
Paper A Cloud-aided Group

RSA Scheme in Java 8 Environment

and OpenStack Software
Agnieszka Jakóbik

Faculty of Physics, Mathematics and Computer Science, Tadeusz Kościuszko Cracow University of Technology, Cracow, Poland

Abstract—In this paper a RSA based security system enabling

the group of users to upload the single masked message to the

cloud environment is proposed. Data stored are encrypted us-

ing RSA algorithm. The data receiver is able to encrypt the

message retrieved from the cloud environment using private

key. Two different separate RSA systems are used. The pre-

sented approach is divided into three parts. First, an RSA key

is generated for each sender. Then masking the message by

newly chosen mask proposed individually by every member,

additionally encrypted by individual RSA private key of each

member is proceed. Next, encrypting the gathered message

inside the cloud environment, using the public key of the re-

ceiver is executed. In the third step, the message is decrypted

by the receiver using his private RSA key. The scheme reduces

the computational load on users side and transfers calculations

and storage effort to the cloud environment. The proposed al-

gorithm was developed for storing and sending the data that

originally are produced by a group of users, but the receiver

of the data is single. It was implemented using Java 8 and

OpenStack software. Numerical test of different key length

for RSA are presented.

Keywords—cloud computing, confidentiality, RSA cryptosystem.

1. Cloud Computing

Cloud computing is based on a business model in which

resources are shared among at the network, host, and ap-

plication level. It provides massive scalability and the

ability to store large amount of data with efficient com-

putational power. The cloud computing offers resources

such as virtual-machine disks, image libraries, file storages,

firewalls, mailing systems, load balancers, IP addresses,

virtual local area networks, software bundles, operating

systems, programming languages execution environments,

databases, and Web servers [1].

Users may access to cloud environment using client de-

vices, such as desktop computers, laptops, tablets and

smart-phones. They are thin clients because cloud services

do not require dedicated software on the client side (Fig. 1).

Clients’ software transfers calculation effort to the machine

in the cloud. The most widely used examples of cloud

computing are Google Cloud, Microsoft Cloud, Amazon

Cloud and Adobe Creative Cloud [2]–[5].

The following features of cloud based IT systems distin-

guish them from traditional services and resources:

Remote
database

Smartphone
Mini note

Remote server

Stationary home PCWeb browser

Notebook Cloud infrastructure

Fig. 1. Features of Cloud Systems.

• multitenancy – unlike previous computing models,

which assumed single user resources in cloud model

resources they are shared;

• massive scalability – traditional models might have

hundreds or thousands of systems, cloud computing

provides the ability to scale to tens of thousands of

systems, and the ability to massively scale bandwidth

and storage space;

• flexibility – users can increase and decrease their

computing resources on demand;

• pay as you go – users pay only for using services and

for the time they require them;

• self-provisioning of resources – users may introduce

additional systems, i.e. processing capability, soft-

ware, storage space and network resources [6];

• lower cost – cloud models have low upfront IT invest-

ment, and modular IT architecture. No infrastructure

on the client side is required.

2. Security Issues in Cloud Environment

Cloud environment may be an easy target for hackers and

organizations due to system availability and third-parity

data usage. Moreover, user must protect the infrastruc-

ture by using safe connection to the cloud. Therefore,

not every aspect of system security is fully controlled by

cloud environment. The service provider have to deliver the

53

Agnieszka Jakóbik

authentication and authorization techniques. Individuals

may be assigned to different levels of privileges or may

act together sharing the resources. Data and services in

the clouds may be affected by numbers of attacks from dis-

tributed denial of service, phishing, data loss or leakage,

unauthorized sharing of the technology and the abuse of

the resources [6]. The security objectives are a key factor

for decisions about choosing the cloud vendor. Nowadays,

a lot of outsourcing information techniques, services and

applications, and other resources has to be located inside

a cloud computing environment, due to data size, speed

and diversification. The user of the data benefits from pro-

cedures implemented inside the cloud. These may include

given tools for authorization, authentication or data security

support technique.

Cloud platform offers Infrastructure as a Service (IaaS),

Platform as a service (PaaS) and Software as a service

(SaaS). All three service models may be a target for the

threats [7].

Infrastructure Security at the network level requires:

• ensuring the confidentiality and integrity of user data

in transit to and from public cloud provider,

• ensuring proper access control (authentication, au-

thorization, and auditing) to resources,

• ensuring the availability of the Internet resources in

a public cloud that are being used by user or have

been assigned to user by cloud provider [6].

The proposed scheme may be used in two first above levels.

Infrastructure security at the host level requires:

• for PaaS and SaaS models – hiding the host operating

system from end users,

• the abstraction layer is not visible to users and is

available only to the developers,

• host security responsibilities in SaaS and PaaS ser-

vices are transferred to the cloud model [6].

The proposed scheme fulfills above requirements.

The data in cloud models should be treated deferentially

according their status: data in transit, data at rest, data

being processed. Additionally, multitenancy, data lineage,

data provenance, data remanence have to be considered.

Data in transit should be encrypted during transfer to and

from a cloud provider. Encrypting data at rest is strongly

suggested. Data lineage is important for an auditor’s as-

surance. Integrity of data ensures that data has not been

changed in an unauthorized manner or by an unauthorized

person. Provenance means that the data is computationally

accurate. Data remanence refers to the policy of treating

data that are not used, not actual or has been erased by

user from his applications [6]. In the proposed scheme

data in transit are treated differently from data in rest, data

lineage is strictly defined, processing of the data and data

provenance are supported only by cloud software. Data re-

manence depends on both: user and cloud infrastructure.

Data at rest stored for a long time inside cloud infrastruc-

ture should be encrypted using strong cryptography.

3. OpenStack Software

OpenStack is a cloud operating system that enables com-

puting, storing, and networking resources [8]. It is open-

source software for IaaS. Managing the IT infrastructure

for the proposed algorithm was possible by using commu-

nication interface. Virtualized resources were used for cal-

culating the results. They were available by prepared GUI

environment. It consisted Compute (Nova service) module

responsible for arranging, managing and providing virtual

machines. Prepared working environment provided mas-

sively scalable, on demand access to computing resources.

Object Store (Swift service) was used for managing storage

system and Image Service (Glance service) was responsible

for uploading and discovering data. Services were manage-

able from Horizon dashboard.

4. RSA Cryptosystem

RSA (proposed by Ron Rivest, Adi Shamir and Leonard

Adleman [9]) is the public key algorithm for encrypting

and decrypting the data. Encryption enables the communi-

cation to be private. Each message is encrypted before

transmitting it to the receiver. The receiver knows the

proper function to obtain the original message. Only the

authorized user can have an access to the data stored. RSA

algorithm may be used also for digital signatures evalu-

ating [10]. Every plain text written in natural language is

mapped into integer number and encrypted using arithmetic

algorithm that proceeds on big numbers. RSA algorithm

involves three stages:

• Key generation starts from choosing two different

large random prime numbers p and q. Then, cal-

culating n = ∗pq the modulus for the public key and

the private keys. Next step is to calculate the totient:

φ(n) = (p−1)(q−1). After that one have to choose

an integer e such that 1 < e < φ(n) and e, is co-prime

to e, i.e.: e, and φ(n) share no factors other than 1;

gcd(e,φ(n)) = 1. The public key is made of the mod-

ulus n and the public exponent e. The private key is

made of the modulus n and the private exponent d,

which must be kept secret;

• To encrypt the message M for particular receiver

the sender is using public key of receiver. First the

sender turns M into a number m (smaller than n)

by using a reversible protocol known as a padding

scheme [11]. He then computes the cipher text c:

c = me
mod n ; (1)

• The receiver can recover m, from c, by using his

private key d:

m = cd
mod n . (2)

Given m one can recover the original message M by

applying the reverse padding scheme.

54

A Cloud-aided Group RSA Scheme in Java 8 Environment and OpenStack Software

It is currently recommended that n should be 1024 or

2048 bits long [12]. The RSA algorithm is used for example

as a part of security system inside Google Cloud [13], [14],

and in many handshaking protocols in the Transport Layer

Security (TLS) [15].

5. Proposed Cloud-aided Group RSA

Scheme

Proposed cloud-aided group RSA scheme is based on the

procedure [16]. Additional stage was added to secure the

first step of the algorithm before data are send to the cloud

computing center. Moreover, proposed algorithm enables

sending not only the single message (as in [16]) but the

message may be composed from different parts coming

from different senders. Proposed algorithm was designed

for two separate data centers. Separating responsibilities

increased the security of the cloud infrastructure itself.

Furthermore, it made controlling the users privileges much

easier.

n

n

n

Sender’s private

keys (n, d)i

Receiver public
key (n, e) Receiver

private
key

Sender public

key (n, e)i

(n, d)

Cloud data collection/storage center

Fig. 2. Key preparation during stage 0.

5.1. Stage 0 – Organizing Infrastructure

Let’s assume that a group of users (called senders)

S1, S2, . . . ,ST is sharing the same file or data in the cloud

infrastructure. They may modify and send it to receiver cho-

sen from outside this group. All parts are gathered to por-

tion of data called a message m in the cloud environment so

that the receiver R may retrieve it on demand. The message

is stored in the cloud storage center (CSC) in the encrypted

form. Four actors are considered: group of senders, cloud

data collection center (CDCC), cloud data storage center

(CDSC), receiver of the data. The group of senders con-

tacts only with CDCC, receiver only with CDSC. CDCC

and CDSC are contacting each other (Fig. 2).

5.2. Stage 1 – Key Preparation and Data Gathering

The receiver generates his RSA private key (d,n) and pub-

lic RSA key (e,n) and sends public RSA key to the CDSC.

The CDSC sends to CDCC parameters n and e. CDCC

sends parameter n to each sender. Each sender i =
1, 2, . . . , T generates the own private RSA key (di,n), and

public RSA key (e,n). Then he sends public RSA key to the

CDCC. Only the public keys are transferred. Then, sending

decrypted data to CDCC is made. To do so, each sender is

passing his part mi of the message m = m1 ∗m2 ∗ · · · ∗mT .

He generates new random number ai such that a < n

and computes bi = (mi ∗ ai)
di mod n. Then he sends bi

to CDCC. Additionally a0 = a1 ∗ a2 ∗ · · · ∗ aT mod n is

added. In case only one member is sending his message,

all the ai but his are set to 1 (Fig. 3).

Sender’s private keys (n, d)i

Receiver public
key (n, e)

(n, d)

ai

a0

bi

bTb1

mi

b2
...

Fig. 3. Gathering messages from recipients inside CDCC during

stage 1.

5.3. Stage 2 – Processing Data in CDCC

CDCC applies public key of each sender ei to proper part

of data and then applies public key of the receiver e:

v0 = a0
e
, (3)

vi = (bei
i)e

mod n = , (4)
(

(mi ∗ ai)
di∗ei

)e
mod n = (mi ∗ ai)

e
mod n . (5)

After that stage, data are composed into V =
(v0,v1,v2, . . . ,vT) vector. Then this vector is permuted by

using random permutation P: Vperm = (v′
0
,v′

1
,v′

2
, . . . ,v′T).

Vector Vperm is sent to CDSC. The data from the group

of senders is located in CDSC (Fig. 4).

Vperm

Sender’s private keys (n, d)i

Receiver public
key (n, e) (n, d)

ai

mi

V

Cloud data collection center

Fig. 4. Mixing messages from recipients inside CDCC into single

message during stage 2.

5.4. Stage 3 – Processing Data in CDSC

CDSC applies inverse permutation P−1 to Vperm, obtaining

V = (v0,v2, . . . ,vT) vector. Then computes:

55

Agnieszka Jakóbik

c = (v1 ∗ · · · ∗ vT)∗ v0
−1

mod n = , (6)

(m1 ∗m2 ∗ · · · ∗mT)e
mod n = , (7)

me
mod n . (8)

This value is stored until the receiver would like to retrieve

it (Fig. 5).

c

Vperm

Sender’s private keys (n, d)i

Receiver public
key (n, e)

(n, d)

ai

mi

Cloud data storage center

Fig. 5. Storing data inside CDSC in the form of single message

during stage 3.

5.5. Stage 4 – Downloading Decrypted Data to CDSC

and Encryption by Receiver

Receiver uses his own private key d to calculate:

m = cd
mod n = (me)d

mod n = m mod n . (9)

Given m one can recover the original message M by using

reverse padding scheme.

c

Sender’s private keys (n, d)i

Receiver public key (n, e)

(n, d)

ai

mi

Cloud data storage center

m

Fig. 6. Retrieving message from CDCC and encryption during

stage 4.

Data is more vulnerable to unauthorized modification or

appropriation when it is in storage than it is being pro-

cessed. This is the reason, why the strongest RSA keys

should be applied during stages 2 and 3. It also moves

storage afford the data into cloud environment. Masks

a1, a2, . . . , aT are different for each message. There is no

need for generating new RSA key for every single message.

Using the masks, the true message mi is indistinguishably

from empty message mi during sending stage 1. If partic-

ular sender is not generating his part computational afford

is low, because masks may be much smaller then messages.

The group is invisible to the receiver. The receiver does not

know who from the group had sent the particular part of

the message or even that the message was composed from

parts (Fig. 6).

6. Experimental Results in Java 8

Environment and OpenStack

Software

CDCC operation were calculated using several units of PCs

connected into one network. Such a solution enables gath-

ering the data from users by independent units. Addition-

ally, the units were used as direct way of the data upload-

ing. The uploading the data for lean clients was made by

Web browser application running on each unit. Cloud data

storage operations were performed using single OpenStack

instance [17].

Java 8 environment was chosen for three main reasons.

Firstly, for the convenience of the security package. Sec-

ondly, for the possibility of usage the BigInteger library

that was necessary for computing on such large numbers.

Finally, Java 8 provided secure pseudo-random number gen-

erator for calculating e, p and q values.

The RSA part of the scheme was implemented using the

following Java 8 classes, methods and interfaces from Java

security package:

• Key – interface models the base characteristics for

the keys,

• KeyFactory – key factories are used to convert keys

into key specifications (transparent representations of

the underlying key,

• KeyPair – serves as a container for public and private

keys,

• KeyPairGenerator – a class used to generate key-pairs

for a security algorithm,

• GeneratePrivate – method generating a private key

from the provided key specification,

• GeneratePublic – method generating a public key

from the provided key specification,

• Interface KeySpec – transparent specification of the

key that sets a cryptographic key. If the key is stored

on a hardware device, its specification may contain

information that helps identify the key on the de-

vice [18].

To generate the keys from the Key Factory the following

Java 8 code was implemented:

56

A Cloud-aided Group RSA Scheme in Java 8 Environment and OpenStack Software

KeyPairGenerator key_par_gen =

KeyPairGenerator. getInstance ("RSA ");

key_par_gen .initialize (2048);

KeyPair kp =

key_par_gen .genKeyPair ();

PublicKey publicKey =

key_par . getPublic ();

PrivateKey privateKey =

key_par . getPrivate ();

KeyFactory factory_rsa =

KeyFactory . getInstance ("RSA ");

RSAPublicKeySpec pub =

factory_rsa .getKeySpec

(publicKey , RSAPublicKeySpec.class);

RSAPrivateKeySpec priv = factory_rsa .

getKeySpec

(privateKey , RSAPrivateKeySpec.class);

To retrieve the values of the key the following Java 8 code

was proposed:

BigInteger

n = (BigInteger)

object_input_stream.readObject ();

BigInteger

e = (BigInteger)

object_input_stream.readObject ();

KeyFactory factory_rsa =

KeyFactory .getInstance (‘‘RSA ");

if (keyFileName . startsWith (‘‘ public "))

return factory_rsa .

generatePublic

(new RSAPublicKeySpec(n, e));

else

return factory_rsa .

generatePrivate

(new RSAPrivateKeySpec(n, d));

Public class called Cipher was used to encrypt and decrypt

the messages during stage 1 [19].

• javax.crypto.Cipher – class provides encryption and

decryption;

• javax.crypto.CipherInputStream – constructs a Ci-

pherInputStream from an InputStream and a cipher;

• javax.crypto.CipherOutputStream – constructs a Ci-

pherOutputStream from an OutputStream and a ci-

pher.

Keys were stored using secured disk space. There were

retrieved on demand when new instance of RSA algorithm

was created:

Key public_Key =

readKeyFromFile(" public .key ");

Cipher cipher =

Cipher .getInstance ("RSA ");

cipher .init

(Cipher .ENCRYPT_MODE , public_Key);

Key private_Key =

readKeyFromFile(" private .key ");

Cipher cipher =

Cipher . getInstance ("RSA ");

cipher .init

(Cipher .DECRYPT_MODE , private_Key);

7. Numerical Tests

Two physically separated data centers were used. Cloud

data collection center was located in Institute of Computer

Science at Cracow University of Technology in Poland, and

Cloud data storage center was located in Cloud Competency

Center at National College of Ireland [20].

Cloud data collection center consisted of 28 units of

the same characteristic: AMD FX-6300 6-cores processor,

2 GHz, cache size 2048 KB, Windows 8.1 Enterprise or

Linux Fedora rel. 22. This solution enables uploading the

data remotely using Web application and mobile phones or

tablets. Additionally 28 users may upload their data in the

same time personally while sitting in front of the units. The

CDCC used Java 8 Web application, described in Section 5.

The CDSC was working under OpenStack software. Sin-

gle instance was used. The OpenStack instance m1.large

was configured as follows: RAM 8 GB, 4 VCPU, 80 GB

HDD [21], with Ubuntu operating system and OpenSSL

library [22]. The experimental server specified in [23] was

used. The characteristics of the virtual machine used for

calculation were: OpenStack Nova system, memory 96 KB

BIOS, processor Intel Xeon E312xx (Sandy Bridge), 8 GB

system memory. The decryption was made by data storage

center on users demand. The data was sent to the end user

via secure channel.

Table 1

Mean encryption time in CDCC, data file size 10 MB

Key length 1024 bit 2048 bit

Real time 1 m 56.112 s 2 m 25.334 s

User time 1 m 17.357 s 2 m 21.434 s

System time 1 m 14.711 s 2 m 20.724 s

Table 2

Mean decryption time in CDSC OpenStack instance,

data file size 10 MB

Key length 1024 bit 2048 bit

Real time 0 m 31.484 s 0 m 45.572 s

User time 0 m 25.984 s 0 m 37.245 s

System time 0 m 26.226 s 0 m 40.378 s

According to the recommendation for key manage-

ment [24], secure 1024 or 2048 bit keys were used. The

chosen results of experiments are presented in Tables 1

and 2.

It was found profitable to proceed long messages in chunks.

Chunks were generated by dividing the message into equal

parts. Specified number of bits was considered. Chunks

was coded and decoded in parallel mode. The time of

calculation is highly dependable on the busyness of the

computational unit. That is why, mean encryption time in

CDCC unit is presented.

57

Agnieszka Jakóbik

It was stated that enlarging key length from 1024 to 2048

bits resulted in computational time increasing about:

• 34% for Data Collection Unit real time,

• 30% for OpenStack instance real time.

Instead of multiplication of fragmentary messages other op-

erations may be performed, then equivalent methods for

generating a0 have to be adopted.

8. Conclusions and Future

Development

Proposed RSA based security system enables the group of

users sending the single message to the cloud environment.

Inside cloud environment data are stored encrypted by RSA

algorithm. Receiver of the data is able to encrypt the mes-

sage retrieved from the cloud environment on demand, re-

gardless when message was send. Two different separate

RSA systems are used according to the computing capabil-

ities. Simple, computationally non-demanding procedure

was proposed for a thin client in the form of masking.

Parallel computations using strong secure keys were incor-

porated for cloud environment. The RSA key generating

and masking the message was proposed for each sender.

Such a procedure enabled treating data at rest and data be-

ing processed in a different way, according to the security

requirements. It also allowed minimizing computational

afford on the user’s side and using the benefits of cloud

computing security infrastructure.

Separating senders from receivers allowed dividing thin

and not secured clients from data store center. Grouping

senders and receivers in different location simplified the

management of users’ rights and privileges.

Additionally, encrypting the gathered message inside the

cloud environment enables to hide the group from the re-

ceiver. Such a scheme may be used during electronic vot-

ing, electronic reviewing, and team working on the same

document. Decryption the message by the receiver using

his private RSA key ensures that if the private key was kept

secret no one but receiver could read the massage stored

inside cloud environment.

Future development of research is planned. The investi-

gation on the influence of differed OpenStack instances

types is considered. Also, exploring more advanced meth-

ods for lean clients. The masking method is planned to

be replaced by fragmenting and mixing the message. Fur-

ther investigation on increasing computational efficiency is

necessary.

Acknowledgement

The author would like to express great gratitude for Horacio

González-Véle, the Head of NCI Cloud Competency Center

in Dublin for enabling tests on OpenStack software.

References

[1] J. Rittinghouse and J. Ransome, Cloud Computing: Implementation,

Management, and Security. CRC Press, 2009.

[2] Google Cloud Platform [Online]. Available:

https://cloud.google.com/

[3] Amazon Drive [Online]. Available:

https://www.amazon.com/clouddrive/home

[4] Microsoft Cloud [Online]. Available:

http://www.microsoft.com/enterprise/microsoftcloud

[5] Adobe Creative Cloud [Online]. Available:

http://www.adobe.com/pl/creativecloud.html

[6] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and Pri-

vacy An Enterprise Perspective on Risks and Compliance. O’Reilly

Media, 2009.

[7] W. Jansen and T. Grance, “Guidelines on security and privacy in

public cloud computing”, 2011 [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

144.pdf

[8] OpenStack website, https://www.openstack.org

[9] R. L. Rivest, “Cryptography”, in Handbook of Theoretical Computer

Science, J. Van Leeuwen, Ed. MIT Press, 1990, vol. A, pp.717–755.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

digital signatures and public-key cryptosystems”, Communications

of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[11] PKCS #1 RSA ver. 2.2 Cryptography standard, RSA Laboratories,

Oct. 2012 [Online]. Available: http://www.emc.com/collateral/

white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf

[12] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook

of Applied Cryptography. CRC Press, 1996.

[13] Google Cloud Documentation [Online]. Available:

https://cloud.google.com/storage/docs/authentication

[14] Amazon Elastic Compute Cloud User Guide for Linux [Online].

Available: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

ec2-key-pairs.html

[15] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Pro-

tocol, Version 1.2”, Network Working Group, Aug. 2008 [Online].

Available: http://tools.ietf.org/html/rfc5246

[16] C.-H. Lin, C.-Y. Lee, and T.-W. Wu, “A cloud-aided RSA signature

scheme for sealing and storing the digital evidences in computer

forensics”, Int. J. Secur. & and Its Appl., vol. 6, no. 2, 2012.

[17] OpenStack Website, https://www.openstack.org/

[18] Java Platform Standard Edition 8 Documentation, Oracle, 2015 [On-

line]. Available: https://docs.oracle.com/javase/8/docs

[19] Java Platform, Standard Edition 8 API Specification, Oracle, 2015

[Online]. Available: https://docs.oracle.com/javase/8/docs/api/javax/

crypto/Cipher.html

[20] National College of Ireland Website, https://www.ncirl.ie/

[21] D. Grzonka, “The analysis of OpenStack cloud platform: fea-

tures and performance”, J. Telecommun. Inform. Technol., no. 3,

pp. 52–57, 2015.

[22] OpenSSL, Cryptography and SSL/TLS Toolkit [Online]. Available:

https://www.openssl.org

[23] D. Grzonka, M. Szczygieł, A. Bernasiewicz, A. Wilczyński, and

M. Liszka, “Short analysis of implementation and recources utiliza-

tion for the OpenStack cloud computing platform”, in Proc. 29th Eur.

Conf. Modelling & Simul. ECMS 2015, Albena (Varna), Bulgaria,

2015.

[24] E. B. Barker et al., “Recommendation for Key Management, Part 1:

General (Revised)”, NIST Special Publication 800-57, National In-

stitute of Standards & Technology, Mar. 2007 [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-

57-Part1-revised2 Mar08-2007.pdf

58

A Cloud-aided Group RSA Scheme in Java 8 Environment and OpenStack Software

Agnieszka Jakóbik (Krok) re-

ceived her M.Sc. in the field

of stochastic processes at the

Jagiellonian University, Cra-

cow, Poland and Ph.D. de-

gree in the field of neural net-

works at Tadeusz Kosciuszko

Cracow University of Technol-

ogy, Poland, in 2003 and 2007,

respectively. From 2009 she is

an Assistant Professor at Fac-

ulty of Physics, Mathematics and Computer Science, Ta-

deusz Kościuszko Cracow University of Technology. Her

main scientific and didactic interests are focused mainly

on artificial intelligence: artificial neural networks, genetic

algorithms, and additionally on parallel processing and

cryptography.

E-mail: agneskrok@gmail.com

Faculty of Physics, Mathematics and Computer Science

Tadeusz Kościuszko Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

59

