1G( j)+
T−bk

∑
j=n∗kbk

G−1Tk( j) , (18)

U =
C

∑
j=1

jG−1G( j)+
T

∑
j=C+1

CG−1G( j) , (19)

where G =
T
∑
j=0

G( j) is the normalization constant.

In Eqs. (17) and (18) the knowledge of Tk( j) is required.

Since Tk > 0 when j = n∗kbk, . . . ,T − bk, two subsets are

considered: 1) n∗kbk ≤ j ≤C and 2) C +1 ≤ j ≤ T −bk.

For the first subset, let a system of capacity Fk =
T − bk − n∗kbk that accommodates all service-classes but

service-class k. For this system, rk( j) is defined as:

rk( j) =
1
j

K

∑
i=1
i6=k

aibi
[

rk( j−bi)−Ti( j−bi)
]

,

for j = 1, . . . ,Fk . (20)

Based on rk( j)’s, Tk( j) is computed via the formula

Tk( j) =
a

n∗k
k

n∗k!
rk( j−n∗kbk) . (21)
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For the second subset, Tk( j) can be determined by

Tk( j) =
a

n∗k
k

n∗k! ∑
n∈ΩΩΩ

x(n)
K

∏
i=1
i6=k

ani
i

ni!
, (22)

where ΩΩΩ =
{

n∈ΩΩΩ : n∗kbk +
K
∑

i=1,i 6=k
nibi = j, C+1≤ j ≤ T−bk

}

.

In Eq. (22), Tk( j) is determined only for a subset of ΩΩΩ, de-

fined by C+1 ≤ j ≤ T −bk and only under the assumption

that nk = n∗k . This means that enumeration of the subset

of Ω is needed for those states n = (n1, n2, . . . , nk =
n∗k , . . . ,nK) where C +1 ≤ nb ≤ T −bk. Based on the fact

that the value of T should not be much higher than the

corresponding value of C (otherwise the increase of de-

lay for elastic calls may be unacceptable for some appli-

cations) the subset of ΩΩΩ will not become large. In gen-

eral, the computational complexity of Eq. (22) grows ex-

ponentially with K−1 (since for service-class k we have

nk = n∗k) and can be in the order of O
(

(T−bk−C)(K−1)
)

.

Assuming the existence of the CS policy and ignoring the

bandwidth compression mechanism, then the computational

complexity becomes O(CK) [1].

To further reduce the computational complexity of the pro-

posed model, the application of convolutional algorithms

may be considered [48], but this is left for future work.

3. The Elastic EMLM/TH-BR

Consider again a link of capacity C b.u. that accommo-

dates K elastic service-classes of Poisson arriving calls.

A new service-class k (k = 1, . . . ,K) call has a peak-

bandwidth requirement of bk b.u. and a BR parameter tk
that expresses the reserved b.u. used to benefit calls of

all other service-classes except k. If j + bk ≤ T − tk and

n∗k + 1 ≤ n∗k then the call is accepted in the link and re-

mains for an exponentially distributed service time with

mean µ−1
k . Otherwise the call is blocked and lost.

To determine G( j)’s in the E-EMLM/TH-BR the authors

propose the following approximate but recursive formula:

G( j) =

〈

1, for j = 0

1
min(C, j)

K

∑
k=1

akDk( j−bk)×

×
[

G( j−bk)−Tk( j−bk)
]

for j=1, . . . ,T

0, otherwise

〉

,

(23)

where

Dk( j−bk) =

{

bk for j ≤ T − tk

0 for j > T − tk
. (24)

A characteristic of the BR policy is that it ensures CBP

equalization among different service-classes by a proper se-

lection of the BR parameters. If, for example, CBP equal-

ization is required between calls of two service-classes with

b1 = 1 and b2 = 10 b.u., respectively, then t1 = 9 b.u. and

t2 = 0 b.u. so that b1 + t1 = b2 + t2.

The application of the BR policy in the E-EMLM/TH-BR is

based on the assumption that the number of service-class k
calls is negligible in states j > T − tk and is incorporated

in Eq. (23) by the variable Dk( j − bk) given in Eq. (24).

The states j > T − tk belong to the so-called reservation

space. Note that the population of calls of service-class k
in the reservation space may not be negligible. In [6], [11]

a complex procedure is implemented that takes into account

this population in the EMLM and Engset multirate state-

dependent loss models, respectively. However, this pro-

cedure may not always increase the accuracy of the CBP

results compared to simulation [11].

Similarly to the E-EMLM/TH, the CBP of service-class k,

Bk, is determined based on two groups of states:

• those where the available link bandwidth is less than

bk + tk b.u. when the new call arrives in the system;

this happens when T −bk − tk +1 ≤ j ≤ T ;

• those where the available link bandwidth is enough

to accept the new call, i.e. j ≤ T −bk−tk but nk = n∗k .

The latter implies that j ≥ n∗kbk, or n∗kbk ≤ j ≤ T −bk − tk.
Thus, the values of Bk are calculated by:

Bk =
T

∑
j=T−bk−tk+1

G−1G( j)+
T−bk−tk

∑
j=n∗k bk

G−1Tk( j) , (25)

where G =
C
∑
j=0

G( j) is the normalization constant.

As far as U is concerned, it can be determined by Eq. (19).

In Eqs. (23) and (25) the knowledge of Tk( j) is required

for n∗kbk ≤ j ≤ T −bk − tk. The authors consider again two

subsets: 1) n∗kbk ≤ j ≤ C and 2) C + 1 ≤ j ≤ T − bk − tk.

For the first subset, authors use Eqs. (20), (21) where Fk =
T − bk − tk − n∗kbk, while for subset (2) we use Eq. (22)

where x(n) is given by Eq. (5) and

Ω′Ω′Ω′ =

{

n∈Ω′Ω′Ω′ : n∗kbk +
K

∑
i=1
i6=k

nibi = j, C+1≤ j ≤ T −bk−tk

}

.

If C = T and both the TH and the BR policies are con-

sidered, then calls are not allowed to compress their band-

width. In this case, the proposed E-EMLM/TH-BR coin-

cides with the EMLM/TH-BR of [45]. The values of G( j)’s
and CBP are given by Eqs. (26), (27), respectively:

G( j) =

〈

1, for j = 0

1
j

K

∑
k=1

akDk( j−bk)×

×
[

G( j−bk)−Tk( j−bk)
]

for j=1, . . . ,C

0, otherwise

〉

,

(26)

Bk =
C

∑
j=C−bk−tk+1

G−1G( j)+
C−bk−tk

∑
j=n∗kbk

G−1Tk( j) , (27)
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where

Dk( j−bk) =

{

bk for j ≤C− tk

0 for j > C− tk
. (28)

The link utilization can be calculated by

U =
C

∑
j=1

jG−1G( j) . (29)

Finally, if C = T and we do not consider the TH and the

BR policies, then the proposed E-EMLM/TH-BR coincides

with the classical EMLM of [1], [2]. In that case, the link

occupancy distribution is determined by the well-known

Kaufman-Roberts recursion:

G( j) =

〈

1, for j = 0

1
j

K

∑
k=1

akbkG( j−bk) for j=1, . . . ,C

0, otherwise

〉

, (30)

The CBP of service-class k is given by [1], [2]:

Bk =
C

∑
j=C−bk+1

G−1G( j) , (31)

while the link utilization can be determined by Eq. (29).

4. The Elastic-Adaptive EMLM/TH-BR

Adaptive traffic is a variant of elastic traffic since adap-

tive calls can tolerate bandwidth compression without al-

tering their service time. To include adaptive traffic in the

E-EMLM/TH, authors assume that Ke and Ka are the num-

ber of elastic and adaptive service-classes, respectively.

The single link accommodates K service-classes of Poisson

arriving calls, where K = Ke +Ka.

The existence of the bandwidth compression mechanism

destroys reversibility in the proposed model and therefore

the steady state probabilities have no PFS. To circumvent

this problem, we use φk(n) based on Eq. (4) while the

values of x(n) are given by:

x(n)=







































1, when nb ≤C, n ∈ΩΩΩ

1
C

(

∑
k∈Ke

nkbkx(n−
k )+

+r(n) ∑
k∈Ka

nkbkx(n−
k )

)

when C<nb ≤ T, n ∈ΩΩΩ

0, otherwise

.

(32)

The derivation of Eq. (32) is based on the assumptions:

• The bandwidth of all in-service calls of service-class

k ∈ K (elastic or adaptive) is compressed by a factor

φk(n), in state C < nb ≤ T , so that:

∑
k∈Ke

nkb′k + ∑
k∈Ka

nkb′k = C (33)

• The product service time by bandwidth per call of

service-class k calls, k ∈ K, remains the same in

state n either of the irreversible or the reversible

Markov chain. In other words:

For elastic service-classes:

bkr(n)

µkr(n)
=

b′k
µkφk(n)

⇒ b′k = bkφk(n) . (34)

For adaptive service-classes:

bkr(n)

µk
=

b′k
µkφk(n)

⇒ b′k = bkφk(n)r(n) . (35)

Under these assumptions, Eq. (32) can be derived by sub-

stituting Eqs. (34), (35) and Eq. (4) into Eq. (33).
Based on Eqs. (32)–(35) and following the analysis of
Section 2, it can be proved that G( j)’s are given by the
following formula for the EA-EMLM/TH:

G( j)=

〈

1, for j = 0

1
min(C, j)

Ke

∑
k=1

akbk
[

(G( j−bk)−Tk( j−bk)
]

+
1
j

Ka

∑
k=1

akbk
[

G( j−bk)−Tk( j−bk)
]

, for j=1, ...,T

0, otherwise

〉

.

(36)

Having determined G( j)’s, the CBP of service-class k, Bk,

and the link utilization, U , can be calculated via Eqs. (18)

and (19), respectively.
To determine G( j)’s, in the EA-EMLM/TH-BR the follow-
ing approximate but recursive formula is proposed:

G( j)=

〈

1, for j = 0

1
min(C, j)

Ke

∑
k=1

akDk( j−bk)
[

G( j−bk)−Tk( j−bk)
]

+
1
j

Ka

∑
k=1

akDk( j−bk)
[

G( j−bk)−Tk( j−bk)
]

, for j=1, ...,T

0, otherwise

〉

,

(37)

where the values of Dk( j−bk) are given by Eq. (24).

Similar to the E-EMLM/TH-BR, the CBP of service-

class k, Bk, and the link utilization, U are determined, via

Eqs. (25) and (19), respectively.

5. Numerical Examples – Evaluation

In this section, an application example of the proposed

E-EMLM/TH-BR and the model of [49] (EMLM/TH-BR)

is presented. Through the proposed model authors ob-

tain analytical CBP and link utilization results, and com-

pare them with the corresponding simulation results, in or-

der to reveal the accuracy of the proposed model. Sim-

ilar accuracy appears in the case of the EA-EMLM/TH-

BR and therefore these results are not presented herein.

The simulation model is based on the bandwidth com-

pression/expansion mechanism described by r(n)’s. On

the other hand, the proposed analytical models are based
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on φk(n)’s. In that sense, the comparison of analytical

with simulation results shows how satisfactory the approxi-

mation of φk(n)’s is. Simulation results are mean values of

7 runs. Each run is based on the generation of four million

calls. To account for a warm-up period, the blocking events

of the first 5% of these generated calls are not considered in

the results. Due to the fact that reliability ranges are very

small, they are not presented in the figures that follow. The

simulation language used is Simscript III [50].

As an application example, a link of capacity C = 70 b.u.

is considered and three values of T :

1) T = C = 70 b.u.,

2) T = 75 b.u. with rmax = 70/75,

3) T = 80 b.u. with rmax = 70/80.

The link accommodates three service-classes, with the fol-

lowing characteristics:

• 1st service-class: a1 = 5.0 Erl, b1 = 2, n∗1 = 25,

t1 = 7,

• 2nd service-class: a2 = 1.5 Erl, b2 = 5, n∗2 = 11,

t2 = 4,

• 3rd service-class: a3 = 1.0 Erl, b3 = 9, n∗3 = 6, t2 = 0.

In the x axis of all figures, traffic loads α1, α2 and α3
increase in steps of 1, 0.5 and 0.25 Erl, respectively. So,

Point 1 refers to (a1, a2, a3) = (5.0, 1.5, 1.0) while Point 7

is (a1, a2, a3) = (11.0, 4.5, 2.5).
In Figs. 1–3, authors consider the proposed E-EMLM/TH-

BR and present the analytical and simulation CBP results

of the three service-classes, respectively, for all values

of T . For comparison, the corresponding analytical results

of the EMLM/TH-BR (when T = C = 70) are presented.

According to Figs. 1–3, authors deduce that:

• the results obtained by the proposed formulas are

very close to the simulation results;

• the bandwidth compression mechanism reduces CBP

as expected (higher reduction is achieved for T = 80
b.u.);

• the analytical CBP results obtained by the existing

EMLM/TH-BR fail to approximate the simulation

CBP results of the E-EMLM/TH-BR;

• the application of the BR policy in the E-EMLM/TH-

BR results in the CBP increase of the 1st and 2nd

service-classes and the CBP decrease of the 3rd

service-class. This behavior is expected since the

BR parameters are chosen to favor the 3rd service-

class.

In Fig. 4, the link utilization results (in b.u.) are presented.

Again, the analytical results are very close to simulation,

while the existing EMLM/TH-BR fails to approximate the

results obtained by the proposed model.
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Fig. 4. Link utilization.

As a final comment, the results obtained by the proposed

formulas are very close to the simulation results even for

quite large values of T compared to C. However, increas-

ing T results in a delay increase of elastic calls, which

may be unacceptable for some applications. Thus, T should

be chosen so that this delay remains within acceptable

levels.

6. Conclusion

In this paper authors propose multirate loss models where

Poisson arriving calls compete for the available link band-

width under the TH and the BR policies. Calls are of elastic

or adaptive type, i.e., they can tolerate bandwidth compres-

sion while in-service. When bandwidth of in-service elas-

tic calls is compressed then their remaining service time

is increased. Adaptive in-service calls do not alter their

service time. The analysis of the proposed models leads

to approximate but recursive formulas for the calculation

of the steady-state probabilities and consequently CBP and

link utilization. Simulation results verify the accuracy of

the proposed models. In addition, numerical results show

the necessity of the proposed models, since existing mod-

els fail to approximate the results obtained by the proposed

models, and their consistency.
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[9] S. Rácz, B. Gerő, and G. Fodor, “Flow level performance analysis

of a multi-service system supporting elastic and adaptive services”,

Perform. Eval., vol. 49, no. 1–4, Sept. 2002, pp. 451–469.

[10] I. Moscholios, P. Nikolaropoulos, and M. Logothetis, “Call level

blocking of ON-OFF traffic sources with retrials under the complete

sharing policy”, in Proc. 18th Int. Teletraffic Congr. ITC-18, Berlin,

Germany, 2003, vol. 31, pp. 811–820.

[11] I. Moscholios and M. Logothetis, “Engset multirate state-dependent

loss models with QoS guarantee”, Int. J. of Commun. Syst., vol. 19,

no. 1, pp. 67–93, 2006.

[12] M. Głąbowski, “Recurrent calculation of blocking probability in

multiservice switching networks”, in Proc. Asia-Pacific Conf. Com-

mun. APCC 2006, Busan, South Korea, 2006.

50



Call Blocking Probabilities of Multirate Elastic and Adaptive Traffic under the Threshold and Bandwidth Reservation Policies

[13] I. Moscholios, M. Logothetis, and M. Koukias, “An ON-OFF

multi-rate loss model of finite sources”, IEICE Trans. Commun.,

vol. E90-B, no. 7, pp. 1608–1619, 2007.

[14] Q. Huang, King-Tim Ko, and V. Iversen, “Approximation of loss

calculation for hierarchical networks with multiservice overflows”,

IEEE Trans. Commun., vol. 56, no. 3, pp. 466–473, 2008.

[15] M. Głąbowski, A. Kaliszan, and M. Stasiak, “Modelling product-

form state-dependent systems with BPP traffic”, Perform. Eval.,

vol. 67, no. 3, pp. 174–197, 2010.

[16] I. Moscholios, J. Vardakas, M. Logothetis, and A. Boucouvalas,

“QoS guarantee in a batched poisson multirate loss model supporting

elastic and adaptive traffic”, in Proc. IEEE Int. Conf. on Commun.

IEEE ICC 2012, Ottawa, Canada, 2012.

[17] I. Moscholios, J. Vardakas, M. Logothetis, and A. Boucouvalas,

“Congestion probabilities in a Batched Poisson multirate loss model

supporting elastic and adaptive traffic”, Annals of Telecommun.,

vol. 68, no. 5, pp. 327–344, 2013.

[18] I. Moscholios, J. Vardakas, M. Logothetis, and M. Koukias,

“A quasi-random multirate loss model supporting elastic and adap-

tive traffic under the bandwidth reservation policy”, Int. J. on Adv.

in Netwo. and Serv., vol. 6, no. 3–4, pp. 163–174, 2013.

[19] S. Hanczewski, M. Stasiak, and J. Weissenberg, “A queueing model

of a multi-service system with state-dependent distribution of re-

sources for each class of calls”, IEICE Trans. Commun., vol. E97-B,

no. 8, pp. 1592–1605, 2014.
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