
Paper Preconditioned Conjugate

Gradient Method for Solution of Large

Finite Element Problems on CPU and GPU
Sergiy Yu. Fialko and Filip Zeglen

Institute of Computer Science, Faculty of Physics, Mathematics and Computer Science,

Tadeusz Kościuszko Cracow University of Technology, Cracow, Poland

Abstract—In this article the preconditioned conjugate gradi-

ent (PCG) method, realized on GPU and intended to solution

of large finite element problems of structural mechanics, is

considered. The mathematical formulation of problem results

in solution of linear equation sets with sparse symmetrical pos-

itive definite matrices. The authors use incomplete Cholesky

factorization by value approach, based on technique of sparse

matrices, for creation of efficient preconditioning, which en-

sures a stable convergence for weakly conditioned problems

mentioned above. The research focuses on realization of PCG

solver on GPU with using of CUBLAS and CUSPARSE li-

braries. Taking into account a restricted amount of GPU core

memory, the efficiency and reliability of GPU PCG solver are

checked and these factors are compared with data obtained

with using of CPU version of this solver, working on large

amount of RAM. The real-life large problems, taken from

SCAD Soft collection, are considered for such a comparison.

Keywords—conjugate gradient, incomplete Cholesky factoriza-

tion, iterative solver, NVIDIA CUDA, preconditioned conjugate

gradient.

1. Introduction

The computational power of modern PC’s becomes enough

to solve medium scale complex engineering problems. In-

tensive development of desktop computers and gaming rigs

markets made that for some aspects High Performance

Computing (HPC) solutions are no longer necessary for

a lot of problems. In the future, this trend will be expanded

onto range of issues where ability of PC computers is suf-

ficient for their solution of given problem scale. Improve-

ments in the hardware realizations enhance development

capabilities and demands to develop computational meth-

ods directly into a specific computer architecture. Processor

units for execution of the fast instructions need in efficient

memory management. Achievement of peak performance

on logical thread must be preceded by elimination of empty

cycles on physical core. The ways of efficient memory man-

agement for distributed memory architecture Non-Uniform

Memory Access (NUMA) of today’s HPC systems substan-

tially distinguish from techniques used in Uniform Memory

Access (UMA) of PC solutions. On the other hand, compu-

tational units of clusters in many cases have the same pro-

cessor architecture at the level of hardware node as used in

desktop solutions. Consequence of these distinctions is the

necessity for creation of different algorithms implementing

computational methods for desktop systems.

Solving systems of linear algebraic equations, arising from

analysis of problem of solid and structural mechanics, by

the preconditioned conjugate gradient on the Graphic Pro-

cessing Unit (GPU) appear in many papers. In example, an

article [1] presents the acceleration of matrix-vector product

procedure with usage of ELLPACK, BELLPACK, SBELL

formats instead of CSR in Compute Unified Device Ar-

chitecture (CUDA) for packing of sparse symmetrical ma-

trix for 2D elastic problem of solid mechanics. The block

compressed sparse row (BCSR) format is applied for ac-

celeration of sparse matrix-vector multiplication (SpMV)

procedure in [2] for conjugate gradient (CG) method using

CUDA. The application of graphic accelerators in finite

element structural analysis is discussed in [3]. Article [4]

proposes a level scheduling based on approximate minimum

degree reordering algorithm for acceleration the triangular

solution procedure.

In presented article, authors limit themselves to solving sys-

tems of linear algebraic equations with symmetrical sparse

matrices by preconditioned conjugate gradient method.

Such matrices arise when finite element method is applied

to the problems of structural or solid mechanics. Scien-

tific publications about parallel implementation of conju-

gate gradient method in architecture Symmetric Multipro-

cessing (SMP) can be found in [5]. This paper is mainly

focused on maximal effective use of RAM memory. In

cases when at application of sparse direct method the size

of factorized stiffness matrix exceeds the capacity of RAM,

it is necessary to use a secondary storage on disk. It

leads to drastic increase of the computation time because

solver produces lot of IO operations. The proposed itera-

tive method runs in core memory and in the case of fast

convergence could be considerably faster. Small number

of iterations is achieved primarily using appropriate sparse

matrix techniques for constructing of preconditioning based

on Cholesky factorization by value method with application

of secondary rejection of small entries [6]. Given approach

as well as [7], [8] is intended for solution of complex engi-

neering problems and produces all computations on CPU.

The leading procedures – matrix-vector multiplication and

forward-back substitutions relatively preconditioning – are

poorly accelerated due to parallelization on shared-memory

26

Preconditioned Conjugate Gradient Method for Solution of Large Finite Element Problems on CPU and GPU

computers when number of threads increases. Usually sev-

eral right hand parts – load cases – appear in problems

of structural mechanics. Therefore, in [5] each right hand

part iterates on separate thread, and number of threads is

restricted by number of right hand parts. The develop-

ment of modern graphics cards is driven by the develop-

ment of PCs. Today, in era of rapid general-purpose GPU

development, the calculations are a separated branch and

professional computing accelerators are not used as graph-

ics cards although their architecture is made for that and

allow it. HPC solutions also are equipped by accelerators,

based on GPU.

This paper is devoted to development of preconditioned

conjugate gradient method with incomplete Cholesky fac-

torization by value preconditioning [5] using GPU, based

on CUDA technology and intended to solution of linear

algebraic equation sets with sparse symmetric positive def-

inite matrices. Described implementation involves the use

of a single device with general-purpose GPU support. This

is a typical situation for PC with one external graphics card

or workstation with one computing accelerator.

2. Preconditioned Conjugate

Gradient Method

Let us consider the linear equation set

Kx = b , (1)

where K is a symmetric positive definite sparse matrix aris-

ing when the finite element method is applied to problems

of structural and solid mechanics. The problems of struc-

tural mechanics often are poorly conditioned due to using

of thin-walled plates, shells, bars and large scattering of

stiffness in structural elements, and the slow convergence

of iterative methods occurs in such a situation [9].

Algorithm 1: Incomplete Cholesky factorization

1: vip,i = 0

2: ip = 0,1, . . . , np−1

3: i = 1 ∈ [1 . . . N]
4: for j ∈ [1 . . . N] do

5: v0,i = Ki j, i ∈ L j

6: Parallel for k ∈ List j do

7: vip,i = vip,i−Hi,kH j,k, i ∈ Lk

8: end for

9: for ip ∈ [1 . . . np−1] do

10: v0,i+ = vip,i, i ∈ L j

11: end for

12: if v0i
2 < ψHiiH j j, i ∈ L j then

13: Hii+ =
∣

∣Hi j

∣

∣

√

Hii

H j j
, H j j+ =

∣

∣Hi j

∣

∣

√

H j j

Hii
,v0,i = 0

14: else

15: L j ← v0,i√
H j j

,Listi = j,v0,i =0

16: end if

17: end for

The proposed approach allows keeping a small value of

rejection parameter ψ and ensures a stable and fast conver-

gence of PCG method even for weakly conditioned prob-

lems of structural mechanics. The term “weakly condi-

tioned” means that matrix K is not singular, but the con-

ditioning number cond(K) is relatively large, and conven-

tional iterative methods demonstrates a slow convergence.

The article [5] contains the detail consideration of proposed

approach.

The preconditioned problem B−1Kx = B−1b is solved in-

stead Eq. (1), where B = HHT and H is the lower triangu-

lar matrix. The looking-left column-by-column incomplete

factorization procedure is applied [5] as shown in Algo-

rithm 1.

The ip and np are the thread number and the number

of threads, respectively. Next, nonzero entries of current

column j of matrix K are put to the dense vector v0

(v0,i = Ki j). Expression i ∈ L j means that row number i

belongs to nonzero structure of current column j. In the

loop “parallel for k” columns k located at left from j(k < j)
produce the update of column j. Expression k∈ List j means

that only such columns k which have nonzero elements H jk

in factorized matrix H are taken. Each thread ip writes re-

sults in own vector vip. Then we sum the results of each

thread and obtain updated column j in vector v0 (loop for

ip = 1, np− 1). In the next step, each nonzero entry of

v0(i∈ L j) is analyzed and the small entries v0i
2 < ψHiiH j j,

where 0 < ψ < 1 (if v0i
2 < ψHiiH j j) are rejected. Each re-

jection results in correction of diagonal entries Hii, H j j

to keep the positive definiteness of H and preconditioning

matrix B [11]. Only the “large” entries are retained and

put it in nonzero structure L j of matrix H.

Algorithm 2: PCG method

1: k = 0, x0 = 0

2: r0 = b−Kx0

3: while ||rk||2 > tol do

4: Solve Bzk = rk

5: k = k + 1

6: if k = 1 then

7: p1 = z0

8: else

9: βk =
rT

k−1
zT

k−1

rT
k−2

zT
k−2

10: pk = zk−1 + βkpk−1

11: end if

12: αk =
rT

k−1
zT

k−1

pT
k

KpT
k

13: xk = xk−1 + αkpk

14: rk = rk−1−αkKpk

15: end while

16: x = xk

Also, the number of current column j is put in Listi of

column i, located at right. In addition, after incomplete

factoring is finished, secondary rejection of small entries

Hi j
2

< ψ1HiiH j j, where 0 < ψ < ψ1 < 1 is produced. It

allows on reduction of nonzero entries in incomplete fac-

27

Sergiy Yu. Fialko and Filip Zeglen

tor H and accelerates triangular solution procedure without

significant deterioration of preconditioning properties.

The minimum degree ordering algorithm is applied be-

fore incomplete factorization for reducing the number of

nonzero entries in factorized matrix. It improves the abil-

ity of preconditioning to accelerate a convergence [5].

The Algorithm 2 presents the PCG method.

The residual vector for problem given by Eq. (1) on it-

eration step k is: rk = b−Kxk, where xk is approxima-

tion of exact solution x. For preconditioned problem the

residual vector zk is evaluated from expression B−1rk =
B−1(b−Kxk) = zk. Then the set of linear equations rela-

tively preconditioning Bzk = rk, or HHT zk = rk is solved.

The forward substitution Hyk = rk→ yk and back substitu-

tion HT zk = yk→ zk are produced.

The incomplete Cholesky factorization procedure requires

a large amount of core memory and authors use the parallel

Algorithm 1 implemented on CPU. The both CPU and GPU

versions of PCG method exactly correspond to presented

Algorithm 2.

3. Conjugate Gradient Method on GPU

and Implementation Using CUDA

Preconditioned conjugate gradient method performs the set

of linear algebra operations on matrices and vectors. All

operations on GPU are produced only with application of

procedures from CUBLAS [11] and CUSPARSE [12] li-

braries: cusparseDcsrsv-solve() [13] for triangular solution

Hyk = rk → yk (forward substitution) and HT zk = yk→ zk

(back substitution), cusparseDcsrmv() [14] for matrix-

vector multiplication wk = Kpk, cublasDdot() for evalua-

tion of dot products rk−1
T zk−1, pk

T wk, cublasDaxpy() for

computing of saxpy procedures xk = xk−1 + αkpk, rk =
rk−1−αkwk and cublasDscal() for vector scalar multipli-

cation pk = βkpk−1.

The multiplication of sparse symmetric matrix by vector

and triangular solutions during forward and back substitu-

tions are the most complex procedures of PCG method.

Their duration exceeds 90% of total solution time. The

algorithm that performs any operations with sparse ma-

trix must be consistent with the format in which this

matrix is stored. CUSPARSE library supports following

sparse matrix formats: COO, CSR, CSC, ELL, HYB, BSR,

BSRX [15]. Procedures for Symmetric Positive Definite

(SPD) matrices operate on matrices stored in Compressed

Storage Row (CSR) format. This implementation of PCG

method is practically the same as implementation of PCG

method from CUDA library [16]. The main difference

consists in the construction of preconditioning (see Al-

gorithm 1). Utilization of compressed row format (CSR),

which largely focused on low memory requirement, is per-

fect for the graphics card device, having the restricted mem-

ory amount. On the other hand, in the case of sparse matrix

with specific structure CSR format greatly reduces possi-

bility of blocking memory for CUDA thread blocks. The

consequence of jumps in memory due to specific structure

of sparse matrix leads to slowdown of instruction execu-

tion by pipelines in block of CUDA threads. Many publi-

cations concerning with implementation of sparse matrix-

vector multiplication algorithm on the GPU [17] are de-

voted to achievement of high performance in operations

on sparse positive definite matrices, stored in different for-

mats and designed for the GPU. Thus, for GPU comput-

ing does no storage format for symmetric positive definite

matrices exist, which would always give the most high-

performance matrix-vector operations. Therefore, comput-

ing performance essentially depends on the structure of

sparse matrix and its density.

The triangular solution procedure has a highly sequential

nature – its parallelization does not result in considerable

acceleration of computations on SMP computers as well

as on GPU. Algorithm of triangular solution used in CUS-

PARSE is presented in [18]. Algorithm 3 contains the pseu-

docode of version on GPU. The CPU version is presented

in [5].

Algorithm 3: Pseudocode of GPU version

1: Aggregate sparse stiffness matrix K and prepare lower

triangular matrix H using Algorithm 1 (on CPU).

Initiate CUDA device

2: Allocate memory on graphic accelerator (device

memory) for matrices K, H, packed in CSR format

and copy these matrices from host memory to device

memory

3: Use cusparseDcsrsm-analysis() procedure twice for

analysis of structure of the H and HT matrices

4: Allocate device memory for vectors x, p, r, z and

working vector w

5: Run Algorithm 2 until convergence will not be

achieved (no transfers of data between host and

device occurs)

6: Copy converged vector x from device to host

7: Deallocate device memory and deinitialize CUDA

device

The version of solver on CPU uses in-home algorithms.

Authors found in [19] that procedure mkl-dcsrsymv (sparse

symmetric matrix-vector multiplication) taken from Intel

MKL 11.2 accelerates the sparse symmetric matrix - vec-

tor multiplication about 2 times in compare with in-home

procedure on single thread and about 3 times on multiple

threads. In addition, the mkl-dcsrtrsv (triangular solution

for sparse matrix) procedure from Intel MKL demonstrates

the same time on the both: single thread and multiple

threads, and is on 20% slower in compare with in-home tri-

angular solution procedure. For proposed class of problems

the density of lower triangular matrix H is in many times

more than density of stiffness matrix K, and the duration of

triangular solution procedure is in several times longer than

the procedure of matrix-vector multiplication (Tables 1, 4,

and 7). Therefore, acceleration of matrix-vector multipli-

cation procedure does not produce considerable impact on

performance of PCG solver and allows us to use in-home

procedures on CPU version.

28

Preconditioned Conjugate Gradient Method for Solution of Large Finite Element Problems on CPU and GPU

The authors used Microsoft Visual Studio 2013 IDE and

NVIDIA GPU Computing Toolkit v.6.5 with CUBLAS and

CUSPARSE libraries. The C++ compiler v. 120 with flags

/O2 in realize version and /arch:AVX (Advanced Vector

Extension) was applied. Also, the unrolling of loop eight

times in the both: in-home matrix-vector multiplication and

in triangular solution procedures was used.

4. Test Problems and Hardware

Configuration

The three design models with fully different properties of

stiffness matrices are considered. Two models of multi-

storey buildings with quite different construction schemes

and the model of shopping center are analyzed. All these

real-life design models are taken from SCAD Soft [20]

collection. The research attention is focused on total com-

putation time, on computation time of matrix-vector multi-

plication procedure and on computation time of triangular

solution procedure at the stage of resolution respectively

preconditioning (SpTr). These intervals of time encompass

all iterations required for achievement of convergence.

Tests were made on following hardware configuration: IBM

System x iDataPlex dx360 M4 Server running Windows 7

Ultimate 64 bit, CUDA Toolkit 6.5 with CPU – Intel Xeon

E5-2620 2.0 GHz 6C 12T (2.5 GHz Turbo) 6x256 kB

L2, 15 MB L3, 32 GB DDR3 (8x4 GB) PC3-10700U

(1333 MHz) and GPU – Nvidia Tesla K20m 2496 CUDA

cores 705 MHz, 5 GB GDDR5 5200 MHz (1300 MHz).

The following designations are used. Lx is calculation time

of forward and backward substitutions for all iterations,

Kv – calculation time of procedure SpMV for all itera-

tions, Oth stands for duration of other computing included

in PCG iteration, Total – total calculation time for all pro-

duced iterations, Itr is the number of iterations required

to achieve of convergence, DenK and DenL – densities

of matrices K and H correspondingly (number of nonzero

entries/total number of elements in lower triangular part

of matrix) expressed as a percentage, ψ – value of rejec-

tion parameter ψ
(

ψ ∈
[

10
−9,10

−20
])

, ψ1 – value of post-

rejection parameter.

4.1. Problem 1

Aquamarine is a finite element model of multistory build-

ing (Fig. 1) and comprises 176,819 finite elements, equa-

tions 881,908 and 149,494 nodes. Authors present the

computation times on the both: CPU and GPU with the

fixed value of rejection parameter ψ = 10
−10, and differ-

ent values of post-rejection parameter ψ1 (Tables 1 and 2).

Table 3 shows comparison of computation times on CPU

and GPU.

Higher GPU performance arises only on relatively large val-

ues of dropping parameters (Fig. 2). In this case structure

of the matrix H is more sparser than when using smaller

value of dropping parameter ψ1 (Table 3). In all other cases

Fig. 1. Computational model of Aquamarine.

Table 1

Problem 1 – computation times on CPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−10

10
−8 3.5 44.4 1.1 49 142

10
−10

10
−6 4.3 31.9 1.8 38 179

10
−10

10
−4 23.9 102.1 10 136 968

10
−10

10
−3 169.8 543.7 92.5 806 6550

Table 2

Problem 1 – computation times on GPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−10

10
−8 7.4 309 13.6 330 142

10
−10

10
−6 9.3 112 9.7 131 179

10
−10

10
−4 49.9 100 15.1 165 968

10
−10

10
−3 334.8 185.8 118.4 639 6550

Table 3

Problem 1 – comparison of computation time on CPU

and GPU (ψ = 10
−10, DenK = 0.0033)

ψ1 CPU [s] GPU [s] DenL

10
−8 49 330 0.0189

10
−6 38 131 0.0099

10
−4 136 165 0.0046

10
−3 806 639 0.0029

29

Sergiy Yu. Fialko and Filip Zeglen

in which the parameter ψ <= 10
−4, density of the matrix H

increases, and a considerable advantage of the CPU version

(Table 1) over the GPU (Table 2) can be observed.

The matrix-vector multiplication procedure using CPU is

less than GPU version for all considered values of drop-

ping parameters (Tables 1 and 2). Duration of matrix-vector

multiplication procedure depends on density of stiffness

matrix K, which strictly depends on considered problem

and does not depend on values of dropping parameters. In

contrast to matrix-vector multiplication procedure, the du-

ration of triangular solution procedure depends on values

of ψ and ψ1 parameters (Table 3).

900

800

700

600

500

400

300

200

100

0

T
im

e
[s

]

10
-8

10
-6

10
-4

10
-3

CPU GPU

1

Fig. 2. Problem 1 – comparison of computation times on CPU

and GPU for Aquamarine.

The performance of triangular solution procedure by

CUDA [13], [17] considerably depends on matrix H spar-

sity. If H density is very small, the CUDA realization of

triangular solution is faster than CPU version. With de-

creasing of drop parameter value the density of H increases

and CPU realization of triangular solution becomes faster

(Table 3). For drop parameters values, ensuring accept-

ably fast solution, CPU realization is more faster than GPU

(Fig. 2).

4.2. Problem 2

Schemanew is a finite element model of multistory build-

ing (Fig. 3) and comprises 556,905 finite elements, equa-

tions 3,198,609 and 534,490 nodes. In this Subsection the

CPU and GPU times for different values of rejection param-

eters ψ , ψ1 (Tables 4 and 5) and their comparison (Table 6)

are presented.

When applying the small post-dropping parameters ψ1 <=
10
−6 which satisfy a fast convergence, the size of precon-

ditioning matrix H exceeds capacity of GPU memory of

Tesla equipped with 5.4 GB. In such cases in Fig. 4 and

Tables 5 and 6 only the results obtained on CPU are de-

picted. In this Subsection authors show on plots two rejec-

Fig. 3. Computational model of Schemanew.

Table 4

Problem 2 – computation times on CPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−11

10
−8 15.5 127.4 8.1 151 196

10
−9

10
−6 45.6 289.8 23.6 359 497

10
−9

10
−5 59.8 303 30.2 393 658

10
−9

10
−4 142 566 73 781 1584

Table 5

Problem 2 – computation times on GPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−11

10
−8 – – – – –

10
−9

10
−6 – – – – –

10
−9

10
−5 104 139 19 262 659

10
−9

10
−4 248 148 33 429 1583

Table 6

Problem 2 – comparison of computation time on CPU

and GPU (DenK = 0.000667)

ψ ψ1 CPU [s] GPU [s] DenL

10
−11

10
−8 151 – 0.00347

10
−9

10
−6 359 – 0.00196

10
−9

10
−5 393 262 0.00144

10
−9

10
−4 781 429 0.00099

30

Preconditioned Conjugate Gradient Method for Solution of Large Finite Element Problems on CPU and GPU

tion parameters ψ and ψ1, separated by semicolon. Higher

performance of GPU realization (Table 5) of PCG solver

comparing with CPU version (Table 4) is achieved only for

respectively large values of drop parameters, which leads to

increasing of number of iterations and slowdown of conver-

gence. The acceptable solution time is achieved on CPU

version. GPU version for proper values of drop parame-

ter, which ensure the stable and fast convergence, requires

essentially more amount of memory than given graphic ac-

celerator possesses.

800

700

600

500

400

300

200

100

0

T
im

e
[s

]

10
-8

10
-11

10
-6

10
-5

10
-9

10
-9

10
-4

10
-9

CPU GPU

1,

; ; ; ;

Fig. 4. Problem 2 – comparison of computation times on CPU

and GPU for Schemanew.

For ψ1 > 10
−5 is possible to put matrix H in memory of

graphic accelerator, and GPU version is faster than CPU.

However, with decreasing of ψ1 density of matrix H in-

creases, and advantage of GPU version becomes smaller

(Fig. 4). This tendency suggests, that even if memory of

the graphic accelerator would suffice for accommodation

of matrix H at smaller values ψ1, with decreasing of ψ1

CPU becomes faster, than the version on GPU. Probably,

it is caused by specifics of triangular solution algorithm [18]

(Table 5), developed by NVIDIA, which is very fast for

sparse matrices of low density, but with increase of density

its performance considerably deteriorates.

4.3. Problem 3

TRK is a finite element model of market building (Fig. 5)

and comprises 473,723 finite elements, equations 2,442,846

and 441,300 nodes.

For parameters ψ = 10
−8 and ψ1 = 10

−7 matrix is to large

and does not fit into GPU accelerator memory.

The matrix-vector multiplication procedure as well as in

the previous problems, on CPU is about two times faster

than on GPU (Tables 7 and 8).

The best performance of triangular solution procedure,

which mostly affects total time, is achieved on GPU. In

Fig. 5. Computational model of TRK.

Table 7

Problem 3 – computation times on CPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−10

10
−5 16.1 90.5 8.4 115 231

10
−8

10
−7 10.4 89.5 6.1 106 177

10
−8

10
−6 11.2 79.8 7 98 191

10
−8

10
−5 15 85.8 9.2 110 257

10
−8

10
−4 41.9 188.9 23.2 254 707

Table 8

Problem 3 – computation times on GPU

at different ψ , ψ1 parameters

ψ ψ1 Kv [s] Lx [s] Oth [s] Total [s] Itr

10
−10

10
−5 26.7 36.1 7.2 70 231

10
−8

10
−7 – – – – –

10
−8

10
−6 22.2 41.5 6.3 70 191

10
−8

10
−5 29.5 28.4 8.1 66 256

10
−8

10
−4 81.4 30.6 25 137 705

Table 9

Problem 3 – comparison of computation times on CPU

and GPU (DenK = 0.00096)

ψ ψ1 CPU [s] GPU [s] DenL

10
−10

10
−5 115 70 0.00233

10
−8

10
−7 106 – 0.00384

10
−8

10
−6 98 70 0.00305

10
−8

10
−5 110 66 0.00224

10
−8

10
−4 254 137 0.00155

each case of preconditioning parameters, authors found

considerable advantage of GPU version comparing with

CPU (Table 9).

31

Sergiy Yu. Fialko and Filip Zeglen

300

200

100

0

T
im

e
[s

]

10
-5

10
-10

10
-7

10
-6

10
-5

10
-8

10
-8

10
-8

10
-4

10
-8

CPU GPU

1,

; ; ; ; ;

250

150

50

Fig. 6. Problem 3 – comparison of computation times on CPU

and GPU for TRK.

5. Summary and Conclusions

For presented problems of structural mechanics, which we

intend to solve by PCG method, the conducted research

cannot clearly indicate which one of two comparable de-

vices: CPU or GPU, will demonstrate a better performance.

Which device is better, depends on the densities and struc-

tures of the matrices K and H. GPU demonstrates a bet-

ter performance only for very sparse matrices, the location

of nonzero elements of which allows on efficient split on

parallel tasks during triangular solution, performed by al-

gorithm [18]. For problem 1, where matrix H has highest

density among all considered problems, one can observe

significant CPU advantage at stage of triangular solution,

which has a main impact on total solution time. For prob-

lems 2 and 3 matrix H is a more sparser, than in problem 1,

and GPU version demonstrates a less time of triangular so-

lution algorithm and correspondingly better solution time

than CPU, until the amount of graphic accelerator memory

is enough large to put matrices H and K. To improve ability

of preconditioning and accelerate convergence, the values

of drop parameters ψ , ψ1 were decreased and density of

matrix H was increased. When GPU version fails due to in-

sufficient device memory, the CPU version of solver having

sufficient amount of RAM, solves these problem faster than

GPU version. Only for problem 3 authors found that GPU

version occurs faster than CPU. Matrix-vector multiplica-

tion procedure is always faster in CPU version, regardless

of density of matrix K. Decrease of drop parameter value

leads to improving of preconditioning properties, reducing

the number of iterations for achievement of convergence,

but increasing the duration of each iteration due to consid-

erable enlarging of triangular solution time.

Acknowledgements

The authors express their deep gratitude to SCAD Soft IT

company for providing a collection of real-life problems

from engineering practice.

References

[1] J. Zhang and L. Zhang, “Efficient CUDA polynomial preconditioned

conjugate gradient solver for finite element computation of elas-

ticity problems”, Mathem. Problems in Engin., article ID 398438,

pp. 1–12, 2013.

[2] M. Verschoor and A. C. Jalba, “Analysis and performance estima-

tion of the Conjugate Gradient method on multiple GPUs”, Parallel

Comput., vol. 38, no. 10–11, pp. 552–575, 2012.

[3] S. Georgescu, P. Chow, and H. Okuda, “GPU Acceleration for FEM-

Based Structural Analysis”, Arch. Comput. Methods Engin., vol. 20,

no. 2, pp. 111–121, 2013.

[4] C. Yao, Z. Yonghua, Z. Wei, Z. Lian, “GPU-accelerated incomplete

Cholesky factorization preconditioned conjugate gradient method”,

J. of Comp. Res. & Develop., vol. 52, no. 4, pp. 843–850, 2015.

[5] S. Y. Fialko, “Iterative methods for solving large-scale problems of

structural mechanics using multi-core computers”, Archiv. of Civil

and Mechan. Engin., vol. 14, no. 1, pp. 190–203, 2014.

[6] M. Suarjana and K. H. Law, “A robust incomplete factorization based

on value and space constraints”, Int. J. for Numerical Methods in

Engin., vol. 38, pp. 1703–1719, 1995.

[7] K. Malkowski, I. Lee, P. Raghavan, and M. J. Irwin, “Conjugate

gradient sparse solver: Performance-power characteristics”, in Proc.

20th IEEE Int. Parallel & Distrib. Process. Symp. IPDPS 2006,

Rhodes Island, Greece, 2006.

[8] M. Papadrakakis, “Solving Large-Scale Problems in Mechanics”.

Wiley, 1993.

[9] S. Y. Fialko, “Parallel direct solver for solving systems of linear

equations resulting from finite element method on multi-core desk-

tops and workstations”, Comp. & Mathem. with Appl., vol. 70,

pp. 2968–2987, 2015.

[10] A. Jennings, “Development of an ICCG algorithm for large

sparse systems”, in Preconditioned Methods. Theory and Appli-

cations, D. J. Evans, Ed. Gordon and Breach Publishers, 1983,

pp. 425–438.

[11] Nvidia Corporation, “cuBLAS API” [Online]. Available:

http://docs.nvidia.com/cuda/cublas/

[12] Nvidia Corporation, “cuSPARSE API” [Online]. Available:

http://docs.nvidia.com/cuda/cusparse/

[13] Nvidia Corporation, “csrsvsolve()” [Online]. Available:

http://docs.nvidia.com/cuda/cusparse/#cusparse-lt-t-gt-csrsvsolve

[14] Nvidia Corporation, “csrmv()” [Online]. Available:

http://docs.nvidia.com/cuda/cusparse/#cusparse-lt-t-gt-csrmv

[15] Nvidia Corporation, “cuSPARSE Indexing and Data Formats” [On-

line]. Available: http://docs.nvidia.com/cuda/cusparse/

#cusparse-indexing-and-data-formats

[16] Nvidia Corporation, “CUDA Library – conjugateGradientPrecond –

Preconditioned Conjugate Gradient” [Online]. Available:

http://docs.nvidia.com/cuda/cuda-samples/#preconditioned-

conjugate-gradient/

[17] B.-Y. Su and K. Keutzer, “clSpMV: A Cross-Platform OpenCL

SpMV Framework on GPUs” [Online]. Available:

http://parlab.eecs.berkeley.edu/sites/all/parlab/files/clspMV-

%20Keutzer.pdf

[18] M. Naumov, “Parallel Solution of Sparse Triangular Linear Systems

in the Preconditioned Iterative Methods on the GPU” [Online].

Available: https://research.nvidia.com/publication/parallel-

solution-sparse-triangular-linear-systems-preconditioned-iterative-

methods-gpu

[19] S. Fialko and F. Zeglen, “ Block preconditioned conjugate gradient

method for extraction of natural vibration frequencies in structural

analysis”, in Proc. Feder. Conf. Comp. Sci. & Inform. Syst. FedCSIS

2015, Łódź, Poland, 2015, vol. 3, pp. 655–66.

[20] V. S. Karpilovskii, E. Z. Kriksunov, A. A. Malyarenko, M. A. Miki-

tarenko, A. V. Perelmuter, and M. A. Perelmuter, “SCAD computa-

tional complex”, ASV, 2004 (in Russian).

32

Preconditioned Conjugate Gradient Method for Solution of Large Finite Element Problems on CPU and GPU

Sergiy Yu. Fialko studied

structural mechanics and ob-

tained his degree in 1983 in

Institute of Mechanics in Kiev,

Ukraine. He worked in Re-

search Institute of Steel Con-

structions in Kiev, in software

company RoboBAT in Cracow,

Poland, in National University

of Construction and Architec-

ture in Kiev, where obtained his

habilitation degree in 2004. Since 2007, he has been work-

ing in the Cracow University of Technology. For many

years he is the scientific adviser of software company

SCAD Soft.

E-mail: sergiy.fialko@gmail.com

Institute of Computer Science

Faculty of Physics, Mathematics and Computer Science

Tadeusz Kościuszko Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

Filip Zeglen obtained his B.Sc.

graduation in 2012 in Com-

puter Science at Wyższa Szko-

ła Ekonomii i Informatyki in

Cracow and M.Sc. graduation

in 2014 at Cracow University

of Technology. He worked as

.NET, Java developer and free-

lancing indie games developer.

Since 2014 he is Research and

Teaching Assistant at Cracow

University of Technology and Ph.D. student at Institute of

Fundamental Technological Research Polish Academy of

Sciences.

E-mail: filipzeglen@hotmail.com

Institute of Computer Science

Faculty of Physics, Mathematics and Computer Science

Tadeusz Kościuszko Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

33

