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Abstract—Automatic Meter Reading (AMR) system is ex-

pected to be used for real time load monitoring to optimize

power generation and energy efficiency. Recently, it has been

a serious problem that user’s lifestyle may be revealed by a tool

to estimate consumer’s lifestyle from a real-time load profile.

In order to solve this issue, Battery-based Load Hiding (BLH)

algorithms are proposed to obfuscate an actual load profile

by charging and discharging. Although such BLH algorithms

have already been studied, it is important to consider multiple

households case where one battery is shared among them due

to its high cost. In this paper, a monetary fair BLH algorithm

for multiple households is proposed. In presented scheme,

the core unit calculates the difference between the charged

amount and discharged one for each household. If the differ-

ence is bigger than the predefined threshold (monetary unfair

occurs), the most disadvantageous and advantageous house-

holds are given priority to discharge and charge the battery

and other households should charge to achieve monetary fair-

ness. The efficiency of the scheme is demonstrated through

the computer simulation with a real dataset.

Keywords—Automatic Meter Reading, Battery Load Hiding,

Privacy for Smart Grid.

1. Introduction

In recent years, smart meters have gained much popularly

with growing support from the electric power company

and governments. However, smart meters pose substan-

tial threat to the privacy of individuals [1]. Smart meters

use measurement circuits that can record the load profile

by a second or minute order. Recently, it has been a seri-

ous problem that user’s lifestyle may be revealed by a tool,

which is called Non-Intrusive Load Monitoring (NILM),

to estimate consumer’s lifestyle from a real-time load pro-

file [2]–[4]. The most of NILM techniques are to detect

edges in a load profile [5]–[7]. Batra et al. publish an open

source toolkit of NILM named NILMTK [8]. However,

NILM gives rise to serious user privacy concerns. Multi-

ple studies have shown that smart meters are vulnerable to

an attack that could leak fine grained usage data to third

parties, e.g. an electric power industry [9]. In order to

preserve individual’s privacy, a Battery-based Load Hiding

(BLH) technique is proposed to avoid the information leak-

age by NILM [10]–[14]. The basic concept of BLH is to

hide actual load by wisely charging/discharging a battery.

For example, in Best Effort (BE), the core unit, which is

a battery controller for BLH, charges/discharges a battery

to flatten the metered load [10]. Another novel work is

Non-Intrusive Load Leveling (NILL) algorithm [11]. In

NILL algorithm, the core unit aims to flatten the metered

load and controls the residual energy of the battery in or-

der to continue BLH [11]. However, these schemes disclose

true demand when the battery is almost empty or full. In

order to solve this problem, Stepping Framework (SF) is

proposed to step a metered load instead of flattening it by

considering the current energy consumption level of the

appliances [12].

Although many BLH algorithms have been studied in the

literature, most of them do not consider the multiple house-

holds case. Privacy leakage problem is related with all re-

gions where a real-time load measuring system is offered.

According to [15], countries all over the world, e.g., US,

Canada, United Kingdom, France, Spain, China and Japan,

have taken the decision to roll out smart metering system.

Irrespective of country, one may feel that it is expensive

because a battery of 1 kWh might cost at least $1,200 [16].

Therefore it has a great importance to realize a BLH where

a battery is shared among multiple households. A realistic

case of the shared battery is an apartment, condominium

or a set of houses [17]. In this case, inhabitants who want

to avoid the privacy leakage by smart meter may cover the

expenses of the development and maintenance of such a bat-

tery system. Vilardebo et al. propose a BLH scheme for

multiple households, however, they do not consider mon-

etary fairness [13]. That is, an unfair situation may occur

when households pay a money to charge a battery by BLH

but they do not use the same amount of the charged energy

from it. Therefore, it is necessary to propose a monetary

fair BLH scheme for multiple households.

In this paper, a monetary fair BLH scheme for multiple

households by using only one battery is proposed. Authors

first present a monetary fair BLH scheme for two house-

holds. In the scheme, the core unit chooses one of the

following three modes based on monetary loss and resid-

ual energy on the battery: the stabilization mode, fairness

mode, and normal mode. In the stabilization mode, the

core unit controls the amount of residual energy and avoids

the situation where BLH cannot be executed. In the fair-

ness mode, the core unit lets an overcharged household dis-

charge, while it lets the other charge in order to solve mon-

etary unfairness. Finally, in the normal mode, the core unit
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calculates each household’s metered load at time t against

every possible case and chooses the case where the residual

energy approaches almost the half of battery capacity.

Authors further extend proposed algorithm to deal with

more than two households is applied. If original algo-

rithm for multiple households, the core unit would have

to calculate all patterns in the normal mode and it would

require heavy computation on the core unit – the order is

O(2N) where N denotes the number of households. There-

fore, authors propose an extended algorithm to deal with

multiple households by approximating the algorithm in the

normal mode. More specifically, the core unit first decides

the number of charging (or discharging) households so that

residual energy approaches to the target energy level (more

specifically 55% of the maximum capacity). If the residual

energy is less than that value, more households charge bat-

tery. Then which household charges/discharges is assigned.

The efficiency of proposed scheme is shown by the com-

puter simulation. The evaluation metrics are mutual infor-

mation, which is a major indicator of how much information

is leaked by BLH, and monetary loss. Authors also clarify

how many households can be covered with proposed algo-

rithm. A real electric loads dataset called Wiki-Energy is

used [18] to obtain reasonable outcome.

The remainder of this paper is organized as follows. Re-

lated work regarding BLH and its shortcomings is summa-

rized in Section 2. The proposed scheme with discussion

is described in Section 3. Simulation results are shown in

Section 4. The paper is concluded in Section 5.

2. Related Work

2.1. Summary of Battery Load Hiding Schemes

To protect a privacy for smart meter users, many researchers

have proposed BLH algorithms considering various con-

straints on the battery such as capacity to minimize the

amount of information leakage [10]–[14]. In BLH algo-

rithm, the operation system controls the battery based on

the demand load and previous time energy consumption

observed by a smart meter (the metered load) in order to

control the currently metered load.

Current BLH algorithms basically aim to flatten the me-

tered load by wisely charging/discharging a battery. The

main difference among these algorithms is how to react

when the residual energy of a battery is in almost empty

or full. In the BE [10], when the energy level reaches the

minimum or maximum, the core unit determines whether

it should be charged or discharged at the maximum rate. In

the NILL [11], the core unit chooses a charging/discharging

rate with respect to the energy consumption of appliances.

Yang et al. analyze the above two algorithms and show that

these two algorithms disclose the true energy consumption

when the battery is too low or too high. To solve this prob-

lem, they propose SF-LS2 [12]. In SF-LS2 , instead of

trying to maintain a constant load, the core unit monitors

the current energy consumption level of the appliances and

chooses a target load value from a set of predefined values.

Yang et al. verify the tradeoff between the privacy and the

electricity bill and propose an online algorithm that can op-

timally control the battery to protect the smart meter data

privacy and cut down the electricity bill [14]. Vilardebo

et al. propose a BLH scheme that operates over multiple

users by defining privacy-power function [13].

2.2. Shortcomings in Conventional BLH Schemes

Although there are many BLH algorithms, most of algo-

rithms do not consider using one battery for multiple house-

holds. One may feel that it is expensive since a battery of

a 1 kWh might cost at least $1,200 [16]. Therefore it has

a great importance to realize a BLH, where a battery is

shared among multiple households. Vilardebo et al. pro-

pose such a BLH scheme with a single battery, however,

they do not consider monetary fairness (cost/profit balance

between users) [13]. Without considering it for the multiple

households case, one might gain or lose money by execut-

ing BLH. Here, monetary fairness denotes that the charged

amount for BLH must be same as the discharged amount

for each household. However, it is difficult to achieve the

monetary fairness because of two constraints on the battery.

The first constraint is that the battery has a limit on charge

and discharge rate. The core unit needs to choose, which

user and how much energy should be charged or discharged.

The second one is that BLH is limited by the battery ca-

pacity. When the system deals with multiple households

with one battery, it is challenging to appropriately execute

BLH for each one.

3. Proposed Scheme

The paper proposed a monetary fair BLH algorithms for

multiple households. Firstly, a BLH scheme for two house-

holds with a battery and then extend it to deal with more

than two by approximating the computationally heaviest

part in the algorithm is shown. Figure 1 shows the system
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Fig. 1. The system model of BLH scheme.
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Table 1

Notations used in presented scheme

Parameters Definition

i Index of a household

β Quantization width

β ′ β
N

Erest(t)
Ratio of residual energy to the battery ca-

pacity at time t [%]

li(t)
Monetary loss caused by charging and dis-

charging within household i

lth Threshold of li(t)

di(t) Demand load in household i

si(t)
Charging signal. If si(t) = 1, the core unit

quantizes household i’s load by charging.

Otherwise, the core unit quantizes house-

hold i’s load by discharging.

ei(t)
Metered load (the load after BLH) in house-

hold i at time t

Cmax Battery capacity

E f ine
Fine level of the battery.

E f ine = 0.55Cmax = 0.9+0.2
2 Cmax

p
The household which most charged during

the period from 0 to t−1.

q
The household which most discharged dur-

ing the period from 0 to t−1.

K1 Difference between 0.9Cmax and Erest(t)

K2 Difference between Erest(t) and 0.2Cmax

NC
Number of charging households other than

q at time t

ND
Number of discharging households other

than q at time t

model of BLH scheme. di(t) denotes the total electric

load demanded by the appliances in a household i at

time t. In contrast, ei(t) is the summation of di(t) and load

charged/discharged by BLH at time t (see Table 1). In order

to realize BLH for multiple households, each household’s

ei(t) must be calculated based on di(t). After deciding ei(t),
the core unit controls the battery in order to output ei(t) to

each smart meter. After that the core unit sends each smart

meter to ei(t). When each smart meter receives ei(t), each

smart meter sends ei(t) to the concentrator and the concen-

trator sends ei(t) to the electric company.

The threshold lth is defined that determines the upper bound

of instantaneous monetary unfairness. When the difference

between the charged amount and discharged one exceeds

the predefined threshold, the core unit lets the overcharged

household discharge, or vice versa. This scheme consists

of three modes: stabilization, fairness, and normal mode.

The control unit changes its mode based on the residual

energy and the amount of loss caused by BLH. When the

residual energy is almost empty or full, the core unit tran-

sits to the stabilization mode, which is based on the state-

of-the-art BLH scheme SF-LS2 [12] to avoid the situation

where BLH cannot be executed. If a household charges too

much, the core unit transits to the fairness mode to solve

monetary unfairness. Otherwise, the core unit executes

the normal mode so that the residual energy approaches

almost half of its capacity. After deciding its mode, the

core unit decides each household’s metered load ei(t) with

a quantization band β , where β is a quantization band-

width for household i’s demand load di(t). β indicates how

coarsely hides a demand load and it is given by taking into

account to the battery capacity and charging/discharging

rate, where charging/discharging rate denotes how much

energy the battery can charge/discharge within a time unit.

Finally, the core unit charges or discharges by the calculated

amount.

Moreover, authors extend the algorithm to deal with more

than two households. In the extended version, the core

unit first decides the number of households that executes

BLH by charging (and discharging), which is denoted as NC
(and ND), based on the current residual energy Erest(t). Af-

ter deciding the number of charging and discharging house-

holds, the core unit then assigns each household to charging

or discharging group.

3.1. Three Modes of BLH Algorithm

Deciding mode. Algorithm 1 shows an algorithm for the

core unit to select its operating mode. First, if the resid-

ual energy is almost empty – Erest(t − 1) ≤ 20% or full

Erest(t − 1) ≥ 90%, the stabilization mode is chosen to

avoid the situation where the residual energy gets empty

or full. If either of households overcharges, i.e., the

charged amount is beyond the pre-defined threshold lth, the

control unit transits to the fairness mode to achieve mone-

tary fairness. Otherwise, the control unit chooses the nor-

mal mode so that the residual energy approaches almost

half of the battery capacity Cmax, where Cmax is maximum

battery capacity.

Algorithm 1: Deciding mode

1: Input Erest(t−1)
2: if Erest(t−1) is almost empty ∪ Erest(t−1) is almost

full then

3: mode← Stabilization
4: else if |li(t)| ≥ lth for i = 1 and/or 2 then

5: mode← Fairness
6: else

7: mode← Normal
8: end if

9: Return mode

Stabilization mode. In the stabilization mode (Algo-

rithm 2), the core unit lets each household charge (s1(t)←1,

s2(t)← 1) when the residual energy is almost empty (un-

der 20%). On the other hand, the core unit lets each house-
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Algorithm 2: Stabilization mode

1: Input Erest(t−1)
2: for i ∈ 1 : 2 do

3: if Erest(t−1)≤ 20% then

4: s1(t)← 1
5: s2(t)← 1
6: else if Erest(t−1)≥ 90% then

7: s1(t)← 0
8: s2(t)← 0
9: end if

10: β ′← β
2

11: if si(t) = 1 then

12: ei(t)←
⌈

di(t)
β ′

⌉

β ′

13: else if di(t) mod β 6= 0 then

14: ei(t)←
⌊

di(t)
β ′

⌋

β ′

15: else

16: ei(t)←
(

di(t)
β ′ −1

)

β ′

17: end if

18: end for

19: Return e1(t) and e2(t)

hold discharge – s1(t)← 0, s2(t)← 0, when the residual en-

ergy is almost full (over 90%). Here, si(t) denotes whether

household i hides its load by charging or discharging at

time t. That is, si(t) = 1 indicates that the core unit lets

household i charge, while si(t) = 0 indicates that the core

unit lets household i discharge. Then, the core unit calcu-

lates a target quantized load ei(t) for each household ac-

cording to si(t). Here, β ′ is set as β
2 so that each household

equally charges/discharges.

Fairness mode. In the fairness mode (Algorithm 3), the

core unit lets an overcharged household i.e. li(t− 1) ≥ lth

Algorithm 3: Fairness mode

1: Input l1(t−1) and l2(t−1)
2: if l1(t−1)≤ l2(t−1) then

3: s1(t)← 1
4: s2(t)← 0
5: else

6: s1(t)← 0
7: s2(t)← 1
8: end if

9: for i ∈ 1 : 2 do

10: if si(t) = 1 then

11: ei(t)←
⌈

di(t)
β

⌉

β
12: else if di(t) mod β 6= 0 then

13: ei(t)←
⌊

di(t)
β

⌋

β
14: else

15: ei(t)←
(

di(t)
β −1

)

β
16: end if

17: end for

18: Return e1(t) and e2(t)

discharge and lets the other charge to solve monetary un-

fairness, where li(t) denotes the difference between charged

and discharged amount of energy for a household i at

time t. Then, the core unit calculates a target quantized

load ei(t) for each household according to si(t).

Normal mode. Algorithm 4 shows the algorithm of the

normal mode. The fine level E f ine of the battery is defined

and set

E f ine = 0.55Cmax =
0.9+0.2

2
Cmax .

In the normal mode, the core unit calculates each house-

hold’s metered load at time t for every possible case, i.e.

{s1(t), s2(t)} in {{0,0},{0,1},{1,0},{1,1}}. Then, the

core unit chooses the case where the residual energy most

approaches E f ine.

Algorithm 4: Normal mode

1: for {s1(t), s2(t)} ∈ {{0,0},{0,1},{1,0},{1,1}} do

2: for i ∈ 1 : 2 do

3: if si(t) = 1 then

4: ei,si(t)(t)←
⌈

di(t)
β

⌉

β
5: else ifdi(t) mod β 6= 0 then

6: ei,si(t)(t)←
⌊

di(t)
β

⌋

β
7: else

8: ei,si(t)(t)←
(

di(t)
β −1

)

β
9: end if

10: end for

11: if the combination of e1,s1(t)(t) and e2,s2(t)(t) more

approaches Erest(t) = 55% then

12: e1(t)← e1,s1(t)(t)
13: e2(t)← e1,s2(t)(t)
14: end if

15: end for

16: Return e1(t) and e2(t)

3.2. Extended Algorithm for Multiple Households

In the next step the algorithm was extended for more than

two households. Although the modes in the extended algo-

rithm are almost same with the algorithm for two house-

holds, each mode needs to be slightly modified to deal

Algorithm 5: Deciding mode in multiple households case

1: Input Erest(t−1)
2: if Erest(t−1) is almost empty ∪ Erest(t−1) is almost

full then

3: mode← Extended Stabilization
4: else if i exists that satisfies |li(t)| ≥ lth then

5: mode← Extended Fairness
6: else

7: mode← Extended Normal
8: end if

9: Return mode
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with more households due to the following two reasons.

The first one is to require large computational complexity.

The second one is the possibility that BLH cannot be

executed when the battery is fully charged or empty gets

higher in presence of multiple households. Therefore, some

parts of operated modes are modified to take into account

these difficulties.

Deciding mode. Algorithm 5 shows the algorithm to de-

cide the operating mode. First, the core unit checks the

residual energy with the same way of the deciding mode in

two households. Then, if there exist households whose loss

or profit is more than lth, the core unit chooses the extended

fairness mode to solve monetary unfairness. Otherwise, the

core unit transits to the extended normal mode.

Extended normal mode. In Algorithm 6, the normal

mode for two households decides each si(t) for every pos-

sible case and thus the computation complexity is O(2N),
where N denotes the total number of households. It is

necessary to decrease the computation complexity when

the system deals with more than two households. There-

fore, authors take an approximate measure to decide each

si(t) and ei(t) in the extended normal mode. First NC was

set, which is the number of si(t) = 1, i.e. the number of

households that execute BLH by charging, by taking into

account the residual energy Erest(t). For the ease of dis-

cussion, first it is assumed each household consumes the

same amount of energy. Intuitively, more households must

Algorithm 6: Extended normal mode

1: K1← 0.9Cmax−Erest(t)
2: K2← Erest(t)−0.2Cmax

3: NC← round
(

K1
K1+K2

)

N
4: ND← N−NC
5: for i ∈ 1 : N do

6: Diffi←
⌈

di(t)
β

⌉

β −di(t)
7: end for

8: if Erest(t)≤ E f ine then

9: indices ← the indices {i} of top NC households

that have largest Diffi.

10: else

11: indices ← the indices {i} of top NC households

that have smallest Diffi.

12: end if

13: for i ∈ 1 : N do

14: if i ∈ indices then

15: ei(t)←
⌈

di(t)
β

⌉

β
16: else if di(t) mod β 6= 0 then

17: ei(t)←
⌊

di(t)
β

⌋

β
18: else

19: ei(t)←
(

di(t)
β −1

)

β
20: end if

21: end for

22: Return ei(t)

charge when the residual energy Erest(t) is below the tar-

get E f ine. More specifically, NC was corrected by the ratio

of 0.9Cmax−Erest(t) to Erest(t)− 0.2Cmax. Next, ND was

set, which is the number of si(t) = 0, as ND = N −NC.

Therefore the number of charging households NC and that

of discharging households ND are calculated by:

NC = round
(

K1

K1 +K2

)

N, (1)

ND = N−NC. (2)

Figure 2 shows an example of calculating NC and ND. In

Figure 2, we can obtain K1 = 0.9Cmax−0.4Cmax = 0.5Cmax
and K2 = 0.4Cmax− 0.2, Cmax = 0.2, Cmax, thus K1

K1+K2
=

5
5+2 . Hence, when there are 7 households, the number of

charging households NC is 5 and that of discharging house-

holds ND is 2.

K1

K2

90%

55%

20%

E t
rest

( ) = 40%

Fig. 2. Example of calculating K1 and K2.

After determining the number of charging/discharging

households, the core unit selects, which households should

charge/discharge. This is because when the residual energy

is less than Erest(t), the more energy should be charged in

order to keep the normal mode. So, the households are

selected, which will charge more energy to the battery by

taking difference between the quantized demand value ei(t)
and the demand load in household i. In order to calculate

the amount of charged energy, the core unit checks the

quantized demand value ei(t) when assuming all si(t) = 1.

The core unit can expect each amount of charged energy

by:

Diffi =

⌈

di(t)
β

⌉

β −di(t), (3)

where Diffi is the amount of charged energy by a house-

hold i. When the residual battery is less than E f ine, NC
charging households which have larger Diffi are chosen,

because more energy should be charged to keep residual

energy around E f ine. When the residual energy is more

than E f ine, and vice versa. Algorithm 6 shows the algo-

rithm of the extended normal mode.
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Algorithm 7: Extended fairness mode

1: Input lp(t−1) and lq(t−1)
2: sp(t)← 0
3: sq(t)← 1
4: K1← 0.9Cmax−Erest(t)
5: K2← Erest(t)−0.2Cmax

6: NC← round
(

K1
K1+K2

)

(N−2)

7: ND← (N−2)−NC
8: for i ∈ 1 : N−2 do

9: Diffi←
⌈

di(t)
β

⌉

β −di(t)
10: end for

11: if Erest(t)≤ E f ine then

12: indices ← the indices {i} of top NC households

that have the largest Diffi.

13: else

14: indices ← the indices {i} of top NC households

that have the smallest Diffi.

15: end if

16: for i ∈ 1 : N−2 do

17: if i ∈ indices then

18: ei(t)←
⌈

di(t)
β

⌉

β
19: else if di(t) mod β 6= 0 then

20: ei(t)←
⌊

di(t)
β

⌋

β
21: else

22: ei(t)←
(

di(t)
β −1

)

β
23: end if

24: end for

25: Return ei(t)

Extended fairness mode. Algorithm 7 shows the algo-

rithm of the extended fairness mode. p and q denote the

households that most charged and discharged during the

period from 0 to t − 1, respectively. Therefore, lp(t − 1)
and lq(t − 1) denote the difference between charged and

discharged amount of most charged household p and least

charged household q during the period from 0 to t−1, re-

spectively. In the extended fairness mode, the core unit

first allots si(t)← 0 to the most overcharged household,

and si(t)← 1 to the least charged household. The core unit

then decides other N− 2 households’ si(t) and ei(t) with

the same way of the extended normal mode. When there

are some households with loss more than lth, the core unit

chooses only two households, which have largest and small-

est loss to reduce the complexity. The core unit checks each

household’s loss by interval measurements so that each loss

is converged in lth.

Extended stabilization mode. In the extended stabiliza-

tion mode, the algorithm is almost same to the stabilization

mode in two households except for changing β ′ to
β
N .

3.3. Discussion

Other energy sources for BLH – although presented

scheme assumes that only a battery is used for BLH, other

sources such as a solar panel can also be used together with

a battery. In this case, energy produced by other sources

should also be taken into account for BLH. Authors do not

consider the use of other energy sources in this research

because the charged amount depends on the nature, which

is typically difficult to model or estimate.

Initial cost to introduce BLH – a 1 kWh Li-ion battery

costs at least $1,200 [16]. By using presented scheme and

sharing one battery with more than two households, the

installation cost for each household can be divided.

Limitation of our scheme – the monetary fairness between

two households can be reduced by the fairness mode. How-

ever, proposed scheme cannot exactly get rid of monetary

unfairness between multiple households even if the core

unit sets lth to 0. This is because the scheme solves the

monetary unfairness after observing the previous outcome

of BLH.

Privacy Concern – third parties cannot estimate both

household’s demand loads because they cannot obtain the

residual energy on real time. However, when the system

deals with two households, one household may estimate

the other household’s demand load in real time if each

household knows its own demand load, metered load, and

the residual energy on real time. Household 1 can calculate

the household 2’s load demand d2(t) as follows:

d2(t) = e2(t)+e1(t)−d1(t)− (Erest(t)−Erest(t−1)). (4)

To satisfy the privacy of households using proposed

scheme, both households must have cooperative relation-

ships. This issue is not important when the number of

households is more than two, because a household which

tries to estimate other households’ demand loads needs

more demand load information from several households and

this could be infeasible.

4. Simulation Results

4.1. Simulation Model

During simulation a mutual information and the monetary

loss are evaluated. Based on the definition in [19], the

“mutual information” of household i when t = T is defined

as the following equation with the set of output E = {ei(t)}
and raw measurements D = {di(t)}:

Ii(E;D) = ∑
e∈E

∑
d∈D

p(e,d) log
(

p(e,d)

p(e)p(d)

)

, (5)

where p(e,d) denotes a joint distribution of e and di(t)
and p(ei(t)) and p(di(t)) are marginal distributions of ei(t)
and di(t), respectively. Intuitively, Ii(E;D) represents how

much information is shared between ei(t) and di(t) for

1 ≤ t ≤ T . Therefore, if good BLH is realized, the two
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variables E and D are not correlated and thus Ii(E;D) will

take small value. On the contrary, if the BLH is not good,

the two variables E and D share similar values and thus

Ii(E;D) will take large value. Mutual information between

two variables ei(t) and di(t) indicates how ei(t) and di(t)
are related. If ei(t) and di(t) are totally independent, ei(t)
does not give any information about di(t), so their mutual

information is zero [12]. The monetary loss indicates the

absolute value of household’s loss or gain at the end of

simulation.

In used simulator, electric demands di(t) of N households

are extracted from the datasets and are input into the func-

tion of core unit that to output ei(t). After all di(t) are

processed, mutual information is calculated for each house-

hold with a package “infotheo” [20]. If not stated other-

wise, the simulation parameters specified in Table 2 are

used and a one-minute resolution dataset named Wiki-

Energy [18] for evaluation. This dataset includes totally

722 houses’ data collected in the USA from 2012 to 2014:

631 in Texas, 49 in Colorado, and 42 in California [21].

The detail of 722 households is as follows: 501 single-

family homes, 183 apartments, 35 town homes and 3 mo-

bile homes. Randomly sampled 100 households’ electric-

ity data measured for one month in April 2014 was used.

For the evaluation of two households case, every com-

bination of two households from randomly sampled 100

households in the dataset were used. By referring to [12],

assume the maximum battery capacity Cmax is 1.0 kWh

and its charging and discharging rate β is 1.0 kW, which

means that the battery can be fully exhausted or charged in

an hour.

Table 2

Parameters used in simulation

Parameters Definition

Dataset Wiki-Energy [18]

Interval between measurements 1 minute

Simulation duration 30 days

Maximum battery capacity Cmax 1.0 kWh

Quantization width β 1.0 kW

Electric rate 16.341 cent/kWh

Threshold lth 1, 5, 10, 25, and ∞ cent

Number of households N 2, 4, 8, 16, 32, and 64

The same flat electric rate 16.341 [cent/kWh] for all

households was considered. This electric rate is cited

from the one actually used in Pacific Gas and Electric

Company [22]. In the two households case, the scheme

was compared with SF-LS2 with the same battery ca-

pacity Cmax = 1 kWh and for lth as lth = 1, 5, 10, 25,

and ∞ [cent]. Furthermore, both mutual information and

monetary loss for extended algorithm were also evaluated

by varying the number of households N as N = 2, 4, 8,

16, 32, and 64.

4.2. Comparison of Mutual Information

Mutual information for two households. Table 3 shows

mutual information against both SF-LS2 and proposed

scheme in two households case. There is no significant

difference between SF-LS2 and the scheme irrespective

of the chosen threshold lth. However, there is the differ-

ence between the best case and the worst case in SF-LS2

and this scheme. This comes from the difference in to-

tal demand for one month. That is, the total demand load

is 175 kWh in the best case, whereas 2097 kWh in the

worst case. This follows the intuition that more informa-

tion leaks when a household uses more appliances. Here,

“information leaks” means that real demand load is leaked

to the electric company. From this result, one can see

that the larger power a household consumes, the more

difficult to realize BLH due to the limitation of battery

capacity.

Table 3

Mutual information of SF-LS2 and our scheme

Scheme
Mutual information

Average Best Worst

SF-LS2 0.0135 0.0018 0.0317

Authors’

lth = 1 0.0134 0.0014 0.0368

scheme

lth = 5 0.0128 0.0008 0.0325

lth = 10 0.0127 0.0008 0.0329

lth = 25 0.0127 0.0007 0.0330

lth = ∞ 0.0132 0.0007 0.0409

Mutual information for multiple households. Figure 3

shows mutual information versus N when lth = 10. The

confidence intervals represent the standard deviation of all

measurements. Since every combination was simulatedby

choosing 2 out of 100 households, the number of measure-

ments was 4,950 =
(100

2

)

and the standard deviation was

calculated from them. In Figure 3, “without BLH” indi-

cates mutual information calculated without using BLH.

One can see that as the number of households N increases,

mutual information linearly increases. This is because as
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Fig. 3. Mutual information versus N.
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N increases, the quantization width β ′ gets narrow, i.e.

β ′ = β
N . However, the scheme still decreases mutual infor-

mation by 44% even when N = 64. Therefore, our scheme

is still effective against N = 64 with the battery capacity

Cmax = 1 kWh.

4.3. Comparison of Monetary Loss

Monetary loss for two households. Table 4 shows the

monetary loss caused by the scheme against lth. In Table 4,

average, best, and worst indicate the averaged, minimum,

and maximum of the instantaneous loss for each lth through

the simulation, respectively. The average values of the mon-

etary loss are calculated from every pair of household, i.e.

4,950 combinations, after BLH has been done. One can see

that if we set lth = ∞, which indicates the case where no

Table 4

Instantaneous loss versus lth

lth
Monetary loss [cent]

Average Best Worst

1 3.41 1.21 3.54

5 5.26 5.19 7.08

10 10.3 10.2 10.3

25 25.3 25.2 25.3

∞ 2.44 ·103 65.3 6.78 ·103

Table 5

Details of processed modes when lth = 1.

Pattern
Stabilization Fairness Normal

[%] [%] [%]

Best 0 34.8 65.2

Worst 20.1 66.3 13.7

monetary fairness is considered, the average loss is nearly

$24.46. This situation cannot be tolerant in the real case.

On the other hand, when lth is set as a certain value, the

loss can be controlled almost within lth. However, when

lth = 1, the loss is 1.22 in the best case but 3.41 on aver-

age. This indicates that even if witht lth = 1, the core unit

cannot reduce the loss by nearly 1 in most cases. Table 5

shows the details of operated modes for the best case and

the worst case. When the ratio of the stabilization mode

is low or that of the normal mode is high, the loss results

in a small value. On the other hand, when the ratio of the

stabilization mode is high or that of the normal mode is

low, the loss becomes large. This is caused by the similar-

ity of demand loads between household 1 and 2. Figure 4

shows the time series of the loss for two households in the

best and worst cases when lth = 1, respectively. Figure 4a

shows that their loss values are almost symmetry. On the

other hand, from Fig. 4b, their losses are asymmetric in

the worst case. From this result, when the system deals

with two households, the combination of buddy households

gives the difference of monetary loss.
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Fig. 4. Instantaneous loss versus time t (lth = 1) for: (a) best

case and (b) worst case.

(See color pictures online at www.nit.eu/publications/journal-jtit)

Table 6

Maximum instantaneous loss versus N when lth = 10

N
Maximum loss [cent]

Average Best Worst

2 6.63 3.66 8.55

4 5.49 3.84 7.56

8 5.39 4.13 6.99

16 1.21 ·103 33.2 1.98 ·103

32 2.02 ·103 1.17 ·103 2.42 ·103

64 1.41 ·103 1.08 ·103 1.71 ·103

Monetary loss for multiple households. Table 6 shows

the maximum loss caused by the scheme versus N when

lth = 10. From Table 6, one can see that the scheme main-

tains the monetary loss within the threshold lth = 10 when

the system deals with less than or equal to 8 households.

However, when the number of households is more than 8,

monetary loss suddenly exceeds lth = 10. In order to clarify

this reason, authors investigate operated modes for BLH.

Table 7 shows the details of operated modes versus the

number of households N when lth = 10. As the number of

households N is more than or equal to 16, the core unit
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Table 7

Details of processed modes when lth = 10

N
Stabilization Fairness Normal

[%] [%] [%]

2 0 10.1 88.7

4 0.88 18.7 80.3

8 5.6 35.2 59.1

16 42.7 46.5 10.7

32 62.5 36.4 0.99

64 78.0 20.0 0.57

more frequently chooses the stabilization mode. From this

result, when using a 1 kWh battery for more than 8 house-

holds, the core unit does not have much room to consider

monetary fairness.

5. Conclusion

The paper presents a monetary fair BLH scheme for multi-

ple households with one battery. Authors show BLH algo-

rithm for more than two households. The proposed BLH

scheme consists of three modes: the stabilization, fairness,

and normal mode and the core unit changes its mode based

on the residual energy and the amount of loss caused by

BLH. By the computer simulation with a real electric load

dataset, in two households case, authors show that when lth
is set to 1 cent, the scheme can achieve almost the same

information leakage with SF-LS2 as well as control mon-

etary loss less than five cents in the US currency. In the

multiple households case, the paper shows that the mutual

information linearly increases with the number of house-

holds. With a 1 kWh battery for BLH, the scheme can

execute BLH for 8 households with preserving monetary

fairness.
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